
/INFOMOV/
Optimization & Vectorization

J. Bikker - Sep-Nov 2019 - Lecture 10: “GPGPU (3)”

Welcome!

Today’s Agenda:

▪ GPU Execution Model

▪ GPGPU Flow

▪ GPGPU Low Level Notes

▪ P3

Model

INFOMOV – Lecture 10 – “GPGPU (3)” 3

Recap

▪ The GPU is a co-processor, which needs a host.
▪ GPUs have a history of fixed-function pipelines.
▪ Typical GPU work is fundamentally data-parallel.
▪ GPU programming is similar to SIMD programming.
▪ For parallel tasks, a GPU is very fast (worth the effort!).

Model

INFOMOV – Lecture 10 – “GPGPU (3)” 4

SIMT Recap

S.I.M.T.: Single Instruction, Multiple Thread.

for (float i = 0.0; i < 4095.0f; i += 1.0)

{

dz = (float2)(2.0f * (z.x * dz.x - z.y * dz.y) + 1.0f, 2.0f * (z.x * dz.y + z.y * dz.x));

z = cmul(z, z) + c;

float a = sin(tm * 1.5f + i * 2.0f) * 0.3f + i * 1.3f;

float2 t = (float2)(cos(a) * z.x + sin(a) * z.y, -sin(a) * z.x + cos(a) * z.y);

if (fabs(t.x) > 2.0f && fabs(t.y) > 2.0f) { it = i; break; }

}

float z2 = z.x * z.x + z.y * z.y, t = log(z2) * sqrt(z2) / length(dz), r = sqrt(z2);

float q = zoom * 0.016f * (1.0f / j.x + 1.0f / j.y), d = length(j), w = q * d / 400.0f;

float s = q * d / 80.0f, f = 0.0f, g = 0.0f;

Model

INFOMOV – Lecture 10 – “GPGPU (3)” 5

SIMT Recap

S.I.M.T.: Single Instruction, Multiple Thread.

for (float i = 0.0; i < 4095.0f; i += 1.0)

{

dz = (float2)(2.0f * (z.x * dz.x - z.y * dz.y) + 1.0f, 2.0f * (z.x * dz.y + z.y * dz.x));

z = cmul(z, z) + c;

float a = sin(tm * 1.5f + i * 2.0f) * 0.3f + i * 1.3f;

float2 t = (float2)(cos(a) * z.x + sin(a) * z.y, -sin(a) * z.x + cos(a) * z.y);

if (fabs(t.x) > 2.0f && fabs(t.y) > 2.0f) { it = i; break; }

}

float z2 = z.x * z.x + z.y * z.y, t = log(z2) * sqrt(z2) / length(dz), r = sqrt(z2);

float q = zoom * 0.016f * (1.0f / j.x + 1.0f / j.y), d = length(j), w = q * d / 400.0f;

float s = q * d / 80.0f, f = 0.0f, g = 0.0f;

Model

INFOMOV – Lecture 10 – “GPGPU (3)” 6

SIMT Recap

S.I.M.T.: Single Instruction, Multiple Thread.

Adding two arrays, C/C++ way: for(int i = 0; i < N; i++) c[i] = a[i] + b[i];

Adding two arrays in MatLab: c = a + b

Adding two arrays using SIMD:

void add(int* a, int* b, int* c, int N)
{

for(int i = 0; i < N; i += 4)
{

__m128 a4 = ((__m128*)a)[i];
__m128 b4 = ((__m128*)b)[i];
((__m128*)c)[i] = a4 + b4;

}
}

Adding two arrays using SIMT:

void add(int* a, int* b, int* c)
{
int i = blockIdx.x * blockDim.x + threadIdx.x;
c[i] = a[i] + b[i];
c[i] += a[b[i]]; // via a lut

// look ma, no loop!
}

Model

INFOMOV – Lecture 10 – “GPGPU (3)” 7

SIMD versus SIMT

Benefit of SIMT:

▪ Easier to read and write; similar
to regular scalar flow.

Drawbacks of SIMT:

▪ Redundant data (here: pointers a, b and c).
▪ Redundant data (variable i).
▪ A ‘warp’ is 32-wide, regardless of data size.
▪ Scattered memory access is not discouraged.
▪ Control flow.
▪ We need *tons* of registers.

