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Introduction 

A typical consumer PC contains at least two processors. One is the CPU, which runs the operating 

system, communicates with peripherals such as keyboard, mouse and printers, and has access to 

mass storage. The second processor is the GPU. Traditionally, this is a special-purpose, fixed-function 

processor, responsible for generating images. Relatively recently GPUs became programmable. 

Initially this was limited to graphics-related tasks: pixel shaders, vertex shaders and somewhat later 

geometry shaders. A modern GPU however is a general purpose processor, capable of executing 

generic code, often much faster than the CPU. Leveraging this compute potential requires 

understanding of the characteristics of the GPU hardware, as well as programming models tailored 

for this hardware.  

 

GPU Hardware 

A typical CPU is equipped with multiple cores. A similar approach is used on GPUs: an NVidia GPU 

consists of a number of Streaming Multiprocessors (SM), which AMD simply refers to as Compute 

Units (CU). The numbers are higher though: NVidia’s Titan XP uses 30 SMs; AMDs RX Vega 64 uses 64 

CUs. Each SM executes warps, which are similar to threads on the CPU. But where a CPU is typically 

limited to two threads per core (through hyperthreading), NVidia’s SMs process four warps in 

parallel, chosen from up to 64 warps that the GPU can switch to whenever a stall occurs. And finally 

the warps themselves: these are 32-wide SIMD lanes, while an AVX2-capable CPU is limited to 8 

SIMD lanes. 

In short, if we keep everything in CPU terminology, the Titan XP GPU is a 30-core processor, 

executing 120 threads in parallel, chosen from 1920 active threads. Every instruction executed is a 

32-wide SIMD instruction. The SIMD behaviour is mostly hidden from the programmer; instead the 

device appears to execute 3,840 threads in parallel, chosen from 61,440 threads. 

All these cores need to be fed data. The memory bandwidth of the Titan XP GPU is 550 GB/s, 

compared to ~38GB/s for a high-end Intel CPU. 

Under ideal circumstances, the GPU is able to perform 12 trillion floating point operations per 

second (TFlops), while CPU performance is still measured in GFlops. 

The above may sound like the description of the ideal processor. In practice, things are somewhat… 

complicated. 

It starts with the 32-wide SIMD instructions. SIMD is an abbreviation of Single Instruction Multiple 

Data: on a 32-wide SIMD machine, each instruction in a program is executed for 32 threads. This is 

great when 32 pixels of a polygon need shading: each pixel will go through the same program, just 

with slightly different data. It is not so great if we have 32 different threads. In fact, if 32 threads run 



the same code, but do not agree on the outcome of an if-statement, our only option is to run the 

conditional code for some of the threads, while the others idle. 

A second observation is that, compared to CPU cores, GPU cores are relatively simple. Where a CPU 

relies on long pipelines, branch prediction logic and large caches to deal with complex program flow, 

the GPU explicitly relies on massive parallelism. Whenever an instruction must wait for data from 

memory, the SM will switch to another warp. CPUs do this as well, but they can only switch between 

two threads. The GPU may choose from up to 64 threads. 

This illustrates an important design principle of the GPU: it is a data parallel processor, and it expects 

a large number of uniform tasks. Given this kind of work, it will fly; any other kind of work is more 

efficiently executed by the CPU. On the other hand, if a program requires this kind of work, or if an 

algorithm can be executed in a data-parallel way, it is a tremendous waste not to use the GPU. 

 

GLSL  

Consider the following GLSL program: 

void mainImage( out vec4 O, in vec2 pos ) 

{ 

    vec2 res = iResolution.xy; 

    vec2 centre = vec2( 0.5, 0.5 ); 

    vec2 d = pos / res - centre; 

    if (length( d ) < .2) O.xyz = vec3( 1, 0, 0 ); 

    else O.xyz = vec3( 0, 0, 0 ); 

} 

The output of this program is shown on the right. You can try it out on Shadertoy: just paste the 

above code and run. An interesting thing about this code is that there is no loop: the function is 

executed for every pixel of the image, yielding the red disc. This is a good example of a data parallel 

task:  

▪ the input for every thread (in this case: a pixel) is the location of the pixel; 

▪ the output is either red or blue, stored in O; 

▪ threads can be executed in any order, and in parallel; 

▪ threads do not exchange information. 

Tasks like this are particularly suitable for GPU execution, and naturally benefit from a large number 

of threads. It may seem that this kind of task is rare. However, this is not necessarily the case: think 

of particle systems, neural networks, evaluating the AI for an army of virtual tanks, intersecting a 

million rays with complex geometry, or running a fluid simulation. In other cases an algorithm may 

be rephrased so that it becomes data parallel. Some sorting algorithms benefit from parallelism, 

while others do not, for example. 

