
/INFOMOV/
Optimization & Vectorization

J. Bikker - Sep-Nov 2019 - Lecture 1: “Introduction”

Welcome!

Today’s Agenda:

▪ Introduction

▪ Course Formalities

▪ High Level Overview

▪ Profiling

Why?

Some problems require the supercomputer of the future.

Introduction

INFOMOV – Lecture 1 – “Introduction” 3

Why?

Some problems require the supercomputer of the future.

▪ Anything that depends on Moore’s Law and time to become feasible.

Introduction

INFOMOV – Lecture 1 – “Introduction” 4

AlphaGo Parallel, ELO rating 3140
Running on 1202 CPUs, 176 GPUs

Why?

Games want to raise the bar.

▪ More, better, faster. Also: be scalable.

Introduction

INFOMOV – Lecture 1 – “Introduction” 5

Why?

Some software needs to run on pretty weak hardware.

▪ Limited CPU, limited RAM (limited controls).

Introduction

INFOMOV – Lecture 1 – “Introduction” 6

Why?

Some software should not use 90% of your CPU.

▪ Leave room for other applications, be invisible.

Introduction

INFOMOV – Lecture 1 – “Introduction” 7

Why?

Sometimes the cheapest / lowest power CPU is the best.

▪ What is the lowest end CPU this will still run on? Can we go lower?

Introduction

INFOMOV – Lecture 1 – “Introduction” 8

Why?

Waiting is annoying.

▪ Turning on your digital camera
▪ Getting a train ticking at the vending machine
▪ Copying files to a USB stick
▪ Windows updates
▪ …
▪ …

Introduction

INFOMOV – Lecture 1 – “Introduction” 9

What is optimization?

Part of it is:

▪ INFOB3CC - Concurrency
▪ INFONW - Computerarchitectuur en netwerken
▪ INFOB3TC - Talen en compilers

And of course: any course that deals with improving existing algorithms.

Specific purpose of INFOMOV:

▪ To gain understanding of performance aspects of the hardware we use;
▪ To gain an intuition for what affects performance;
▪ To learn to apply a structured process to improve performance.

Introduction

INFOMOV – Lecture 1 – “Introduction” 10

What is optimization?

Think like a CPU

▪ Instruction pipelines
▪ Latencies
▪ Dependencies
▪ Bandwidth
▪ Cycles
▪ Floating point versus integer
▪ SIMD

Introduction

INFOMOV – Lecture 1 – “Introduction” 11

What is optimization?

Work smarter, not harder: algorithm scalability

▪ Big O
▪ Research: not reinventing the wheel
▪ Data characteristics & algorithm choice
▪ STL, Boost: Trust No One
▪ As accurate as necessary (but not more)
▪ Balancing accuracy, speed and memory

Introduction

INFOMOV – Lecture 1 – “Introduction” 12

What is optimization?

Memory hierarchy: caches

▪ Cache architecture
▪ Cache lines
▪ Hits, misses and collisions
▪ Eviction policies
▪ Prefetching
▪ Cache-oblivious
▪ Data-centric programming

Introduction

INFOMOV – Lecture 1 – “Introduction” 13

What is optimization?

Don’t assume, measure

▪ Profilers
▪ Interpreting profiling data
▪ Instrumentation
▪ Bottlenecks
▪ Steering optimization effort

Introduction

INFOMOV – Lecture 1 – “Introduction” 14

What is optimization? – Project Management

Keeping code maintainable

▪ Pareto principle / 80-20 rule: roughly 80% of the
effects are caused by 20% of the causes.

▪ 1% of the code takes 99% of the time.

“The curse of premature optimization”

▪ Optimization, rule 1: “Don’t do it”.
▪ Rule 2 (for experts only!), “Don’t do it yet”.

Optimization as a deliberate process

▪ Get predictable gains using a consistent approach.

Introduction

INFOMOV – Lecture 1 – “Introduction” 15

What is optimization?

“Perceived Performance”

1. Wait for user input
2. Respond to user input as quickly as possible
3. Execute requested operation.

Introduction

INFOMOV – Lecture 1 – “Introduction” 16

At the end of this course:

You will know how to speed up critical code by a factor 2.5x to 25x (and more).

▪ You will be able to do this to virtually any program*.
▪ Your understanding of higher-level optimization approaches will increase.
▪ You will be able to apply these principles to new / alien hardware.
▪ You will have a more intimate relationship with your computer.

In other words:

We will talk a lot about the ‘C’ in O(N).

* disclaimer: ‘that has not been optimized by an expert’.

