
/INFOMOV/
Optimization & Vectorization

J. Bikker - Sep-Nov 2019 - Lecture 12: “Cache-Oblivious”

Welcome!

Today’s Agenda:

▪ Introduction

▪ The Idealized Cache Model

▪ Divide and Conquer

▪ Sorting

▪ Digest

Introduction

INFOMOV – Lecture 12 – “Cache-Oblivious” 3

L1$= ?
L2$=?
L3?
L4?
L5?

Introduction

Dealing with Different Architectures

Modern hardware is not uniform

▪ Number of cache levels
▪ Cache sizes and cache line size
▪ Associativity, replacement strategy, bandwidth, latency…

Programs should ideally run for different parameters

▪ Works if we determine the parameters at runtime
▪ (or perhaps a few important ones)
▪ Or we just ignore the details. (i.e., what we do in practice)

Programs are executed on unpredictable configurations

▪ Generic portable software libraries
▪ Code running in the browser

INFOMOV – Lecture 12 – “Cache-Oblivious” 4

Introduction

INFOMOV – Lecture 12 – “Cache-Oblivious” 5

INFOMOV – Lecture 12 – “Cache-Oblivious” 6

a cache-oblivious algorithm is an algorithm designed to take advantage of a
CPU cache without having the size of the cache (or the length of the cache

lines, etc.) as an explicit parameter.

An optimal cache-oblivious algorithm is a cache-oblivious algorithm that
uses the cache optimally.

A cache-oblivious algorithm is effective on all levels of the memory
hierarchy, simultaneously.

Can we get the benefits of cache-aware code
without knowing the details of the cache?

Introduction

Introduction

People

Cache-Oblivious Algorithms. Harald Prokop, Master thesis, MIT, 1999.
Cache-Oblivious Algorithms. Frigo, Leierson, Prokop, Ramachandran, 1999.
Cache Oblivious Distribution Sweeping. Brodal, Stølting. Lecture notes, 2002.
Cache-Oblivious Algorithms and Data Structures. Brodal, SWAT 2004.

INFOMOV – Lecture 12 – “Cache-Oblivious” 7

INFOMOV – Lecture 12 – “Cache-Oblivious” 8

Cache-oblivious data structures
and algorithms:

Optimizing an application without
knowing hardware details.

Introduction

Today’s Agenda:

▪ Introduction

▪ The Idealized Cache Model

▪ Divide and Conquer

▪ Sorting

▪ Digest

Cache Model

Previously in INFOMOV:

INFOMOV – Lecture 12 – “Cache-Oblivious” 10

Estimating algorithm cost:

1. Algorithmic Complexity : O(𝑁), O(𝑁2), O(𝑁 log 𝑁), …
2. Cyclomatic Complexity* (or: Conditional Complexity)
3. Amdahl’s Law / Work-Span Model
4. Cache Effectiveness

𝑡

Cache Model

The External-Memory Model

Assumptions*:

▪ Transfers happen in blocks of B elements.
▪ The cache stores M elements, in M/B blocks.
▪ The block count is substantial.
▪ A cache miss results in transfer of 1 block. If the

cache was full, a second transfer occurs (eviction).

The complexity of an algorithm is (solely) measured
as the number of cache misses.

*: Cache-Oblivious Algorithms. Prokop, 1999. MIT Master Thesis.
For a digest, read: http://erikdemaine.org/papers/BRICS2002/paper.pdf

INFOMOV – Lecture 12 – “Cache-Oblivious” 11

http://erikdemaine.org/papers/BRICS2002/paper.pdf

Cache Model

The Cache-Oblivious Model

Assumptions*:

▪ Transfers happen in blocks of B elements.
▪ The cache stores M elements, in M/B blocks.
▪ The block count is substantial.
▪ A cache miss results in transfer of 1 block. If the

cache was full, a second transfer occurs (eviction).
▪ The cache is fully associative.
▪ The replacement policy is optimal.

*: Cache-Oblivious Algorithms. Prokop, 1999. MIT Master Thesis.
For a digest, read: http://erikdemaine.org/papers/BRICS2002/paper.pdf

INFOMOV – Lecture 12 – “Cache-Oblivious” 12

http://erikdemaine.org/papers/BRICS2002/paper.pdf

Cache Model

The Cache-Oblivious Model

Example:

Calculating the sum of an array of 𝑁 integers has an
algorithmic complexity 𝑂(𝑁).