 

OpenCL 

GLSL (OpenGL Shading Language), as the name suggests, is still firmly rooted in the world of 

graphics. For general purpose computations something more generic is needed. Several 

programming languages exist for this: well-known examples are CUDA and OpenCL. This document 

focuses on OpenCL, but most concepts translate well to CUDA. 

https://www.shadertoy.com/new
https://www.shadertoy.com/new


OpenCL is roughly based on C, which means that for C/C++ and C# programmers the syntax is 

familiar. For C# programmers, the biggest hurdle is perhaps the use of pointers. Consider the 

following code snippet, adapted from Wikipedia, which multiplies a matrix and a vector: 

// multiplies A*x, leaving the result in y. 

// A is a row-major matrix, meaning the (i,j) element is at A[i*ncols+j]. 

__kernel void matvec( __global float* A, __global float* x, 

                      uint ncols, __global float* y ) 

{ 

    int i = get_global_id( 0 );            // global id, used as the row index 

    __global float* a = &A[I * ncols];     // pointer to the i'th row 

    float sum = 0;                         // accumulator for dot product 

    for( int j = 0; j < ncols; j++ ) sum += a[j] * x[j]; 

    y[i] = sum; 

} 

Here, matrix A is stored as a collection of floats. The corresponding C# code would simply mention 

‘float[] A’, but in C (and OpenCL) we specify the memory address of the first element instead, by 

writing ‘float* A’ (pronounced as ‘float pointer A’). The __global keyword specifies that A is in global 

memory: GPUs have other types of memory as well, so this needs to be explicitly specified. 

The above function is a kernel function, which means that we can call it from the CPU (the host). A 

kernel function can call other functions, which we call device functions. For those, we simply omit 

the __kernel keyword. 

Kernel functions are typically executed in massive parallel fashion, like the shader in GLSL. In this 

case, we start as many threads as there are rows in the matrix. OpenCL may execute these threads in 

any order, or in parallel (that’s what we count on!), which means that we can make no assumptions 

about execution order. Each thread needs to know which row it is working on: we determine this by 

obtaining the index (or: global id) of the thread. 

Executing a kernel function is a somewhat complex process. It requires communication between the 

host and the device: arguments need to be passed, and a ‘go’ signal must be issued. The CPU also 

needs to specify how many threads should execute the kernel code. We also must make sure that 

the data we operate on is already on the device: the GPU can’t access host memory, so calling the 

above matrix multiplication kernel must be preceded by data transfer from system RAM to global 

device memory. 

We will further explore these concepts by converting some existing CPU code to OpenCL. This is a 

typical use case: after identifying a bottleneck in CPU code and establishing it is indeed suitable for 

parallel execution on the GPU, we port the functionally complete code section. 

 

Cloo 

To communicate with OpenCL from C# we will use the Cloo C# wrapper for OpenCL. In the 

complementary example application Cloo is already included, along with some helper classes that 

facilitate OpenCL initialization and host-device data transfer. 

 

  



Neural Network 

The example C# application implements a basic backpropagation neural network, and is based on 

C++ code by Bobby Anguelov. In the example, the net is trained to recognize handwritten characters, 

using the MNIST training data, which consists of 60,000 categorized images of 28x28 pixels. You can 

find the implementation of the neural net training code in source file neuralnet.cs. 

This is obviously not a tutorial on neural nets, but to better understand the remainder, we’ll briefly 

investigate how things work. 

A neural net is a collection of virtual ‘brain cells’, which take some input and may produce output: 

 

In this image, as in the application, three layers are used. The input layer is fed input data. In our 

case this is a 28x28 pixel image; we therefore use 784 input cells. The input cells are connected to 

the hidden layer. Each connection has a weight, which scales the value provided by the input layer. 

The 150 cells in the hidden layer each sum the incoming weighted values, and if the result exceeds a 

certain threshold, a value is sent to the output layer, again using weighted connections. In the 

application the output layer consists of 10 cells: one for each number between zero and nine. We 

read the result by finding the output with the highest value: this is the ‘best guess’ of the net. This 

functionality is implemented in the Evaluate function in neuralnet.cs. 

Training the network is a matter of adjusting the weights. The functionality for this can be found in 

the Backpropagate function, which uses the difference between the result produced by Evaluate 

and the desired result to improve the weights. 

We train the network using a large number of images, for which we know the correct classification. 