Model

INFOMOV – Lecture 10 – “GPGPU (3)” 8

Register Pressure

On a CPU:

AX (‘accumulator register’)
BX (‘base register’)
CX (‘counter register’)
DX (‘data register’)
BP (‘base pointer’)
SI (‘source index’)
DI (‘destination index’)
SP (‘stack pointer’)

AH, AL (8-bit)
BH, BL
CH, CL
DH, DL

RAX (64-bit)
RBX
RCX
RDX
RBP
RSI
RDI
RSP
R8..R15

st0..st7
XMM0..XMM7

EAX (32-bit)
EBX
ECX
EDX
EBP
ESI
EDI
ESP

XMM0..XMM15
YMM0..YMM15
ZMM0..ZMM31

Model

INFOMOV – Lecture 10 – “GPGPU (3)” 9

Register Pressure

On a CPU:

RAX (64-bit)
RBX
RCX
RDX
RBP
RSI
RDI
RSP
R8..R15
YMM0..YMM15 (256-bit)

Model

INFOMOV – Lecture 10 – “GPGPU (3)” 10

Register Pressure

On a GPU:

▪ Each thread in a warp needs its own registers (32 * N);
▪ The GPU relies on SMT to combat latencies (32 * N * M).

SMT on the CPU: each core avoids latencies.

▪ Super-scalar execution
▪ Out-of-order execution
▪ Branch prediction
▪ Cache hierarchy
▪ Speculative prefetching

And, as a ‘last line of defense’, if a latency happens anyway:

▪ SMT

Model

INFOMOV – Lecture 10 – “GPGPU (3)” 11

Register Pressure

On a GPU:

▪ Each thread in a warp needs its own registers (32 * N);
▪ The GPU relies on SMT to combat latencies (32 * N * M).

SMT on the GPU: primary weapon against latencies.

𝒕
…

A GPU does not rely as
much on the caches as a
CPU does.

As a consequence, (lack
of) data locality has a
much smaller impact on
performance.

smt simt

Model

INFOMOV – Lecture 10 – “GPGPU (3)” 12

Register Pressure

On a CPU, hyperthreading typically hurts single thread performance
➔ SMT is limited to 2, max 4 threads.

On a GPU, 2 warps per SM is not sufficient: we need 4, 8, 16 or more.

For 16 warps per SM we get:

32 * N * 16, where N is the number of registers one thread wishes to
use.

On a typical CPU we have 32 registers ore more available, many of
these 256-bit (8-wide AVX registers), others 64-bit.

On a modern GPU, we get 256KB of register space per SM:
32 * 32 * 64 = 65536 32-bit registers per SM.

Model

INFOMOV – Lecture 10 – “GPGPU (3)” 13

Control Flow

if (threadIdx.x < 16)
{

for(int i = 0; i < threadIdx.x; i++)
{

// ...
}

}
else
{

if (y == 5
{

// ...
}
else
{

// ...
}

}

Model

INFOMOV – Lecture 10 – “GPGPU (3)” 14

Control Flow

while (1)
{

// ...
if (Rand() < 0.05f) break;

}

while (1)
{

if (threadIdx.x == 0)
{

if (Rand() < 0.05f) a[0] = 1;
}
if (a[0] == 1) break;

}

Careful: thread 0 is not necessarily
the first one to reach the break.

Model

INFOMOV – Lecture 10 – “GPGPU (3)” 15

Control Flow

while (1)
{

// ...
if (Rand() < 0.05f) break;

}

while (1)
{

if (threadIdx.x == 0)
{

if (Rand() < 0.05f) a[0] = 1;
}
__syncthreads();
if (a[0] == 1) break;

}

Model

INFOMOV – Lecture 10 – “GPGPU (3)” 16

Synchronization

CPU / GPU synchronization: streams (CUDA), queues (OpenCL).

An OpenCL command is executed asynchronously:
it simply gets added to the queue.

Example:

void Kernel::Run()
{

glFinish(); // wait for OpenGL to finish
clEnqueueNDRangeKernel(queue, kernel, 2, 0, workSize, localSize, 0, 0, 0);
clFinish(queue); // wait for OpenCL to finish

}

Model

INFOMOV – Lecture 10 – “GPGPU (3)” 17

Synchronization

Fundamental approach to synchronization of GPU threads: don’t do it.

…But, if you must:

__syncthreads();

For free:

__shared__ int firstSlot;
if (threadIdx.x == 0) firstSlot = atomic_inc(&counter, 32);
int myIndex = threadIdx.x;
array[firstSlot + myIndex] = resultOfComputation;

Warps execute in lockstep, and are therefore synchronized*.

*: On Volta and Turing use __syncwarp(), see: https://devblogs.nvidia.com/inside-volta,
section “Independent Thread Scheduling”.

https://devblogs.nvidia.com/inside-volta

Model

INFOMOV – Lecture 10 – “GPGPU (3)” 18

Synchronization

Threads on a single SM can communicate via global
memory, or via shared memory.

In CUDA:

__global__ void reverse(int* d, int n)
{
__shared__ int s[64];
int t = threadIdx.x;
int tr = n-t-1;
s[t] = d[t];
__syncthreads();
d[t] = s[tr];

}

Model

INFOMOV – Lecture 10 – “GPGPU (3)” 19

Synchronization

Threads on a single SM can communicate via global
memory, or via shared memory.

