
2019/2020, 1st quarter

INFOMOV: Optimization & Vectorization / 0ptmzdSummary

#0 - Profiling

Author: Jacco Bikker

TL;DR

These documents contain an overview of many of the topics discussed in the lectures. Often,
additional links to relevant materials are provided. These documents will ultimately provide a
full overview of the theory of the course. For the 2019/2020 edition, this is not yet expected to
be the case.

In this ‘#0’ a global overview of the optimization process is provided. We also briefly discuss the
topic of profiling.

Raison d’être /ˌreɪzɒ̃ ˈdɛtrə/

There are many reasons to optimize software. The goal of the optimization affects the
optimization process, and, in particular, the ‘termination criterion’, i.e. when to stop. Some
software simply must run as fast as possible, in which case we start with low hanging fruit (as
indicated by a profiling session) and proceed with profiling / optimization cycles until time runs
out. In other cases, software should run on a CPU that is as simple as possible, e.g., to save on
hardware or energy cost. Perhaps we want to optimize for memory usage, or application
response time. Software that is already fast enough also exist. And in some cases, optimization
effort is more expensive than new hardware. And finally: sometimes we should refrain from
optimization to minimize the risk of breaking something that works.

If faster hardware is not an option, we need to make better use of the resources we have. Often
this is a matter of improving algorithms, which is the focus of many research areas. In this course
however, we focus on the ‘𝐶’ in ‘𝑂(𝑁)’; on how a clever algorithm uses the hardware. Besides
the obvious (multithreading and GPGPU) we dive into the not-so-obvious (vectorization, data
locality, low level hardware details) to obtain a substantial and often predictable speedup.

Consistent Approach

Software optimization happens when functionality is complete. This often means that
optimization is squeezed in just before the deadline, probably with a tight budget. An important
question is: what can we do in X days? Answering that question, and delivering what we
promise, requires a consistent and reproduceable process, as well as some intuition. E.g.:

▪ Single-threaded software can run up to five times faster on a quad-core CPU with
hyperthreading.

▪ Code that is clearly suitable for data parallelism can run up to eight times faster on AVX
hardware.

▪ Most software makes poor use of the memory system. Improving this can double
application performance.

For many programs, it is safe to estimate that a 25x speedup can be achieved in a modest
amount of time. If the GPU can be successfully deployed, this can be even more.

Do note that optimization tends to reduce maintainability of the software. Also note that
optimization may break functionality.

I mentioned a consistent and reproduceable process. This is roughly:

0. Determine optimization requirements.
1. Profile the program to determine hotspots.
2. Determine scalability of the hotspots.
3. Improve scalability, if possible.
4. Profile the improved code.
5. Parallelize / vectorize the code and/or use GPGPU.
6. Profile the improved code.
7. Apply low-level optimizations to hotspots.
8. Repeat step 6 and 7 until time runs out.
9. Report.

A repeating term here is ‘profiling’. Without profiling, the effort lacks a clear course and
becomes essentially random. It is very likely that you spend your efforts on the wrong code
lines. You may break things and slow down sections of the program.

Optimized code can be hard to read.

Profiling

Profiling can be as simple as starting a stopwatch when our code starts, and stopping it when
the program completes. This can be refined by using a stopwatch per function, or even per line
of code.

Luckily, we don’t need a timer around each line of code for this. A profiler is a program that
interrupts running software at fixed intervals. During such an interruption, it probes the
program counter (PC) of the CPU, which stores the address of the instruction that is about to
be executed by the CPU. By storing the PC many times, we get a histogram of where the CPU
spends its time.

A popular profiler for Windows is Very-
Sleepy. The profiler of Visual Studio is a good
alternative.

Be aware that profiling influences your
measurements: interrupting the running
program and storing profiling information
takes time and changes the contents of
caches. Also be aware that modern CPUs
and GPUs do not run at fixed clock rates: a
hot CPU may slow down. This is especially
true on laptops. VerySleepy

PRACTICAL NOTES – In Microsoft Visual Studio you typically chose between a ‘Debug’ and
‘Release’ configuration. Note that these are vastly different. You will want to profile the
‘Release’ version, but this poses a problem: this configuration by default lacks debug
information, which is needed for linking instruction addresses to source lines.

Luckily, you can enable this information in a Release build as well. Right-click on the project
in the solution explorer and select ‘Properties’. Then, for the Release configuration, enable
‘Debug Information Format’ (C/C++ - General) and tell the linker to generate debug info
(Linker – Debugging).

http://www.codersnotes.com/sleepy/
http://www.codersnotes.com/sleepy/

Scalability

A typical goal of an optimization effort is to make the program fast enough for a larger data set.
If this is indeed the case, we may want to measure more than just the performance of the
original code. By comparing the performance for different workloads, we get an impression of
the scalability of the code.

A function in the program that takes little time for 100 input elements may become a bottleneck
at 1000 elements. We need to make sure to optimize the software for the desired workload,
which may not be the current workload.

Temporally Varying

For real-time applications such as games it is
important that the performance of individual
frames does not diverge too much from the
average performance. To get real-time data on
application performance it is sometimes
beneficial to add a custom profiler to an
application. Many game engines provide this.

The End

Up next in #1: Low Level Optimization, in which we try to measure the cost of a single line of
code.

This material is part of the Optimization & Vectorization course of the MGT master program at
the Utrecht University in the Netherlands. More information at:

http://www.cs.uu.nl/docs/vakken/mov.

Profiling data in CryEngine.

http://www.cs.uu.nl/docs/vakken/mov