Training happens in waves, called epochs. For each epoch, we feed the network all images of the 

training set, and validate the result using a second (smaller) set of different images. This 

functionality can be found in function RunEpoch. 

Running the original code makes clear that training is time consuming: a single epoch, using only 

4,000 of the MNIST images, takes roughly four seconds. The network requires about 200 epochs to 

reach a reasonable level of accuracy, and reaches optimal (not perfect) accuracy after about 600 

epochs, which takes about 40 minutes. 

At the same time, there appears to be plenty of room for parallel execution: there are no loop 

dependencies in the for loops in Evaluate and Backpropagate, which suggests we can easily update 

many cells at the same time. 

 

  



Data Layout 

The data for the neural net is specified in class NeuralNet. We have simple arrays of floats for the 

cells themselves: inputNeurons, hiddenNeurons and outputNeurons. Additional arrays store the 

weights for the connections between the input layer and the hidden layer (weightsInputHidden) 

and between the hidden layer and the output layer (weightsHiddenOutput).  

The training set is stored in a separate class TrainingSet, which contains an array of 

TrainingEntry’s. Each TrainingEntry stores greyscale values for the pixels (scaled to 0..1 and stored 

as floats), and a set of expected values: 0 for each wrong number, 1 for the correct one. 

Finally, we have a collection of data needed for backpropagation: deltaInputHidden, 

deltaHiddenOutput, errorGradientsHidden and errorGradientsOutput. 

 

OpenCL Data Layout 

In OpenCL we have plenty of options to replicate the above layout. We can make structs, use 

type_defs, and so on, e.g.: 

typedef struct myRecord  

{ 

    int        id; 

    char       chars[2]; 

    int        numerics; 

    float      decimals; 

    float3   vector; 

} record; 

However, there is a problem. Often, an OpenCL struct does not have the same layout as the same 

struct in C# or C/C++. Sometimes, types do not have the same size: e.g., a float3 is 16 bytes in 

OpenCL, not 12, as you would expect. In other cases, data alignment is a problem. In the above 

structure, id is four bytes, and is located right at the start of each instance of record. Array chars is 

located at offset 4, but int numerics is located at offset 8, not 6 as you might expect. The rules for 

data alignment differ between C/C++, C# and OpenCL, which may lead to quite unpredictable and 

hard to debug situations. 

We can significantly reduce data layout problems if we handle the layout ourselves. The neural net 

itself for example consists of 784 floats for the input layer, 150 for the hidden layer and 10 for the 

output layer. Added to that we store 784 * 150 weights for the connections between the input layer 

and hidden layer, and 150 * 10 weights to connect the hidden layer and output layer. The network 

can thus be stored in a simple float array large enough to contain all these values: 

float[] ND = new float[128 * 1024]; // 128KB of neural net data 

Accessing the input layer is now done using a set of simple helper functions that return the location 

of data in the float array: 

int inputNeuron( i ) { return i; } 

int hiddenNeuron( int i ) { return i + 800; } 

int outputNeuron( int i ) { return i + 960; } 

int weightInputHidden( int i, int h ) { return 1024 + h * 800 + i; } 

int weightHiddenOutput( int h, int o ) { return 124 * 1024 + h * 10 + o; } 

To access input neuron x, we now write: 



ND[inputNeuron( x )] = 0.0f; 

float neuronValue = ND[inputNeuron( x )]; 

To access the weight of the connection between input neuron A and hidden neuron B we write: 

float weight = ND[weightInputHidden( A, B )]; 

There are two benefits to this approach: 

1. It is completely clear where each float is, and therefore we can use the same data layout in 

C# and OpenCL; 

2. The entire neural net is in a single array, which can be conveniently transferred to the GPU 

in a single copy. 

The second advantage is important: copies to and from the GPU take time. This time is dominated by 

the overhead of each transfer, not the size. In practice, it is faster to send a single 10MB buffer to the 

GPU, than two 1KB buffers. 

Doing the same to the training data, we allocate 4,800,000 floats to store 6,000 sets of 800 floats. 