In the external-memory model, the complexity is:
𝑁/𝐵 (i.e.: ceil(M/B).

(note: this assumes alignment, which requires knowledge about B).

The cache-oblivious algorithm cannot assume specific
values for M or B. We therefore get: 𝑁/𝐵 +1.

(note: one extra block, because of alignment)
(note: we do use B in the analysis, but not in the algorithm.)
(note: the complexity is identical to 𝑁/𝐵 for 𝑁 = ∞.)

INFOMOV – Lecture 12 – “Cache-Oblivious” 13

Cache Model

The Cache-Oblivious Model

And now for an actually useful example…

void Reverse(int* values, int N)
{

// ...?
}

▪ Easy to do with a temporary array.
▪ Cache-oblivious algorithm*:

for(int i = 0; i < N/2; i++) { swap(values[i], values[N-1-i]);

(note: requires as many block access as a single scan.)

*: Programming Pearls, 2nd edition. Jon Bentley, 2000.

INFOMOV – Lecture 12 – “Cache-Oblivious” 14

Today’s Agenda:

▪ Introduction

▪ The Idealized Cache Model

▪ Divide and Conquer

▪ Sorting

▪ Digest

Tree

INFOMOV – Lecture 12 – “Cache-Oblivious” 16

Tree

INFOMOV – Lecture 12 – “Cache-Oblivious” 17

Tree

INFOMOV – Lecture 12 – “Cache-Oblivious” 18

Tree

INFOMOV – Lecture 12 – “Cache-Oblivious” 19

Comparisons

Breadth-first tree:

Going down in the tree, every step will access a different
block. Expected accesses is log2 𝑁. (e.g. 16 for N=65536)

Depth-first tree:

Although left branches are efficient, every right branch
requires a different block.

Cache-oblivious layout:

log2 𝑁

log2 𝐵
= log𝐵 𝑁. (e.g. 4 for N=65536, B=16)

Tree

INFOMOV – Lecture 12 – “Cache-Oblivious” 20

The Cache-Oblivious Tree

Algorithm:

1. Split the tree vertically, at level
1

2
log(𝑁).

(where N is the number of leaf nodes)

2. The top now contains 𝑁 elements.

3. Produce five subtrees and process these recursively.

Tree

INFOMOV – Lecture 12 – “Cache-Oblivious” 21

Comparisons

https://rcoh.me/posts/cache-oblivious-datastructures

https://rcoh.me/posts/cache-oblivious-datastructures/

Today’s Agenda:

▪ Introduction

▪ The Idealized Cache Model

▪ Divide and Conquer

▪ Sorting

▪ Digest

1 33

1 33

1 33

Sort

INFOMOV – Lecture 12 – “Cache-Oblivious” 23

MergeSort

17 8 21 4 51 4 10 24 27 9 3 4
0 1 2 3 4 5 6 7 8 9 10 11 12 13

17 8 21 4 51 4 10 24 27 9 3 4

17 8 21 4 51 4 10 24 27 9 3 4

1 33 17 8 21 4 51 4 10 24 27 9 3 4

1 33 17 8 21 4 51 4 10 24 27 9 3 4

3 41 8 17

3

Sort

INFOMOV – Lecture 12 – “Cache-Oblivious” 24

MergeSort

Merging two buffers A[] and B[] to C[]:

*C = *A < *B ? *A++ : *B++

1 33 17 8 21 4 51 4 10 24 27 9 3 4

1 33 8 17 4 21 51 4 10 24 27 9 4

33 4 21 51 4 10 24 27 9

Sort

INFOMOV – Lecture 12 – “Cache-Oblivious” 25

MergeSort

MergeSort reaches optimal algorithmic complexity if we merge more
than 2 streams at a time*.

The optimal number of streams is cache-dependent, namely: M/B.

(in this case, MergeSort requires 𝑂
𝑁

𝐵
log𝑀/𝐵

𝑁

𝐵
transactions.)

*: The input/output complexity of sorting and related problems. Aggarval & Vitter, 1988.

1 33 17 8 21 4 51 4 10 24 27 9 3 4

Recall:

M=cache size,
B=block size.

For 32KB L1$:

M=32768,
B=64,

➔ 512-way.

