
/INFOMOV/
Optimization & Vectorization

J. Bikker - Sep-Nov 2019 - Lecture 11: “Fixed Point Math”

Welcome!

Today’s Agenda:

▪ Introduction

▪ Float to Fixed Point and Back

▪ Operations

▪ Fixed Point & Accuracy

▪ Demonstration

The Concept of Fixed Point Math

Basic idea: emulating floating point math using integers.

Why?

▪ Not every CPU has a floating point unit.

▪ Specifically: cheap DSPs do not support floating point.

▪ Mixing floating point and integer is Good for the Pipes.

▪ Some floating point ops have long latencies (div).

▪ Data conversion can be a significant part of a task.

▪ Fixed point can be more accurate.

INFOMOV – Lecture 11 – “Fixed Point Math” 3

Introduction

INFOMOV – Lecture 11 – “Fixed Point Math” 4

Introduction

Could we evaluate function f without using floats?

The Concept of Fixed Point Math

Basic idea: we have 𝜋: 3.1415926536.

▪ Multiplying that by 1010 yields 31415926536.
▪ Adding 1 to 𝜋 yields 4.1415926536.
▪ But, we scale up 1 by 1010 as well:

adding 1·1010 to the scaled up version of 𝜋 yields 41415926536.

➔ In base 10, we get 𝑁 digits of fractional precision if we multiply our
numbers by 10𝑁 (and remember where we put that dot).

INFOMOV – Lecture 11 – “Fixed Point Math” 5

Introduction

The Concept of Fixed Point Math

Addition and subtraction are straight-forward with fixed point math.

We can also use it for interpolation:

void line(int x1, int y1, int x2, int y2)
{

int dx = (x2 – x1) * 10000;
int dy = (y2 – y1) * 10000;
int pixels = max(abs(x2 – x1), abs(y2 – y1));
dx /= pixels;
dy /= pixels;
int x = x1 * 10000, y = y1 * 10000;
for(int i = 0; i < pixels; i++, x += dx, y += dy)

plot(x / 10000, y / 10000);
}

INFOMOV – Lecture 11 – “Fixed Point Math” 6

Introduction

The Concept of Fixed Point Math

For multiplication and division things get a bit more complex.

▪ π · 2 ≡ 31415926536 * 20000000000 = 628318530720000000000
▪ π / 2 ≡ 31415926536 / 20000000000 = 1 (or 2, if we use proper rounding).

Multiplying two fixed point numbers yields a result that is 1010 too large (in this case).
Dividing two fixed point numbers yields a result that is 1010 too small.

INFOMOV – Lecture 11 – “Fixed Point Math” 7

Introduction

The Concept of Fixed Point Math

On a computer, we obviously do not use base 10, but base 2. Starting with π again:

▪ Multiplying by 216 yields 205887.
▪ Adding 1·216 to the scaled up version of 𝜋 yields 271423.

In binary:

▪ 205887 = 00000000 00000011 00100100 00111111
▪ 271423 = 00000000 00000100 00100100 00111111

Looking at the first number (205887), and splitting in two sets of 16 bit, we get:

▪ 00000000000011 (base 2) = 3 (base 10);

▪ 10010000111111 (base 2) = 9279 (base 10);
9279

216 = 0.141586304.

INFOMOV – Lecture 11 – “Fixed Point Math” 8

Introduction

The Concept of Fixed Point Math

Interpolation, base 10:

void line(int x1, int y1, int x2, int y2)
{

int dx = (x2 – x1) * 10000;
int dy = (y2 – y1) * 10000;
int pixels = max(abs(x2 – x1), abs(y2 – y1));
dx /= pixels;
dy /= pixels;
int x = x1 * 10000, y = y1 * 10000;
for(int i = 0; i < pixels; i++, x += dx, y += dy)

plot(x / 10000, y / 10000);
}

INFOMOV – Lecture 11 – “Fixed Point Math” 9

Introduction

The Concept of Fixed Point Math

Interpolation, base 2:

void line(int x1, int y1, int x2, int y2)
{

int dx = (x2 – x1) * 65536;
int dy = (y2 – y1) * 65536;
int pixels = max(abs(x2 – x1), abs(y2 – y1));
dx /= pixels;
dy /= pixels;
int x = x1 * 65536, y = y1 * 65536;
for(int i = 0; i < pixels; i++, x += dx, y += dy)

plot(x / 65536, y / 65536);
}

INFOMOV – Lecture 11 – “Fixed Point Math” 10

Introduction

The Concept of Fixed Point Math

How many bits do we need?

▪ The number 10.3 (base 10) has a maximum error
of 0.05: 10.25 ≤ 10.3 < 10.35.

▪ So, the error is at most
1

2
10−𝑋 for x fractional digits.