Each set of 800 floats contains 784 inputs (a 28x28 image to train the net with) and 10 floats for the 

expected output. The original data used integers, but this is not necessary for correct operation. 

float[] TD = new float[4800000]; 

// training data access 

int input( int i, int n ) { return i * 800 + n; } 

int expected( int i, int n ) { return i * 800 + 788 + n; } 

Finally, we do the same for the delta and gradient data used for backpropagation. 

float[] DG = new float[128 * 1024]; 

// delta / gradient data access 

int deltaInputHidden( int i, int h ) { return h * 800 + i; } 

int deltaHiddenOutput( int h, int o ) { return 118 * 1024 + h * 10 + o; } 

int errorGradientHidden( int i ) { return 127 * 1024 + i; } 

int errorGradientOutput( int i ) { return 127 * 1024 + 800 + i; } 

Once we have the new data layout in place, we can modify the C# code to use it. This is quite a bit of 

work, but it allows us to verify the layout, and once we have the OpenCL code in place, it allows us to 

switch between OpenCL and C# execution, even for parts of the code. 

Here is the converted ‘update hidden neurons’ loop of the Evaluate function: 

for( int i = 0; i < NUMHIDDEN; i++ ) 

{ 

    ND[hiddenNeuron( i )] = 0;  

    // get weighted sum of pattern and bias neuron 

    for( int j = 0; j <= INPUTSIZE; j++ ) 

    { 

        ND[hiddenNeuron( i )] += ND[inputNeuron( j )] * ND[weightInputHidden( j, i )];  

    } 

    // apply activation function 

    ND[hiddenNeuron( i )] = SigmoidActivationFunction( ND[hiddenNeuron( i )] );  

} 

The fully converted code can be found in the second version of the neural network application, 

NN_prep. Executing it reveals that is works, and still runs at the same speed. 

With the modified data in place, we are well prepared to start the conversion to OpenCL. 



PART 2 – ACTUAL CONVERSION 
 

We will start the actual conversion with a cleaned-up version of the NN_prep project. In the 

NN_clean project you will find the same code, but without all the original lines in comments. 

Additionally, some basic C# multithreading has been used to verify the lack of loop dependencies. 

See functions Evaluate and Backpropagate for examples. These changes also bring a bit of extra 

speed: the network now trains in less than half the original time, on my poor-man’s Intel i3 system. 

 

OpenCL Buffers 

Before we do any OpenCL work we must initialize the API. The easiest way to do this is using the 

supplied OpenCLProgram helper class, which initializes an OpenCL context, finds a suitable device 

(most systems have more than one OpenCL capable device), loads the specified OpenCL source file, 

and compiles it. 

static OpenCLProgram ocl = new OpenCLProgram( "../../program.cl" ); 

Once we have an OpenCL context, we can create OpenCL buffers, using the OpenCLBuffer helper 

class. It’s constructor conveniently takes regular C# arrays: 

OpenCLBuffer<float> gpuND = new OpenCLBuffer<float>( ocl, ND ); 

OpenCLBuffer<float> gpuTD = new OpenCLBuffer<float>( ocl, TD ); 

OpenCLBuffer<float> gpuDG = new OpenCLBuffer<float>( ocl, DG ); 

An OpenCLBuffer object actually encapsulates two buffers: one on the host, and one on the device. 

This is convenient: we typically want to prepare data on the CPU, send it to the GPU, operate on it 

using a kernel, and get it back to the CPU. OpenCLBuffer methods CopyToDevice and 

CopyFromDevice facilitate this. 

 

My First Kernel 

Now that we have initialized OpenCL and created some buffers we can test the logistics. In 

program.cl we put the following kernel code: 

__kernel void device_function( __global float* a ) 

{ 

    int id = get_global_id( 0 ); 

    a[id] = id; 

} 

This kernel takes a single float buffer, and fills it with thread ids. We access it in the compiled 

OpenCLProgram by instantiating an OpenCLKernel: 

OpenCLKernel testKernel = new OpenCLKernel( ocl, "device_function" ); 

The kernel takes a single parameter. We can pass it our neural net data to test it: 

testKernel.SetArgument( 0, gpuND ); 

After making sure that gpuND is actually on the device, we execute the kernel, and fetch the data 

back to the CPU: 



gpuND.CopyToDevice(); 

testKernel.Execute( 10000 ); 

gpuND.CopyFromDevice(); 

If we set a breakpoint after the last line, we can verify the contents of the float buffer: the first 1,000 

elements now contain the values 0..1000, which means that we made the GPU do some work. 

 

Porting Backpropagate 

The most time consuming part of the training process is the code in Backpropagate. There are two 

loops in this function. The first one is: 

// modify deltas between hidden and output layers 

for( int i = 0; i < NUMOUTPUT; i++ ) 

{ 

    // get error gradient for every output node 

    DG[errorGradientOutput( i )] = GetOutputErrorGradient( 

       TD[expected( entryIdx, i )], ND[outputNeuron( i )] ); 

} 

In the NN_clean project, the second loop is the Parallel.For. Not that there is a dependency 

between the two loops: the second loop uses data set by the first one, but in a different order. To 

ensure that the first loop completes before we start the second one, we will put each loop in its own 

kernel. 

