
Optimization & vectorization
UU Crowd Simulation Software

Roland Geraerts

October 14, 2019

mailto:r.j.geraerts@uu.nl


Unity3D plugin



However…

• Global framework

– Agents are simulated in parallel using OpenMP

• Real-time performance

– UUCS: simulates 15K agents

– Unity: animates and visualizes 1.5K agents



30K in real-time on a fast laptop



What changed?

• UUCS

– Made some remaining code run in parallel

• Unity

– From objected oriented to data driven implementation
• Entity component system & Job system

– From main thread to separate threads

– From CPU animations to GPU shader-based animations



However…

• Current optimizations in UUCS

– Theoretical running times: O(…)

– Parallel code using OpenMP

• So much is still possible…

– …but we first need to understand the framework 



can you simulate
a human crowd
interactively?

How



Crowd simulation framework

 

Simulation step 

Animation 

Local movement 

Route following 

Global route 

planning 

High-level planning 

start/goal 

positions 

indicative 

route 

 

preferred 

velocity 

velocity 

Level 1 

Level 2 

Level 3 

Level 4 

Level 5 

• Representation environment

• Level 5
– Plans actions

• Level 4
– Creates indicative routes

• Level 3
– Traverses the routes

– Yields speed/direction pairs

• Level 2
– Adapts routes

– E.g. to avoid collisions

• Level 1
– Moves the agents

Representation of the environment



Crowd simulation framework

 

Simulation step 

Animation 

Local movement 

Route following 

Global route 

planning 

High-level planning 

start/goal 

positions 

indicative 

route 

 

preferred 

velocity 

velocity 

Level 1 

Level 2 

Level 3 

Level 4 

Level 5 

• Representation environment

• Level 5
– Plans actions

• Level 4
– Creates indicative routes

• Level 3
– Traverses the routes

– Yields speed/direction pairs

• Level 2
– Adapts routes

– E.g. to avoid collisions

• Level 1
– Moves the agents

Representation of the environment



Representation of the environment

• Computation of walkable areas and navigation mesh

Van Toll et al, 2018: The Medial Axis of a Multi-Layered Environment and its Application as a Navigation Mesh



Crowd simulation framework

 

Simulation step 

Animation 

Local movement 

Route following 

Global route 

planning 

High-level planning 

start/goal 

positions 

indicative 

route 

 

preferred 

velocity 

velocity 

Level 1 

Level 2 

Level 3 

Level 4 

Level 5 

• Representation environment

• Level 5
– Plans actions

• Level 4
– Creates indicative routes

• Level 3
– Traverses the routes

– Yields speed/direction pairs

• Level 2
– Adapts routes

– E.g. to avoid collisions

• Level 1
– Moves the agents

Representation of the environment



Level 4: Indicative routes

• We use the Explicit Corridor Map (ECM)

– Compact navigation mesh

– Supports any agent radius

– Multi-layered environments

– Dynamic updates



Crowd simulation framework

 

Simulation step 

Animation 

Local movement 

Route following 

Global route 

planning 

High-level planning 

start/goal 

positions 

indicative 

route 

 

preferred 

velocity 

velocity 

Level 1 

Level 2 

Level 3 

Level 4 

Level 5 

• Representation environment

• Level 5
– Plans actions

• Level 4
– Creates indicative routes

• Level 3
– Traverses the routes

– Yields speed/direction pairs

• Level 2
– Adapts routes

– E.g. to avoid collisions

• Level 1
– Moves the agents

Representation of the environment



Level 3: Path following

• Smoothly follow a desired path

– Input: indicative route, non-smooth indication of the path

– In each simulation step, compute an attraction point

– Leads to a preferred velocity for the next level

• Indicative Route Method (IRM, 2009)

• MIRAN: improvement 
by Jaklin et al. (2013)

– Supports weighted regions

– Better smoothness/
shortcut control



Crowd simulation framework

 

Simulation step 

Animation 

Local movement 

Route following 

Global route 

planning 

High-level planning 

start/goal 

positions 

indicative 

route 

 

preferred 

velocity 

velocity 

Level 1 

Level 2 

Level 3 

Level 4 

Level 5 

• Representation environment

• Level 5
– Plans actions

• Level 4
– Creates indicative routes

• Level 3
– Traverses the routes

– Yields speed/direction pairs

• Level 2
– Adapts routes

– E.g. to avoid collisions

• Level 1
– Moves the agents

Representation of the environment



Level 2: Local movement

• Roughly move in the preferred direction, while...

– ...responding to collisions with other characters

– ...avoiding future collisions

– ...adapting to the surrounding streams of people

– ...maintaining social group behavior

– etc.