▪ A fixed point number with 16 fractional bits has a maximum error of
1

2
2−16.

During interpolation:

If our longest line is Y pixels, the maximum error with X fractional bits is
1

2
𝑌 2−𝑋.

If the maximum error exceeds 1, the line may differ from ‘ground truth’.

INFOMOV – Lecture 11 – “Fixed Point Math” 11

Introduction void line(int x1, int y1, int x2, int y2)
{

int dx = (x2 – x1) * 65536;
int dy = (y2 – y1) * 65536;
int pixels = max(abs(x2 – x1), abs(y2 – y1));
dx /= pixels;
dy /= pixels;
int x = x1 * 65536, y = y1 * 65536;
for(int i = 0; i < pixels; i++, x += dx, y += dy)

plot(x / 65536, y / 65536);
}

Practical example

Texture mapping in Quake 1: Perspective Correction

▪ Affine texture mapping: interpolate u/v linearly over polygon
▪ Perspective correct texture mapping: interpolate 1/z, u/z and v/z.
▪ Reconstruct u and v per pixel using the reciprocal of 1/z.

INFOMOV – Lecture 11 – “Fixed Point Math” 12

Introduction

Practical example

Texture mapping in Quake 1: Perspective Correction

▪ Affine texture mapping: interpolate u/v linearly over polygon
▪ Perspective correct texture mapping: interpolate 1/z, u/z and v/z.
▪ Reconstruct u and v per pixel using the reciprocal of 1/z.

Quake’s solution:

▪ Divide a horizontal line of pixels in segments of 8 pixels;
▪ Calculate u and v for the start and end of the segment;
▪ Interpolate linearly (fixed point!) over the 8 pixels.

And:

Start the floating point division (39 cycles) for the next segment, so it
can complete while we execute integer code for the linear interpolation.

INFOMOV – Lecture 11 – “Fixed Point Math” 13

Introduction

Today’s Agenda:

▪ Introduction

▪ Float to Fixed Point and Back

▪ Operations

▪ Fixed Point & Accuracy

▪ Demonstration

Practical Things

Converting a floating point number to fixed point:

Multiply the float by a power of 2 represented by a floating point value, and cast
the result to an integer. E.g.:

int fp_pi = (int)(3.141593f * 65536.0f); // 16 bits fractional

After calculations, cast the result to int by discarding the fractional bits. E.g.:

int result = fp_pi >> 16; // divide by 65536

Or, get the original float back by casting to float and dividing by 2fractionalbits :

float result = (float)fp_pi * (1.0f / 65536.0f);

Note that this last option has significant overhead, which should be outweighed
by the gains.

INFOMOV – Lecture 11 – “Fixed Point Math” 15

Conversions

Practical Things - Considerations

Example: precomputed sin/cos table

#define FP_SCALE 65536.0f
int sintab[256], costab[256];
for(int i = 0; i < 256; i++)

sintab[i] = (int)(FP_SCALE * sinf((float)i / 128.0f * PI)),
costab[i] = (int)(FP_SCALE * cosf((float)i / 128.0f * PI));

What is the best value for FP_SCALE in this case? And should we use int or
unsigned int for the table?

Sine/cosine: range is [-1, 1]. In this case, we need 1 sign bit, and 1 bit for the
whole part of the number. So:

➔We use 30 bits for fractional precision, 1 for sign, 1 for range.
In base 10, the fractional precision is ~10 digits (float has 7).

INFOMOV – Lecture 11 – “Fixed Point Math” 16

Conversions

1073741824.0f

INFOMOV – Lecture 11 – “Fixed Point Math” 17

Conversions

Practical Things - Considerations

Example: values in a z-buffer

A 3D engine needs to keep track of the depth
of pixels on the screen for depth sorting. For
this, it uses a z-buffer.

We can make two observations:

1. All values are positive (no objects behind the camera are drawn);
2. Further away we need less precision.

By adding 1 to z, we guarantee that z is in the range [1..infinity].
The reciprocal of z is then in the range [0..1].
We store 1/(z+1) as a 0:32 unsigned fixed point number for
maximum precision.

INFOMOV – Lecture 11 – “Fixed Point Math” 18

Conversions

Practical Things - Considerations

Example: particle simulation

Your particle simulation operates on particles inside a
100x100x100 box centered around the origin. What fixed
point format do you use for the coordinates of the particles?

1. Since all coordinates are in the range [-50,50], we need a sign.
2. The maximum integer value of 50 fits in 6 bits.
3. This leaves 25 bits fractional precision (a bit more than 8 decimal digits).

➔We use a 6:25 signed fixed point representation.

Better: scale the simulation to a box of 127x127x127 for better use of the full
range; this gets you ~8.5 decimal digits of precision.