The kernel that implements the first loop looks like this: 

__kernel void Backpropagate1( int entryIdx, __global float* ND, 

                              __global float* TD, __global float* DG ) 

{ 

    int id = get_global_id( 0 ); // get thread id, will be 0..NUMOUTPUT 

    // get error gradient for every output node 

    DG[errorGradientOutput( id )] = GetOutputErrorGradient(  

       TD[expected( entryIdx, id )], ND[outputNeuron( id )] ); 

} 

This kernel receives as arguments pointers to the float arrays that hold the data for the neural 

network, and the index of the current training set entry in entryIdx. The loop is gone: this will now 

be executed in parallel. The original loop had NUMOUTPUT iterations; we will thus execute this kernel 

using NUMOUTPUT threads. The actual functionality is identical to the C# code, thanks to our data 

reorganization efforts. Like the C# code, the kernel calls a few functions to find data in the arrays. 

These functions are also identical to their C# counterparts: 

int outputNeuron( int i ) { return i + 960; } 

int expected( int i, int n ) { return i * 800 + 788 + n; } 

int errorGradientOutput( int i ) { return 127 * 1024 + 800 + i; } 

There is also a call to GetOutputErrorGradient. This function, too, is identical to the C# code: 

float GetOutputErrorGradient( float desiredValue, float outputValue )  

{ return outputValue * (1.0f - outputValue) * (desiredValue - outputValue); } 

We can now test the partial port. The safest (albeit slow) way to do this is like this: 

if (true) 

{ 

    kernelBackprop1.SetArgument( 0, entryIdx ); 

    kernelBackprop1.SetArgument( 1, gpuND ); 



    kernelBackprop1.SetArgument( 2, gpuTD ); 

    kernelBackprop1.SetArgument( 3, gpuDG ); 

    gpuND.CopyToDevice(); 

    gpuTD.CopyToDevice(); 

    gpuDG.CopyToDevice(); 

    kernelBackprop1.Execute( NUMOUTPUT ); 

    gpuND.CopyFromDevice(); 

    gpuTD.CopyFromDevice(); 

    gpuDG.CopyFromDevice(); 

} 

else 

{ 

    // modify deltas between hidden and output layers 

    for( int i = 0; i < NUMOUTPUT; i++ ) 

    { 

        // get error gradient for every output node 

        DG[errorGradientOutput( i )] = GetOutputErrorGradient(  

           TD[expected( entryIdx, i )], ND[outputNeuron( i )] ); 

    } 

} 

In other words: transfer a copy of the current data in RAM to the GPU; execute the kernel; copy the 

data back. After this, the situation should be identical to the result of executing the C# code (in the 

‘false’ branch). In the above code, we can swap effortlessly between OpenCL and C#, until we are 

sure the OpenCL kernel works as intended. And, we do this for a tiny portion of the code, which 

allows us to port in small chunks. 

This does however make the neural net horribly slow. Although this is not really a problem right 

now, there are a few things that we can do to alleviate this. First of all: training data never changes. 

So, after setting up TD and gpuTD we can copy it once, and skip the copies after that. Secondly, the 

above code doesn’t change any data in ND, so we don’t have to copy that back either. And finally, 

arguments 1, 2 and 3 are always the same: we can thus set these once. The ‘true’ branch then 

becomes: 

    kernelBackprop1.SetArgument( 0, entryIdx ); 

    gpuND.CopyToDevice(); 

    gpuDG.CopyToDevice(); 

    kernelBackprop1.Execute( NUMOUTPUT ); 

    gpuDG.CopyFromDevice(); 

The port of the second loop proceeds in the same way. The kernel code: 

__kernel void Backpropagate2( __global float* ND, __global float* DG ) 

{ 

    int id = get_global_id( 0 ); // get thread id, will be 0..NUMHIDDEN 

    // modify deltas between input and hidden layers 

    for( int k = 0; k < NUMOUTPUT; k++ ) 

    { 

        // calculate change in weight 

        DG[deltaHiddenOutput( id, k )] =  

           LEARNINGRATE * ND[hiddenNeuron( id )] * DG[errorGradientOutput( k )] + 

           MOMENTUM * DG[deltaHiddenOutput( id, k )]; 

    } 

    // get error gradient for every hidden node 

    DG[errorGradientHidden( id )] = GetHiddenErrorGradient( id, ND, DG ); 