Introduction

INFOMOV – Lecture 1 – “Introduction” 17

Today’s Agenda:

▪ Introduction

▪ Course Formalities

▪ High Level Overview

▪ Profiling

Lecturer

Jacco Bikker
j.bikker@uu.nl
Room 4.24 BBG

Formalities

INFOMOV – Lecture 1 – “Introduction” 19

mailto:j.bikker@uu.nl

Course Layout

8 weeks + exam week:

▪ 2 lectures per week (for exceptions: see website)
▪ 1 guest lecture (I hope)
▪ Lectures start at 09:00...
▪ Working class PART 1 starts at 09:00, lecture at 10:00. ☺
▪ Working class PART 2 starts at 12:00.

Assessment:

▪ 2 assignments (25% each, individual or pairs);
▪ 1 final assignment (50%, individual or pairs);
▪ 1 final theory exam (individual).

Formalities

INFOMOV – Lecture 1 – “Introduction” 20

Prerequisites

C++
English

Hardware / software

You’ll need access to a computer with a CPU that supports
SSE2 and OpenCL.
Obtaining VTune (Intel CPU) or CodeXL (AMD CPU) is
beneficial (VTune is free for students).
We will use Visual Studio 2017/19 (community edition).

Other tools will (also) be free.

Formalities

INFOMOV – Lecture 1 – “Introduction” 21

Literature

No book!
But that doesn’t mean you won’t be reading.

Main documents:

Agner Fog, 2004-2019, “Optimizing Software in C++”
(also see his website: http://agner.org)

Ulrich Drepper, 2007, “What Every Programmer Should
Know About Memory”

You are encouraged to do research into specific topics of
interest yourself, and to report on this in class.

Formalities

INFOMOV – Lecture 1 – “Introduction” 22

http://agner.org/

OptmzdSummaries™

New: overview of the lecture material, for some lectures
(goal is a full set by next year).

These will become available on the website.

Formalities

INFOMOV – Lecture 1 – “Introduction” 23

Audience

Any computer science student
(with a slight bias towards games)

Make sure you get as much as possible out of this
course. This automatically includes a free pass.

Formalities

INFOMOV – Lecture 1 – “Introduction” 24

Today’s Agenda:

▪ Introduction

▪ Course Formalities

▪ High Level Overview

▪ Profiling

Consistent Approach

(0.) Determine optimization requirements
1. Profile: determine hotspots
2. Analyze hotspots: determine scalability
3. Apply high level optimizations to hotspots
4. Profile again.
5. Parallelize / vectorize / use GPGPU
6. Profile again.
7. Apply low level optimizations to hotspots
8. Repeat step 6 and 7 until time runs out
9. Report.

Overview

INFOMOV – Lecture 1 – “Introduction” 26

Consistent Approach

(0.) Determine optimization requirements

▪ Target hardware (or range of hardware)
▪ Target performance
▪ Time available for optimization
▪ Constraints related to maintainability / portability
▪ …

1. Profile: determine hotspots
2. Analyze hotspots: determine scalability
3. Apply high level optimizations to hotspots
4. Profile again.
5. Parallelize / vectorize / use GPGPU
6. Profile again.
7. Apply low level optimizations to hotspots
8. Repeat steps 6 and 7 until time runs out
9. Report.

Overview

INFOMOV – Lecture 1 – “Introduction” 27

From here on, we will assume that:

▪ the code is ‘done’ (feature complete);
▪ a speed improvement is required;
▪ we have a finite amount of time for this.

Consistent Approach

(0.) Determine optimization requirements
1. Profile: determine hotspots
2. Analyze hotspots: determine scalability
3. Apply high level optimizations to hotspots
4. Profile again.
5. Parallelize / vectorize / use GPGPU
6. Profile again.
7. Apply low level optimizations to hotspots
8. Repeat steps 6 and 7 until time runs out
9. Report.

Overview

INFOMOV – Lecture 1 – “Introduction” 28

Consistent Approach

(0.) Determine optimization requirements
1. Profile: determine hotspots
2. Analyze hotspots: determine scalability
3. Apply high level optimizations to hotspots
4. Profile again.
5. Parallelize / use GPGPU
6. Profile again.
7. Apply low level optimizations to hotspots

▪ caching, data-centric programming,
▪ removing superfluous functionality and precision,
▪ aligning data to cache lines, vectorization,
▪ checking compiler output, fixed point arithmetic,
▪ …

8. Repeat steps 6 and 7 until time runs out
9. Report.

Overview

INFOMOV – Lecture 1 – “Introduction” 29

Consistent Approach

(0.) Determine optimization requirements
1. Profile: determine hotspots
2. Analyze hotspots: determine scalability
3. Apply high level optimizations to hotspots
4. Profile again.
5. Parallelize / vectorize / use GPGPU
6. Profile again.
7. Apply low level optimizations to hotspots
8. Repeat steps 6 and 7 until time runs out
9. Report.

