
/INFOMOV/
Optimization & Vectorization

J. Bikker - Sep-Nov 2019 - Lecture 2: “Low Level”

Welcome!

/INFOMOV/
Optimization & Vectorization

J. Bikker - Sep-Nov 2019 - Lecture 2: “Low Level”

Welcome!

INFOMOV – Lecture 2 – “Low Level” 5

Previously in INFOMOV…

Consistent Approach

(0.) Determine optimization requirements
1. Profile: determine hotspots
2. Analyze hotspots: determine scalability
3. Apply high level optimizations to hotspots
4. Profile again.
5. Parallelize
6. Use GPGPU
7. Profile again.
8. Apply low level optimizations to hotspots
9. Repeat steps 7 and 8 until time runs out
10. Report.

Today’s Agenda:

▪ The Cost of a Line of Code

▪ CPU Architecture: Instruction Pipeline

▪ Data Types and Their Cost

▪ Rules of Engagement

What is the ‘cost’ of a multiply?

starttimer();
float x = 0;
for(int i = 0; i < 1000000; i++) x *= y;
stoptimer();

▪ Actual measured operations:
▪ timer operations;
▪ initializing ‘x’ and ‘i’;
▪ comparing ‘i’ to 1000000 (x 1000000);
▪ increasing ‘i’ (x 1000000);
▪ jump instruction to start of loop (x 1000000).

▪ Compiler outsmarts us!
▪ No work at all unless we use x
▪ x += 1000000 * y

INFOMOV – Lecture 2 – “Low Level” 7

Instruction Cost

Better solution:

▪ Create an arbitrary loop
▪ Measure time with and without

the instruction we want to time

What is the ‘cost’ of a multiply?

float x = 0, y = 0.1f;
unsigned int i = 0, j = 0x28929227;
for(int k = 0; k < ITERATIONS; k++)
{

// ensure we feed our line with fresh data
x += y, y *= 1.01f;
// integer operations to free up fp execution units
i += j, j ^= 0x17737352, i >>= 1, j /= 28763;
// operation to be timed
if (with) x *= y;
// integer operations to free up fp execution units
i += j, j ^= 0x17737352, i >>= 1, j /= 28763;

}
dummy = x + (float)i;

INFOMOV – Lecture 2 – “Low Level” 8

Instruction Cost

INFOMOV – Lecture 2 – “Low Level” 9

Instruction Cost

x86 assembly in 5 minutes

Modern CPUs still run x86 machine code, based on Intel’s 1978 8086
processor. The original processor was 16-bit, and had 8 ‘general purpose’
16-bit registers*:

AX (‘accumulator register’)
BX (‘base register’)
CX (‘counter register’)
DX (‘data register’)
BP (‘base pointer’)
SI (‘source index’)
DI (‘destination index’)
SP (‘stack pointer’)

* More info: http://www.swansontec.com/sregisters.html

AH, AL (8-bit)
BH, BL
CH, CL
DH, DL

RAX (64-bit)
RBX
RCX
RDX
RBP
RSI
RDI
RSP
R8..R15

st0..st7
XMM0..XMM7

EAX (32-bit)
EBX
ECX
EDX
EBP
ESI
EDI
ESP

XMM0..XMM15
YMM0..YMM15
ZMM0..ZMM31

http://www.swansontec.com/sregisters.html

x86 assembly in 5 minutes:

Typical assembler:

loop:
mov eax, [0x1008FFA0] // read from address into register
shr eax, 5 // shift eax 5 bits to the right
add eax, edx // add registers, store in eax
dec ecx // decrement ecx
jnz loop // jump if not zero
fld [esi] // load from address [esi] onto FPU
fld st0 // duplicate top float
faddp // add top two values, push result

More on x86 assembler: http://www.cs.virginia.edu/~evans/cs216/guides/x86.html
A bit more on floating point assembler: https://www.cs.uaf.edu/2007/fall/cs301/lecture/11_12_floating_asm.html

INFOMOV – Lecture 2 – “Low Level” 10

Instruction Cost

http://www.cs.virginia.edu/~evans/cs216/guides/x86.html
https://www.cs.uaf.edu/2007/fall/cs301/lecture/11_12_floating_asm.html

What is the ‘cost’ of a multiply?