    // for all nodes in input layer and bias neuron 

    for( int j = 0; j <= INPUTSIZE; j++ ) 



    { 

        // calculate change in weight  

        DG[deltaInputHidden( j, id )] =  

           LEARNINGRATE * ND[inputNeuron( j )] * DG[errorGradientHidden( id )] + 

           MOMENTUM * DG[deltaInputHidden( j, id )]; 

    } 

} 

 

Porting UpdateWeights 

The final code snippet in the Backpropagate function is a call to UpdateWeights. The C# code 

contains two loops: 

void UpdateWeights() 

{ 

    // input -> hidden weights 

    Parallel.For( 0, INPUTSIZE + 1, i => { for( int j = 0; j <= NUMHIDDEN; j++ )  

        ND[weightInputHidden( i, j )] += DG[deltaInputHidden( i, j )]; 

    } ); 

    // hidden -> output weights 

    Parallel.For( 0, NUMHIDDEN + 1, i => { for ( int j = 0; j < NUMOUTPUT; j++ )  

        ND[weightHiddenOutput( i, j )] += DG[deltaHiddenOutput( i, j )]; 

    } ); 

} 

Based on earlier experience, we could split this into two kernels. However: the two loops can run 

concurrently; they operate on different data. This reveals an important problem that we ignored so 

far: our kernels run 10 threads if they parallelize a loop over the output neurons, 150 for the hidden 

neurons, and 784 for the input neurons. None of these numbers is even close to what we need to 

keep the GPU occupied. Recall that a high-end GPU is designed to run 3,840 threads in parallel, 

chosen from 61,440 threads. What is worse: it needs those numbers to hide latencies arising from 

memory access. Looking at the kernels we have so far it is clear that execution is dominated by 

memory access: there is not a lot of calculation going on, but we do loop over massive arrays. 

Consider the following OpenCL port of UpdateWeights: 

__kernel void UpdateWeights( __global float* ND, __global float* DG ) 

{ 

    int id = get_global_id( 0 ); // get thread id, will be 0..INPUTSIZE 

    // input -> hidden weights 

    for( int j = 0; j <= NUMHIDDEN; j++ )  

        ND[weightInputHidden( id, j )] += DG[deltaInputHidden( id, j )]; 

    // hidden -> output weights 

    if (id <= NUMHIDDEN) for ( int j = 0; j < NUMOUTPUT; j++ ) 

        ND[weightHiddenOutput( id, j )] += DG[deltaHiddenOutput( id, j )]; 

} 

Here, we execute this kernel using 784 threads (to suit the first loop). For the second loop, we 

disable all threads beyond 150 using a simple if-statement. This means that a substantial number of 

threads will be idling while 150 threads execute the second loop. This is not an issue: we have 

thousands of idling threads anyway. Combining the two loops in one kernel at least saves on kernel 

invocation overhead, making this the faster option. Note that this is only possible here because the 

two loops are independent! 

 



Finishing the OpenCL Port 

The goal of the remainder of the port is to move all functionality in RunEpoch to the GPU. Once this 

is done, we can get rid of most of the transfers; the only thing we really need back after training with 

one image is the updated neural network. This will not be described in detail here; the steps are 

similar to what we did for Backpropagate. You can see the result in the NN_OpenCL project. 

Porting the Evaluate function brings up one interesting issue. Evaluate contains this loop: 

for( int j = 0; j <= NUMHIDDEN; j++ ) for( int i = 0; i < NUMOUTPUT; i++ )  

// can't (easily) do in parallel; fights for outputNeuron[i] 

{ 

    // get weighted sum of pattern and bias neuron 

    ND[outputNeuron( i )] += ND[hiddenNeuron( j )] * ND[weightHiddenOutput( j, i 

)]; 

} 

The comment points out an issue: if we run the outer loop in parallel, multiple threads may add to 

ND[outputNeuron( i )] at the same time. This is only safe if we can do this atomically. On the 

CPU, atomics are expensive. On the GPU however, they are very efficient: in fact, an atomic write 

can be done at virtually the same cost as a regular write to global memory. 

OpenCL provides a broad set of atomic functions: 

▪ atomic_add / sub for addition and subtraction; 

▪ atomic_inc / dec for atomic increment and decrement; 

▪ atomic_and / or / xor for atomic logical operations; 

▪ atomic_min / max for atomically determine minima and maxima; 

▪ atomic_xchg / cmpxchg for (conditionally) swapping numbers. 