In OpenCL:

__kernel void reverse(global int* d, int n)
{
__local int s[64];
int t = get_local_id(0);
int tr = n-t-1;
s[t] = d[t];
barrier(CLK_LOCAL_MEM_FENCE);
d[t] = s[tr];

}

Today’s Agenda:

▪ GPU Execution Model

▪ GPGPU Flow

▪ GPGPU Low Level Notes

▪ P3

Flow

INFOMOV – Lecture 10 – “GPGPU (3)” 21

A Typical GPGPU Program

Calculating anything using a GPU kernel:

1. Setup input data on the CPU
2. Transfer input data to the GPU
3. Operate on the input data
4. Transfer the result back to the CPU
5. Profit.

Amdahl’s law:

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 <
1

1−𝑝
,

where 𝑝 is the portion of the code that is parallelizable.

Flow

INFOMOV – Lecture 10 – “GPGPU (3)” 22

A Typical GPGPU Program

2. Transfer input data to the GPU.

Flow

INFOMOV – Lecture 10 – “GPGPU (3)” 23

A Typical GPGPU Program

2. Transfer input data to the GPU.

Optimizing transfers:

▪ Reduce the number of transfers first, then their size.
▪ Only send changed data.
▪ Use asynchronous copies.

If possible:

▪ Produce the input data on the GPU.

For visual results:

▪ Store visual output directly to a texture.

Flow

INFOMOV – Lecture 10 – “GPGPU (3)” 24

Asynchronous Copies

OpenCL supports multiple queues:

queue = clCreateCommandQueue(context, devices[…], 0, &error);

Kernels and copy commands can be added to any queue:

clEnqueueNDRangeKernel(queue, kernel, 2, 0, workSize, 0, 0, 0, 0);
clEnqueueWriteBuffer(Kernel::GetQueue(), ...);

Queues can wait for a signal from another queue:

clEnqueueBarrierWithWaitList(…);

CUDA provides similar functionality.

Flow

INFOMOV – Lecture 10 – “GPGPU (3)” 25

Asynchronous Copies

*: The Brigade Renderer: A Path Tracer for Real-Time Games, Bikker & Van Schijndel, 2013.

scene (host)

commit buffer (host)

commit buffer (gpu)

scene (gpu)

Today’s Agenda:

▪ GPU Execution Model

▪ GPGPU Flow

▪ GPGPU Low Level Notes

▪ P3

P3

INFOMOV – Lecture 10 – “GPGPU (3)” 28

Your Mission

“Optimize an application using the process and means discussed in INFOMOV.”

“An application”:

1. One of your own. Requirement: functionality must be ‘done’, optimization may
not purely be a port to C/C++.

2. One of Roland’s Projects. Additional benefit: goodies if you win. Also: winning.
Will be introduced today in The Final Hour.

3. One of my projects. Options: animation module of Lighthouse 2, and a simpler
application. Simple application grade will be capped at 7.

4. A single-header library from GitHub. Lists: here and here. You will have to
setup your own test case, and you are expected to submit the optimized code
(INFOMOV-branded) to the original repo.

5. Any GitHub / open source project, if you think you can handle it. Warning: last
option on this list for a reason.

https://github.com/prideout/par
https://github.com/nothings/single_file_libs

P3

INFOMOV – Lecture 10 – “GPGPU (3)” 29

Your Mission

“Optimize an application using the process and means discussed in INFOMOV.”

“The Process”:

1. Establish optimization goal (optional).
2. Profile.
3. Apply high-level optimization (on hotspot).
4. Profile.
5. Multi-thread / vectorize / apply GPGPU, if applicable.
6. Profile.
7. Apply low-level optimizations.
8. Repeat step 6 and 7 until time runs out.
9. Report.

Your report should provide clear proof that you approached the optimization in a
structured manner, i.e. it will provide profiling information at every step.

P3

INFOMOV – Lecture 10 – “GPGPU (3)” 30

Your Mission

“Optimize an application using the process and means discussed in INFOMOV.”

“Means”:

1. High-level optimizations (typically those that change algorithmic complexity).
2. Low-level optimizations (see “Rules of Engagement”).
3. Data-Oriented Design.
4. Anything else to please the cache.
5. SIMD.
6. GPGPU.
7. Compiler output inspection, compiler choice, compiler settings.

Note that overclocking is not in this list.

P3

INFOMOV – Lecture 10 – “GPGPU (3)” 31

Your Mission

“Optimize an application using the process and means discussed in INFOMOV.”

Notes:

1. Do not alter functionality.
2. If you skip optimizations to maintain readability: indicate this in the report.
3. Multiple teams may work on the same base code. Do not share optimized code

in these cases; sharing ideas is still allowed however.

Don’t forget to maintain a healthy work/life balance. Or fix that after the deadline.

/INFOMOV/

END of “GPGPU (3)”
next lecture: “fixed point”