INFOMOV – Lecture 11 – “Fixed Point Math” 19

Conversions

Practical Things - Considerations

We pick the right precision based on the problem at hand.

Sin/cos: original values [-1..1];
➔ sign bit + 31 fractional bits;
➔ 0:31 signed fixed point.

Storing 1/(z+1): original values [0..1];
➔ 32 fractional bits;
➔ 0:32 unsigned fixed point.

Particles: original values [-50..50];
➔ sign bit + 6 integer bits, 32-7=25 fractional bits;
➔ 6:25 signed fixed point.

In general:

▪ first determine if we need a
sign;

▪ then, determine how many bits
are need to represent the
integer range;

▪ use the remainder as fractional
bits.

Today’s Agenda:

▪ Introduction

▪ Float to Fixed Point and Back

▪ Operations

▪ Fixed Point & Accuracy

▪ Demonstration

INFOMOV – Lecture 11 – “Fixed Point Math” 21

Basic Operations on Fixed Point Numbers

Operations on mixed fixed point formats:

▪ A+B (𝐼𝐴: 𝐹𝐴 + 𝐼𝐵: 𝐹𝐵)

To be able to add the numbers, they need to be in the same format.

Example: 𝐼𝐴: 𝐹𝐴=4:28, 𝐼𝐵: 𝐹𝐵=16:16

Option 1: A >>= 12 (to make it 16:16)
Option 2: B <<= 12 (to make it 4:28)

Problem with option 2: we do not get 4:28, we get 16:28!
Problem with option 1: we drop 12 bits from A.

Operations

INFOMOV – Lecture 11 – “Fixed Point Math” 22

Basic Operations on Fixed Point Numbers

Operations on mixed fixed point formats:

▪ A∗B (𝐼𝐴: 𝐹𝐴 ∗ 𝐼𝐵: 𝐹𝐵)

We can freely mix fixed point formats for multiplication.

Example: 𝐼𝐴: 𝐹𝐴=18:14, 𝐼𝐵: 𝐹𝐵=14:18
Result: 32:32, shift to the right by 18 to get a ..:14 number, or by 14 to get a ..:18 number.

Problem: the intermediate result doesn’t fit in a 32-bit register.

Operations

Multiplication

Color scaling, base 2:

uint ScaleColor(const uint c, const uint x) // x = 0..255
{

uint redblue = c & 0x00FF00FF;
uint green = c & 0x0000FF00;
redblue = (redblue * x) & 0xFF00FF00;
green = (green * x) & 0x00FF0000;
return (redblue + green) >> 8;

}

INFOMOV – Lecture 11 – “Fixed Point Math” 23

Operations

31 24 23 16 15 8 7 0

31 24 23 16 15 8 7

Multiplication

▪ “Ensure that intermediate results never exceed 32 bits.”

Suppose we want to multiply two 20:12 unsigned fixed point numbers:

1. (fp_a * fp_b) >> 12; // good if fp_a and fp_b are very small
2. (fp_a >> 12) * fp_b; // good if fp_a is a whole number
3. (fp_a >> 6) * (fp_b >> 6); // good if fp_a and fp_b are large
4. ((fp_a >> 3) * (fp_b >> 3)) >> 6;

Which option we chose depends on the parameters:

fp_a = PI;
fp_b = 0.5f * 2^12;
int fp_prod = fp_a >> 1; // ☺

INFOMOV – Lecture 11 – “Fixed Point Math” 24

Operations

Division

▪ “Ensure that intermediate results never exceed 32 bits.”

Dividing two 20:12 fixed point numbers:

1. (fp_a << 12) / fp_b; // good if fp_a and fp_b are very small
2. fp_a / (fp_b >> 12); // good if fp_b is a whole number
3. (fp_a << 6) / (fp_b >> 6); // good if fp_a and fp_b are large
4. ((fp_a << 3) / (fp_b >> 3)) << 6;

Note that a division by a constant can be replaced by a multiplication by its reciprocal:

fp_reci = (1 << 12) / fp_b;
fp_prod = (fp_a * fp_reci) >> 12; // or one of the alternatives

INFOMOV – Lecture 11 – “Fixed Point Math” 25

Operations

INFOMOV – Lecture 11 – “Fixed Point Math” 26

Multiplication, Take 2

▪ “Use a 64-bit intermediate result.”

A∗B (𝐼𝐴: 𝐹𝐴 ∗ 𝐼𝐵: 𝐹𝐵)

Example: 𝐼𝐴: 𝐹𝐴=16:16, 𝐼𝐵: 𝐹𝐵=16:16
Result: 32:32

Calculate a 64-bit result (with enough room for 32:32),
throw out 32 bits afterwards.

x86 MUL instruction:

MUL EDX

Functionality:

multiplies EDX by EAX, stores the
result in EDX:EAX.