All these functions have one thing in common: they operate on integers. This exposes a major flaw 

of OpenCL: on NVidia GPUs, atomic operations on floats are supported natively, but OpenCL does 

not expose this. In CUDA we can simply use atomicAdd on floats. In OpenCL we need a hack. 

Anca Hamuraru and Vincent Hindriksen propose the following solution on streamhpc.com: 

inline void AtomicAddFloat( volatile __global float* source, const float operand ) 

{ 

 union { unsigned int intVal; float floatVal; } newVal; 

 union { unsigned int intVal; float floatVal; } prevVal; 

 do { 

  prevVal.floatVal = *source; 

  newVal.floatVal = prevVal.floatVal + operand; 

 }  

 while (atomic_cmpxchg( (volatile __global unsigned int*)source, 

              prevVal.intVal, newVal.intVal ) != prevVal.intVal); 

} 

Although this is nowhere near as fast as the NVidia / CUDA solution, at least this allows us to run 

that particular loop in parallel. 

 

Evaluation 

The full OpenCL port of the neural network can be found in project NN_OpenCL. When we run it, it 

turns out that the GPU executes the training process slightly faster than a single CPU core, which is 

at least something. But, it is not faster than the C# version with Parallel.For. What is wrong? 

https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/atomic_add.html
https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/atomic_add.html
https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/atomic_sub.html
https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/atomic_sub.html
https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/atomic_inc.html
https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/atomic_inc.html
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Several things: 

▪ As discussed, we don’t have enough work. Invoking a kernel with just 10 threads is a waste 

of time: although the kernel will be executed in the blink of an eye, the overhead of the 

invocation is not nearly worth it. Running these tiny kernels on the CPU is not an option 

however: this would require constant synchronization of data between GPU and CPU. So, an 

inefficient kernel invocation may actually be worth it. 

▪ Many loops have dependencies. Backpropagate was split in three kernels (one for 

UpdateWeights); Evaluate was split in no less than four kernels. Training with 4000 images 

thus requires 4000 * 7 kernel invocations, plus data transfer. Bringing down the number of 

kernel invocations would help. 

▪ The AtomicAdd is inefficient. The proposed hack works well for occasional atomic adds, 

because in that case the condition for the while will fall through at the first attempt. We are 

however hammering an array. 

The solution is simple: do more work. Although the port is weak for a small network, the code will 

run at virtually the same speed if we double the neuron counts. Training with tens of thousands of 

input neurons and similar counts for the hidden layer is not feasible on the CPU, but perfectly 

possible on the GPU. 

In the final part of this document we will investigate how training can be made more efficient 

without increasing the workload. 

 

  



PART 3 – SPEED 
 

In part 2 we converted a C# application to OpenCL. Sadly, the result was disappointing in terms of 

performance. A number of causes for this were identified. In this final part, we will improve the 

performance of the code, without increasing the amount of work. This will provide additional insight 

in factors that determine OpenCL application performance. 

 

Establishing Baseline 

Before we start the optimization process it is good to record our current performance level. On my 

machine (Intel i3, Titan XP Pascal) a single Epoch takes about 2960 milliseconds for the NN_OpenCL 

project. 

Function Evaluate has been reduced to four kernel invocations. No data is copied back to the CPU; 

Backpropagate operates on the same data and needs this on the GPU as well. Function 

Backpropagate invokes three kernels. It concludes with a transfer of the updated neural net to the 

host. This data is needed for the remainder of the RunEpoch function, which estimates the mean 

square error (MSE). 

 

Reducing Transfer 

The remaining CopyFromDevice in Backpropagate transfers 128KB of data. This is a tiny amount, so 

the transfer cost is expected to be dominated by transfer overhead. As mentioned, the transfer is 

needed to update the MSE in RunEpoch: 

// check all outputs from neural network against desired values 

bool resultCorrect = true; 

for( int j = 0; j < NUMOUTPUT; j++ ) 

{ 

    if (ND[clampedOutput( j )] != TD[expected( entryIdx, j )])  

        resultCorrect = false; 

    float delta = ND[outputNeuron( j )] - (int)TD[expected( entryIdx, j )]; 

    MSE += delta * delta; 

} 

if (!resultCorrect) incorrectEntries++;  

This is a loop that should not benefit from running on the GPU: we can spawn only 10 threads, and 

on top of that, adding delta * delta to MSE again requires an atomic addition. But, if this code 

runs on the GPU, it operates on data on the GPU, which saves us the remaining CopyFromDevice. 