INFOMOV – Lecture 2 – “Low Level” 11

Instruction Cost

float x = 0, y = 0.1f;
unsigned int i = 0, j = 0x28929227;
for(int k = 0; k < ITERATIONS; k++)
{

// ...
x += y, y *= 1.01f;
// ...
i += j, j ^= 0x17737352, i >>= 1, j /= 28763;
// ...
if (with) x *= y;
// ...
i += j, j ^= 0x17737352, i >>= 1, j /= 28763;

}
dummy = x + (float)i;

fldz
xor ecx, ecx
fld dword ptr ds:[405290h]
mov edx, 28929227h
fld dword ptr ds:[40528Ch]
push esi
mov esi, 0C350h

add ecx, edx
mov eax, 91D2A969h
xor edx, 17737352h
shr ecx, 1
mul eax, edx
fld st(1)
faddp st(3), st

mov eax, 91D2A969h
shr edx, 0Eh
add ecx, edx
fmul st(1),st
xor edx, 17737352h
shr ecx, 1
mul eax, edx
shr edx, 0Eh
dec esi
jne tobetimed<0>+1Fh

=
246

28763
(!!)

= 50000

What is the ‘cost’ of a multiply?

Observations:

▪ Compiler reorganizes code
▪ Compiler cleverly evades division
▪ Loop counter decreases
▪ Presence of integer instructions affects timing

(to the point where the mul is free)

But also:

▪ It is really hard to measure the cost of a line of code.

INFOMOV – Lecture 2 – “Low Level” 12

Instruction Cost

What is the ‘cost’ of a single instruction?

Cost is highly dependent on the surrounding instructions, and many
other factors. However, there is a ‘cost ranking’:

<< >> bit shifts
+ - & | ^ simple arithmetic, logical operands
* multiplication
/ division
sqrt
sin, cos, tan, pow, exp

This ranking is generally true for any processor (including GPUs).

INFOMOV – Lecture 2 – “Low Level” 13

Instruction Cost

INFOMOV – Lecture 2 – “Low Level” 14

Instruction Cost

AMD K7
1999

INFOMOV – Lecture 2 – “Low Level” 15

Instruction Cost

AMD Jaguar
2013

Note: Two micro-operations can
execute simultaneously if they
go to different execution pipes

INFOMOV – Lecture 2 – “Low Level” 16

Instruction Cost

Intel Silvermont
2014

Note: This is a low-power
processor (ATOM class).

INFOMOV – Lecture 2 – “Low Level” 17

Instruction Cost

Intel Skylake
2015

What is the ‘cost’ of a single instruction?

The cost of a single instruction depends on a number of factors:

▪ The arithmetic complexity (sqrt > add);
▪ Whether the operands are in register or memory;
▪ The size of the operand (16 / 64 bit is often slightly slower);
▪ Whether we need the answer immediately or not (latency);
▪ Whether we work on signed or unsigned integers (DIV/IDIV).

On top of that, certain instructions can be executed simultaneously.

INFOMOV – Lecture 2 – “Low Level” 18

Instruction Cost

Today’s Agenda:

▪ The Cost of a Line of Code

▪ CPU Architecture: Instruction Pipeline

▪ Data Types and Their Cost

▪ Rules of Engagement

CPU Instruction Pipeline

Instruction execution is typically divided in four phases:

1. Fetch Get the instruction from RAM
2. Decode The byte code is decoded
3. Execute The instruction is executed
4. Writeback The results are written to RAM/registers

CPI = 4

INFOMOV – Lecture 2 – “Low Level” 20

Pipeline
fldz
xor ecx, ecx
fld dword ptr ds:[405290h]
mov edx, 28929227h
fld dword ptr ds:[40528Ch]
push esi
mov esi, 0C350h
add ecx, edx
mov eax, 91D2A969h
xor edx, 17737352h
shr ecx, 1
mul eax, edx
fld st(1)
faddp st(3), st
mov eax, 91D2A969h
shr edx, 0Eh
add ecx, edx
fmul st(1),st
xor edx, 17737352h
shr ecx, 1
mul eax, edx
shr edx, 0Eh
dec esi
jne tobetimed<0>+1Fh

t

E

E

E

CPU Instruction Pipeline

For each of the stages, different parts of the CPU are active.
To use its transistors more efficiently, a modern processor overlaps these
phases in a pipeline.

At the same clock speed, we get four times the throughput (CPI = IPC = 1).

INFOMOV – Lecture 2 – “Low Level” 21

Pipeline

t

E

E

E

E

E

E

CPU Instruction Pipeline

Maximum clockspeed is determined by the most complex of the four stages. For
higher clockspeeds, it is advantageous to increase the number of stages (thereby
reducing the complexity of each individual stage).

Obviously, ‘execution’ of different instructions requires
different functionality.