➔ Tossing 32 bits: ignore EAX.
➔ x86 is designed for 16:16.

Operations

INFOMOV – Lecture 11 – “Fixed Point Math” 27

Multiplication

Special case: multiply by a 32:0 number.

int fp_pi = (int)(3.141593f * 65536.0f); // 16 bits fractional
int fp_2pi = fp_pi * 2; // 16 bits fractional

We did this in the line function:

dx /= pixels; // dx is 16:16, pixels is 32:0
dy /= pixels;

Operations

Square Root

For square roots of fixed point numbers, optimal performance is achieved via
_mm_rsqrt_ps (via float). If precision is of little concern, use a lookup table, optionally
combined with interpolation and / or a Newton-Raphson iteration.

Sine / Cosine / Log / Pow / etc.

Almost always a LUT is the best option*.

*: Not on the GPU however. Alternative: https://www.coranac.com/2009/07/sines

INFOMOV – Lecture 11 – “Fixed Point Math” 28

Operations

https://www.coranac.com/2009/07/sines/

Fixed Point & SIMD

For a world of hurt, combine SIMD and fixed point:

_mm_mul_epu32
_mm_mullo_epi16
_mm_mulhi_epu16
_mm_srl_epi32
_mm_srai_epi32

See MSDN for more details.

INFOMOV – Lecture 11 – “Fixed Point Math” 29

Operations

Today’s Agenda:

▪ Introduction

▪ Float to Fixed Point and Back

▪ Operations

▪ Fixed Point & Accuracy

▪ Demonstration

Range versus Precision

Looking at the line code once more:

void line(int x1, int y1, int x2, int y2)
{

int dx = (x2 – x1) << 16;
int dy = (y2 – y1) << 16;
int pixels = max(abs(x2 – x1), abs(y2 – y1));
dx /= pixels;
dy /= pixels;
int x = x1 << 16, y = y1 << 16;
for(int i = 0; i < pixels; i++, x += dx, y += dy)

plot(x >> 16, y >> 16);
}

INFOMOV – Lecture 11 – “Fixed Point Math” 31

Accuracy

dx=15:16, range is 32767. precision: 16 bits,

maximum error:
1

216 ∗ 0.5 =
1

217 .

Interpolating a 1024 pixel line,
the maximum cumulative error

is 210 ∙
1

217 =
1

27 ≈ 0.008.

INFOMOV – Lecture 11 – “Fixed Point Math” 32

Accuracy

Range versus Precision: Error

In base 10, error is clear:

PI = 3.14 means: 3.145 > 𝑃𝐼 > 3.135

The maximum error is thus
1

2

1

102 = 0.005.

In base 2, we apply the same principle:

16:16 fixed point numbers have a maximum error of
1

2

1

216 =
1

217 ≈ 7.6 · 10−6 .

➔We get slightly more than 5 digits of decimal precision.

For reference: 32-bit floating point numbers:

▪ 1 sign bit, 8 exponent bits, 23 mantissa bits
▪ 223 ≈ 8,000,000; floats thus have ~7 digits of decimal precision.

Range versus Precision: Error

During some operations, precision may suffer greatly:

𝑥 = 𝑦/𝑧

𝑓𝑝_𝑥 = (𝑓𝑝_𝑦 << 8) / (𝑓𝑝_𝑧 >> 8)

Assuming 16:16 input, 𝑓𝑝_𝑧 briefly becomes 16:8, with a precision of only 2 decimal digits.

Similarly:

𝑓𝑝_𝑥 = (𝑓𝑝_𝑦 >> 8) ∗ (𝑓𝑝_𝑧 >> 8)

Here, both 𝑓𝑝_𝑦 and 𝑓𝑝_𝑧 become 16:8, and the cumulative error may exceed 1/29.

INFOMOV – Lecture 11 – “Fixed Point Math” 33

Accuracy

Error

Careful balancing of range and precision in fixed point calculations can reduce this problem.

Note that accuracy problems also occur in float calculations; they are just exposed more
clearly in fixed point. And: this time we can do something about it.

INFOMOV – Lecture 11 – “Fixed Point Math” 34

Accuracy

Today’s Agenda:

▪ Introduction

▪ Float to Fixed Point and Back

▪ Operations

▪ Fixed Point & Accuracy

▪ Demonstration

That Shader

Could it be done?

▪ Length means sqrt
▪ Cos, sin (LUT on GPU?)
▪ Vectors
▪ …

INFOMOV – Lecture 11 – “Fixed Point Math” 36

Demonstration

Today’s Agenda:

▪ Introduction

▪ Float to Fixed Point and Back

▪ Operations

▪ Fixed Point & Accuracy

▪ Demonstration

/INFOMOV/

END of “Fixed Point Math”
next lecture: “Snippets”