Overview

INFOMOV – Lecture 1 – “Introduction” 30

Profiling

High Level

Basic Low Level

Cache & Memory

Data-centric

CPU architecture

SIMD

GPGPU

Fixed-point Arithmetic

Compilers

Assembler

In this course, we will not write assembler:

▪ It takes a pro to outperform the compiler
▪ You will be fighting the compiler
▪ You will have to redo the optimization for every

target processor
▪ Maintainability will be zero.

Overview

INFOMOV – Lecture 1 – “Introduction” 31

“We should forget about small efficiencies, say about 97% of the
time: premature optimization is the root of all evil. Yet we
should not pass up our opportunities in that critical 3%.”

(Donald Knuth)

Quotes

INFOMOV – Lecture 1 – “Introduction” 32

“A significant improvement in performance can often
be achieved by solving only the actual problem and

removing extraneous functionality.” (Wikipedia)

Quotes

INFOMOV – Lecture 1 – “Introduction” 33

“More computing sins are committed in the name of
efficiency (without necessarily achieving it) than for any
other single reason – including blind stupidity.” (W.A.

Wulff)

Quotes

INFOMOV – Lecture 1 – “Introduction” 34

Quotes

INFOMOV – Lecture 1 – “Introduction” 35

Quotes

INFOMOV – Lecture 1 – “Introduction” 36

“Dear Charles,

In almost every computation a great variety

of arrangements for the succession of the

processes is possible, and various

considerations must influence the selection

amongst them (...).

One essential object is to choose that

arrangement which shall tend to reduce to a

minimum the time necessary for completing

the calculation.

Therefore, one should attend INFOMOV and

learn from it.

Love, Ada.”

Today’s Agenda:

▪ Introduction

▪ Course Formalities

▪ High Level Overview

▪ Profiling

INFOMOV – Lecture 1 – “Introduction” 38

Never Assume

Consistent Approach

(0.) Determine optimization requirements
1. Profile: determine hotspots
2. Analyze hotspots: determine scalability
3. Apply high level optimizations to hotspots
4. Profile again.
5. Parallelize
6. Use GPGPU
7. Profile again.
8. Apply low level optimizations to hotspots
9. Repeat steps 7 and 8 until time runs out
10. Report.

Do you actually need to speed it up?
By how much?

Things to consider:

▪ You have a finite amount of time for this
▪ You don’t want to break anything
▪ You don’t want to reduce maintainability

➔ Focus on ‘low hanging fruit’ – typically a
small portion of the code.

Never Assume

Consistent Approach

(0.) Determine optimization requirements
1. Profile: determine hotspots
2. Analyze hotspots: determine scalability
3. Apply high level optimizations to hotspots
4. Profile again.
5. Parallelize
6. Use GPGPU
7. Profile again.
8. Apply low level optimizations to hotspots
9. Repeat steps 7 and 8 until time runs out
10. Report.

Don’t trust your intuition

▪ Not even when optimizing your
own code.

▪ Especially not when you are
proficient at optimizing.

Blind changes may reduce the
performance of the code.

Needless to say: use version
control.

INFOMOV – Lecture 1 – “Introduction” 39

Profiling

Measuring application performance

▪ Using external tools
▪ Using timers in the code

Measurements:

▪ How much time is spent were? (inclusive /
exclusive, cycles, percentage)

▪ How often is each function called?
▪ Low level behavior: stalls / latencies, branch

mispredictions, occupation, …
▪ Performance over time: lag, spikes, stutter

INFOMOV – Lecture 1 – “Introduction” 40

Never Assume

Platform-independent

Platform-dependent

INFOMOV – Lecture 1 – “Introduction” 41

What if the goal is to have a 10x larger army in your RTS?

Don’t just measure performance, measure scalability.

Never Assume

Profiling – getting accurate results

A profiler needs information about your code:
this is typically available in debug builds.

However:
Debug builds have very different performance characteristics,
for many reasons. We need to profile in release mode.

Enabling debug information in release mode in Visual Studio:

▪ Properties >> C/C++ >> General >> Debug information
format

▪ Properties >> Linker >> Debugging >> Generate Debug
Info

INFOMOV – Lecture 1 – “Introduction” 42

Never Assume
Differences between debug and
release configurations

In debug:
▪ your code is not optimized
▪ debug info is added to the

executable
▪ variables are initialized
▪ memory blocks are padded

with guard bytes
▪ array bounds are checked

In release:
▪ code may be reordered

IMPORTANT:
It makes very little sense to
optimize in debug mode.

INFOMOV – Lecture 1 – “Introduction” 43

Never Assume

INFOMOV – Lecture 1 – “Introduction” 44

Never Assume

Tools

INFOMOV – Lecture 1 – “Introduction” 45

Tools

INFOMOV – Lecture 1 – “Introduction” 46

Visual Studio Profiler

Tools

INFOMOV – Lecture 1 – “Introduction” 47

VerySleepy

Tools

INFOMOV – Lecture 1 – “Introduction” 48

Intel VTune

Tools

INFOMOV – Lecture 1 – “Introduction” 49

AMD CodeXL

Take-away:

Never assume. Profiling always steers optimization.