Superpipelining allows higher clockspeeds and thus higher throughput, but it also
increases the latency of individual instructions.

INFOMOV – Lecture 2 – “Low Level” 22

Pipeline

Stages
7 PowerPC G4e
8 Cortex-A9
10 Athlon
12 Pentium Pro/II/III, Athlon 64
14 Core 2, Apple A7/A8
14/19 Core i2/i3 Sandy Bridge
16 PowerPC G5, Core i*1 Nehalem
18 Bulldozer, Steamroller
20 Pentium 4
31 Pentium 4E Prescott

t

E E E

E E E

E E E

E E E

E E E

E E E

CPU Instruction Pipeline

Different execution units for different (classes of) instructions:

Here, one execution unit handles floats;
one handles integer;
one handles memory operations.

Since the execution logic is typically the most complex part, we might just as well
duplicate the other parts:

INFOMOV – Lecture 2 – “Low Level” 23

Pipeline

E

E

E

E

E

E

CPU Instruction Pipeline

This leads to the superscalar processor, which can execute multiple instructions in
the same clock cycle, assuming not all instruction require the same execution logic.

IPC = 3 (or: ILP = 3)

INFOMOV – Lecture 2 – “Low Level” 24

Pipeline

E

E

E

E

E

E

E

E

E

E

E

E

t

CPU Instruction Pipeline

Using a pipeline has consequences.
Consider the following situation:

a = b * c;
d = a + 1;

Here, the second instruction needs the result of the first, which is available one
clock tick too late. As a consequence, the pipeline stalls briefly.

INFOMOV – Lecture 2 – “Low Level” 25

Pipeline

t

E

E

E

E

CPU Instruction Pipeline

Using a pipeline has consequences.
Consider the following situation:

a = b * c;
jump if a is not zero

In this scenario, a conditional jump makes it hard for the CPU to determine what to
feed into the pipeline after the jump.

INFOMOV – Lecture 2 – “Low Level” 26

Pipeline

t

E

E

E

E

CPU Instruction Pipeline - Digest

For a more elaborate explanation of the pipeline, see this document:
http://www.lighterra.com/papers/modernmicroprocessors

Or check this very detailed study of the Nehalem architecture:

The Architecture of the Nehalem Processor and Nehalem-EP SMP Platforms,
Thomadakis, 2011.

For now:

▪ A compiler reorganizes code to prevent latencies
▪ Feeding mixed code provides the compiler with sufficient opportunities for shuffling
▪ Branching issues need to be prevented manually

INFOMOV – Lecture 2 – “Low Level” 27

Pipeline

http://www.lighterra.com/papers/modernmicroprocessors

Today’s Agenda:

▪ The Cost of a Line of Code

▪ CPU Architecture: Instruction Pipeline

▪ Data Types and Their Cost

▪ Rules of Engagement

Data types in C++

int
unsigned int

Size: 32 bit (4 bytes)
Access:

Altering sign bit of s4:
(note: -1 = 0xffffffff)

INFOMOV – Lecture 2 – “Low Level” 29

Data Types

union { unsigned int u4; int s4; char s[4]; };
unsigned char v = 100;
s[1] = v;
u4 = (a4 ^ (255 << 8)) | (v << 8);

u4 ^= 1 << 31;

Red = u4 & (255 << 16);
Green = u4 & (255 << 8);
Blue = u4 & 255;

Data types in C++

float

Size: 32 bit (4 bytes)

Exponent: 8 bit; -127 … 128
Mantissa: 23 bit; 0 … 223 -1

Value: sign * mantissa * 2^exponent

Exercise: write a function that replaces array a = { 0.5, 0.25, 0.125, 0.0625, ... }.

INFOMOV – Lecture 2 – “Low Level” 30

Data Types

sign exponent mantissa

Data types in C++

double 64 bit (8 bytes)
char, unsigned char 8 bit
short, unsigned short 16 bit
LONG 32 bit (same as int)
LONG LONG, __int64 64 bit
bool 8 bit (!)