Crowd simulation framework

• Representation environment

• Level 5
– Plans actions

• Level 4
– Creates indicative routes

• Level 3
– Traverses the routes

– Yields speed/direction pairs

• Level 2
– Adapts routes

– E.g. to avoid collisions

• Level 1
– Moves the agents

 

Simulation step 

Animation 

Local movement 

Route following 

Global route 

planning 

High-level planning 

start/goal 

positions 

indicative 

route 

 

preferred 

velocity 

velocity 

Level 1 

Level 2 

Level 3 

Level 4 

Level 5 

Representation of the environment



DEMOLITION TIME
The UUCS engine in action



IMPLEMENTATION DETAILS
Crowd simulation in the UUCS framework



Simulation step

• performStep(Δt)

– For each agent: path following
• Update pointers along indicative route

• Update attraction point, preferred velocity

– For each agent: collision avoidance
• Compute new velocity vNew

• Smoothen vNew (optional)

• Compute collision forces F (optional)

– For each agent
• Update velocity: v := vNew + Δt · F/mass

• Update position: p := p + Δt · v

– Update nearest-neighbor data structure

(There are actually
many more substeps)

Why separate loops?

→ Order of agents
does not matter

→ Agents are 
independent, 
each loop can be 
parallellized



Performance (without visualization)

• 1 thread (2015)



Performance (without visualization)

• 8 threads: 4 cores (2015)



Assignments



Collision avoidance 1 / 2

• Algorithm

– Focus on Optimal Reciprocal Collision Avoidance (ORCA)

– Appears to be the most expense part of UUCS

• Code
– src/Simulation/CollisionAvoidance/CollisionAvoidance_RVO.cpp

– 444 lines of code

– Code includes solving a linear program

• Literature

– Paper: http://gamma.cs.unc.edu/RVO/icra2008.pdf

– GPU tips: https://arxiv.org/abs/1908.10107

– LP GPU implementation: https://rgb-lp-docs.readthedocs.io/en/latest/

http://gamma.cs.unc.edu/RVO/icra2008.pdf
https://arxiv.org/abs/1908.10107
https://rgb-lp-docs.readthedocs.io/en/latest/


Collision avoidance 2 / 2

• Goal

– Optimize CPU code, or

– Convert to GPU implementation

• Performance criterion

– Relative difference in total running time of collision 
avoidance during 60s (600 frames) in city environment 
with 25K agents



KD-tree 1 / 2

• Algorithm

– NanoFlann

– Computes and queries a nearest neighbors KD-tree

• Code

– src/external/nanoflann/nanoflann.hpp

– 1946 lines

– Optimized templated C++ code

• Literature

– https://github.com/jlblancoc/nanoflann

https://github.com/jlblancoc/nanoflann


KD-tree 2 / 2

• Goal

– Optimize C++ code

• Performance criterion

– Relative difference in total running time of building the 
KD-tree and all nearest neighbor queries during 60s 
(600 frames) in city environment with 25K agents



UUCS 1 / 2

• Algorithm

– UUCS codebase

• Code

– Mainly src/Simulation/*

– 10K lines?

• Literature

– Framework: 
https://www.staff.science.uu.nl/~gerae101/UU_crowd_simulation_p
ublications_framework.html

– PhD thesis: 
https://www.staff.science.uu.nl/~gerae101/pdf/PhD_Thesis_Wouter
_van_Toll_Navigation_for_characters_and_crowds_in_complex_virtua
l_environments.pdf

https:///
https://www.staff.science.uu.nl/~gerae101/UU_crowd_simulation_publications_framework.html
https://www.staff.science.uu.nl/~gerae101/pdf/PhD_Thesis_Wouter_van_Toll_Navigation_for_characters_and_crowds_in_complex_virtual_environments.pdf


UUCS 2 / 2

• Goal

– Optimize C++ code

• Performance criterion

– Relative difference in total running time of the whole 
simulation during 60s (600 frames) in city environment 
with 25K agents

October 14, 2019 INFOMCRWS: UU Crowd Simulation Software 29



Prizes

1. Arduino starter kit

2. Arduino starter kit

3. Arduino starter kit



Getting started

• Sign EULA

– Improvements may be integrated in UUCS

– IP goes to University so that education and research is 
secured

– ucrowds.com/eula

• After signing, you will get access to

– UUCS library and demo projects
• https://git.science.uu.nl/UUCS/explicit-corridor-map-framework

• To compile the project

– Follow the instructions listed in README.md

– You can get some help

https://ucrowds.com/eula
https://git.science.uu.nl/UUCS/explicit-corridor-map-framework


Technical support

• Compilation

– Geert-Jan Giezeman

– g.j.giezeman@uu.nl

– BBG 5.77

– Please send him an e-mail first

• Weekly visit hour

– Monday 10.00 - 11.00

– UtrechtInc, Padualaan 8, Office W125

– Contact Yiran Zhao
• yiran@ucrowds.com

mailto:g.j.giezeman@uu.nl
mailto:yiran@ucrowds.com


Questions

Roland Geraerts
R.J.Geraerts@uu.nl
uu.nl/staff/RJGeraerts
BBG 4.07
06 28 80 49 01