Optimize in release mode. Enable debug info during this
process. Don’t forget to turn it off before distribution.

INFOMOV – Lecture 1 – “Introduction” 50

Never Assume

Profiler Output

INFOMOV – Lecture 1 – “Introduction” 51

INFOMOV – Lecture 1 – “Introduction” 52

Profiler Output

INFOMOV – Lecture 1 – “Introduction” 53

Profiling – Results

Game::Simulate 67.89% 67.89%
Game::SmoothWater 10.54% 10.54%
Game::RenderZSprites 7.18% 7.18%
Game::Tick 0.00% 76.32%

Running ~3 seconds, we spent 0.86s on this line:

float dist = length(drop[i].pos – drop[j].pos);

and 1.68s on this line:

if (dist < (DROPRADIUS * 2))

Profiler Output

Profiling – finding hotspots

The profiler allows you to quickly find the parts of your program
that take most time.

But:

▪ Mind debug versus release;
▪ The profiler doesn’t tell you why a function is costly
▪ The profiler doesn’t report scalability
▪ There is no ‘cost over time’ information

➔ Scalability analysis requires running the program with different
work sets (i.e., change N in O(N)).

➔ Determining why a section takes a lot of time requires more
in-depth knowledge.

➔ Solving the performance issue requires even more in-depth
knowledge.

INFOMOV – Lecture 1 – “Introduction” 54

Profiler Output

INFOMOV – Lecture 1 – “Introduction” 55

Profiler Output

INFOMOV – Lecture 1 – “Introduction” 56

Profiler Output

Take-away:

Free, vendor-agnostic profilers tell you where time is spent in your
program (but not why).

Vendor-specific tools provide a wealth of information, but generally
require knowledge about the hardware processes.

Stalls are generally not vendor-
specific and will be similar on
similar hardware.

Just timing information is often
sufficient to make an educated
guess towards improvements.

INFOMOV – Lecture 1 – “Introduction” 57

Profiler Output

Generic Profiler Downsides

▪ No ‘performance over time’ measurements
▪ Requires inclusion of debug information (including source code)
▪ Not real-time
▪ Not very intuitive

Using a custom in-app profiler we can drastically improve our profiling
information.

Custom Profiling

INFOMOV – Lecture 1 – “Introduction” 58

INFOMOV – Lecture 1 – “Introduction” 60

Custom Profiling

Minecraft

INFOMOV – Lecture 1 – “Introduction” 61

Custom Profiling

UnrealEngine 3

INFOMOV – Lecture 1 – “Introduction” 62

Custom Profiling

CryEngine

INFOMOV – Lecture 1 – “Introduction” 63

Custom Profiling

StarCraft II

INFOMOV – Lecture 1 – “Introduction” 64

Custom Profiling

StarCraft II

Take-away:

In-app profiling provides advantages over external profilers:

▪ You get real-time information, which is easily associated with
what is going on in the app;

▪ You can measure statistics that are not available to the profiler;

▪ You can present the data
in a form that is also useful
to people not familiar with
the intricacies of the
profiler.

INFOMOV – Lecture 1 – “Introduction” 65

Custom Profiling

Considerations

INFOMOV – Lecture 1 – “Introduction” 66

Custom timers: what to measure?

▪ Time spent in your code
▪ ‘Wall clock time’
▪ Cycles

In what quantities?

▪ A millisecond is a long time
▪ Averaged / smoothed values are easier to read
▪ Relative performance may be better

The impact of measurements:

▪ Especially relevant for brief snippets of code
▪ Logging is expensive!

This is what you can control
Including file I/O, library calls, …
CPU-independent (but: rate may change)

Consistent Approach

(0.) Determine optimization requirements
1. Profile: determine hotspots
2. Analyze hotspots: determine scalability
3. Apply high level optimizations to hotspots
4. Profile again.
5. Parallelize / vectorize / use GPGPU
6. Profile again.
7. Apply low level optimizations to hotspots
8. Repeat steps 6 and 7 until time runs out
9. Report.

INFOMOV – Lecture 1 – “Introduction” 68

Considerations

Profiling:

Without it, no optimization – we need to know

How to profile: tools, custom timers, CPU + GPU

What to profile: realistically (release!), raw performance, scalability
(but also: cache misses, pipelining, branch prediction)

Keep in mind: profiling takes time too.

Repeated profiling: things change, if you’re doing it right. Stay informed.

INFOMOV – Lecture 1 – “Introduction” 69

And Finally:

/INFOMOV/

END of “Introduction”
next lecture: “Low Level”