Sort

INFOMOV – Lecture 12 – “Cache-Oblivious” 26

FunnelSort (the “lazy” variety)

Figure from: Engineering a Cache-Oblivious Sorting Algorithm. Brodal et al., 2007.

void Fill(v)
{

while (!v.full())
{

if (v.left.empty())
Fill(v.left)

if (v.right.empty())
Fill(v.right)

Merge()
}

}

k-way merging using binary merging with cyclic buffers.

Sort

INFOMOV – Lecture 12 – “Cache-Oblivious” 27

FunnelSort (the “lazy” variety)

How:

▪ Split the input into 𝑁
1

3 (“cube root”) sets of 𝑁
2

3 elements.

(so: 1000 becomes 10 sets of 100;
512 becomes 8 sets of 64, 8 becomes 2 sets of 4.)

▪ Recurse.

▪ Merge the 𝑁
1

3 sorted sequences using an k = 𝑁
1

3 merger.

▪ The k-merger suspends work whenever there is sufficient output.

Sort

INFOMOV – Lecture 12 – “Cache-Oblivious” 28

https://stackoverflow.com/questions/10322036/is-there-a-stable-sorting-algorithm-for-net-doubles-faster-than-on-log-n

TPIE: Multiway mergesort,
GCC: QuickSort

Funnelsort works “as advertised”
when I/O is expensive.

https://stackoverflow.com/questions/10322036/is-there-a-stable-sorting-algorithm-for-net-doubles-faster-than-on-log-n

Today’s Agenda:

▪ Introduction

▪ The Idealized Cache Model

▪ Divide and Conquer

▪ Sorting

▪ Digest

Digest

INFOMOV – Lecture 12 – “Cache-Oblivious” 30

Cache-Oblivious Concepts

Data structures:

1. Linear array – operated on using a scan.

(works for the most basic cases, but also Bentley’s Reverse)

2. Recursive subdivision

(not discussed in this lecture, but covered before)

3. Cache-Oblivious tree layout

(I wish I knew about that one before)

Digest

INFOMOV – Lecture 12 – “Cache-Oblivious” 31

Cache-Oblivious Concepts

Algorithms:

▪ Often trivially following from data structures.
▪ Sorting only fast for expensive I/O.

Note the overlap with:

▪ Data oriented design
▪ Data-parallel algorithms
▪ Streaming algorithms

(although there are differences too)

And appreciate the attention to memory cost.

Digest

INFOMOV – Lecture 12 – “Cache-Oblivious” 32

Cache-Oblivious Concepts

Original question:

Can we get the benefits of cache-aware code
without knowing the details of the cache?

IMHO:

▪ Yes, to some extend.
▪ But we were not really taking into account cache size anyway
▪ Nor the specifics of the eviction policy
▪ And it seems silly not to anticipate a reasonable ‘B’ (e.g. for alignment)

Digest

INFOMOV – Lecture 12 – “Cache-Oblivious” 33

Cache-Oblivious Concepts

Further reading

“& Cache-Oblivious Algorithms (Updated)”
qstuff.blogspot.com/2010/06/cache-oblivious-algorithms.html

Cache-Oblivious R-Trees:
www.win.tue.nl/~mdberg/Papers/co-rtree.pdf

Cache-Oblivious hashing:
https://www.itu.dk/people/pagh/papers/cohash.pdf

Cache-Oblivious FFT:
https://www.csd.uwo.ca/~moreno/CS433-CS9624/Resources/Implementing_FFTs_in_Practice.pdf

Cache-Oblivious mesh layouts (and other graphics-related CO topics):
http://gamma.cs.unc.edu/COL/

qstuff.blogspot.com/2010/06/cache-oblivious-algorithms.html
http://www.win.tue.nl/~mdberg/Papers/co-rtree.pdf
https://www.itu.dk/people/pagh/papers/cohash.pdf
https://www.csd.uwo.ca/~moreno/CS433-CS9624/Resources/Implementing_FFTs_in_Practice.pdf
http://gamma.cs.unc.edu/COL/

Today’s Agenda:

▪ Introduction

▪ The Idealized Cache Model

▪ Divide and Conquer

▪ Sorting

▪ Digest

/INFOMOV/

END of “Low Level”
next lecture: “Snippets & Multi-Threading”