The kernel looks like this: 

__kernel void UpdateMSE( int entryIdx, __global float* ND, __global float* TD ) 

{ 

    int id = get_global_id( 0 ); 

    // check all outputs from neural network against desired values 

    bool resultCorrect = true; 

    for( int j = 0; j < NUMOUTPUT; j++ ) 

    { 

        if (ND[clampedOutput( j )] != TD[expected( entryIdx, j )])  

            resultCorrect = false; 



        float delta = ND[outputNeuron( j )] - TD[expected( entryIdx, j )]; 

        AtomicAddFloat( &ND[MSE()], delta * delta ); 

    } 

    if (!resultCorrect) ND[incorrectEntries()] += 1.0f; 

} 

For this to work, the local variables MSE and incorrectEntries used in RunEpoch were moved to 

ND. Once this final part of the loop over 4000 images runs on the GPU, transferring back the trained 

network is only needed after this loop, which saves us 3999 transfers. 

Despite the terrible kernel there is a positive impact on performance: an epoch now takes 2420 

milliseconds, a 22% reduction. 

 

Better Hardware Utilization 

Due to the small workload, the GPU hardware is severely under-utilized when running the kernels. In 

fact, when running just 10 threads, these will be assigned to a single SM, leaving all other SMs to 

idle. This is a shame: each SM has its own cache and memory interface, so in a memory-intensive 

application like this it could be beneficial to spread the work over more SMs. 

When we dispatch some work to OpenCL, the system automatically takes care of the division of 

work over SMs. We can however influence this behaviour, by creating work groups. Each work group 

is guaranteed to run on a single SM. Normally, due to the 32-wide SIMD nature of the GPU, a 

workgroup consists of at least 32 threads. In our case, it could be better to have much smaller work 

groups. For this, a version of the Execute function exists that takes two parameters: the size of the 

workload, and a work group size. 

Using the two-argument version of Execute comes with a caveat: the size of the workload must be a 

multiple of the work group size. This is handled internally (see the implementation of Execute in 

opencl.cs), but it does mean that some threads may be started that are outside the intended 

range. To counter this, a small addition must be made to each kernel. Here is the Evaluat4 kernel: 

__kernel void Evaluate4( __global float* ND ) 

{ 

    int id = get_global_id( 0 ); // get thread id, 0..NUMOUTPUT are valid 

    if (id >= NUMOUTPUT) return; 

    // apply activation function and clamp the result 

    ND[outputNeuron( id )] = SigmoidActivationFunction( ND[outputNeuron( id )] ); 

    ND[clampedOutput( id )] = ClampOutputValue( ND[outputNeuron( id )] ); 

} 

Right after fetching the thread id, any thread that is outside the valid range simply terminates. 

We can now start each kernel with a specific work group size. For work groups of 8 threads, the 

performance improves to 1633 milliseconds, 67% of the time it took without this optimization. On 

my hardware, just 2 threads per work group seems optimal; performance improves to 1467 

milliseconds, which is only 61% of the previous time. The GPU now outperforms the multi-threaded 

CPU code, albeit by a tiny margin. 

 

  



Reducing Kernel Invocations 

Kernels Evaluate4 and Backpropagate1 are executed right after each other, without any other 

logic between them. Both run with NUMOUTPUT threads. The only real reason that the code in these 

kernels is split over two kernels is the original code architecture, where these loops where located in 

separate functions. 

This allows us to investigate kernel invocation overhead: obviously, each kernel takes no time at all 

to complete, so joining them should get rid of the overhead, without adding any work. 

Backpropagate1 now becomes: 

__kernel void Backpropagate1( int entryIdx, __global float* ND,  

                              __global float* TD, __global float* DG ) 

{ 

    int id = get_global_id( 0 ); // get thread id, 0..NUMOUTPUT are valid 

    if (id >= NUMOUTPUT) return; 

    // apply activation function and clamp the result (originally: Evaluate4) 

    ND[outputNeuron( id )] = SigmoidActivationFunction( ND[outputNeuron( id )] ); 

    ND[clampedOutput( id )] = ClampOutputValue( ND[outputNeuron( id )] ); 

    // get error gradient for every output node 

    DG[errorGradientOutput( id )] = GetOutputErrorGradient(  

       TD[expected( entryIdx, id )], ND[outputNeuron( id )] ); 

} 

The runtime of an epoch now goes down to 1440 milliseconds. Not the magic bullet we hoped for, 

but still a reduction. 

 

Conclusion 

Comments, questions? Mail me: 

bikker.j@gmail.com  

 

 

Houten, September 7th, 2017. 

 

 

Part of: http://www.cs.uu.nl/docs/vakken/mov. 
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