Padding*:

struct Test struct Test2
{ {

unsigned int u; double d;
bool flag; bool flag;

}; };
// sizeof(Test) is 8 // sizeof(Test2) is 16

*: More on http://www.catb.org/esr/structure-packing

INFOMOV – Lecture 2 – “Low Level” 31

Data Types

http://www.catb.org/esr/structure-packing

Data types in C++ - Conversions

Explicit:

float fpi = 3.141593;
int pi = (int)(1024.0f * fpi);

Implicit:

struct Color { unsigned char a, r, g, b; };
Color bitmap[640 * 480];
for(int i = 0; i < 640 * 480; i++)
{

bitmap[i].r *= 0.5f;
bitmap[i].g *= 0.5f;
bitmap[i].b *= 0.5f;

}

INFOMOV – Lecture 2 – “Low Level” 32

Data Types

// bitmap[i].r *= 0.5f;
movzx eax,byte ptr [ecx-1]
mov dword ptr [ebp-4],eax
fild dword ptr [ebp-4]
fnstcw word ptr [ebp-2]
movzx eax,word ptr [ebp-2]
or eax,0C00h
mov dword ptr [ebp-8],eax
fmul st,st(1)
fldcw word ptr [ebp-8]
fistp dword ptr [ebp-8]
movzx eax,byte ptr [ebp-8]
mov byte ptr [ecx-1],al

Data types in C++ - Conversions

Explicit:

float fpi = 3.141593;
int pi = (int)(1024.0f * fpi);

Avoiding conversion:

struct Color { unsigned char a, r, g, b; };
Color bitmap[640 * 480];
for(int i = 0; i < 640 * 480; i++)
{

bitmap[i].r >>= 1;
bitmap[i].g >>= 1;
bitmap[i].b >>= 1;

}

INFOMOV – Lecture 2 – “Low Level” 33

Data Types

// bitmap[i].r >>= 1;
shr byte ptr [eax-1],1
// bitmap[i].g >>= 1;
shr byte ptr [eax],1
// bitmap[i].b >>= 1;
shr byte ptr [eax+1],1

Data types in C++ - Conversions

Explicit:

float fpi = 3.141593;
int pi = (int)(1024.0f * fpi);

Avoiding conversion (2):

struct Color { union { struct { unsigned char a, r, g, b; }; int argb; }; };
Color bitmap[640 * 480];
for(int i = 0; i < 640 * 480; i++)
{

bitmap[i].argb = (bitmap[i].argb >> 1) & 0x7f7f7f;
}

INFOMOV – Lecture 2 – “Low Level” 34

Data Types

Data types in C++ - Free interpretation

Trick: Cheaper float comparison

union { float v1; unsigned int u1; };
union { float v2; unsigned int u2; };

bool smaller = (v1 < v2);

bool smaller = (u1 < u2); // same result, if signs of v1 and v2 are equal.

INFOMOV – Lecture 2 – “Low Level” 35

Data Types

sign exponent mantissa

Data types in C++ - Rolling your own

HDR color storage

Storing a bit flag in a floating point value

INFOMOV – Lecture 2 – “Low Level” 36

Data Types

exponent red green blue

sign exponent mantissa flag

Today’s Agenda:

▪ The Cost of a Line of Code

▪ CPU Architecture: Instruction Pipeline

▪ Data Types and Their Cost

▪ Rules of Engagement

Common Opportunities in Low-level Optimization

RULE 1: Avoid Costly Operations

▪ Replace multiplications by bitshifts, when possible
▪ Replace divisions by (reciprocal) multiplications
▪ Avoid sin, cos, sqrt

INFOMOV – Lecture 2 – “Low Level” 38

Rules of Engagement

Common Opportunities in Low-level Optimization

RULE 2: Precalculate

▪ Reuse (partial) results
▪ Adapt previous results (interpolation, reprojection, …)
▪ Loop hoisting
▪ Lookup tables

INFOMOV – Lecture 2 – “Low Level” 39

Rules of Engagement

Common Opportunities in Low-level Optimization

RULE 3: Pick the Right Data Type

▪ Avoid byte, short, double
▪ Use each data type as a 32/64 bit container that can be used at will
▪ Avoid conversions, especially to/from float
▪ Blend integer and float computations
▪ Combine calculations on small data using larger data

INFOMOV – Lecture 2 – “Low Level” 40

Rules of Engagement

Common Opportunities in Low-level Optimization

RULE 4: Avoid Conditional Branches

▪ if, while, ?, MIN/MAX
▪ Try to split loops with conditional paths into multiple unconditional loops
▪ Use lookup tables to prevent conditional code
▪ Use loop unrolling
▪ If all else fails: make conditional branches predictable

INFOMOV – Lecture 2 – “Low Level” 41

Rules of Engagement

Common Opportunities in Low-level Optimization

RULE 5: Early Out

INFOMOV – Lecture 2 – “Low Level” 42

Rules of Engagement

char a[] = “abcdfghijklmnopqrstuvwxyz”;
char c = ‘p’;
int position = -1;
for (int t = 0; t < strlen(a); t++)
{

if (a[t] == c)
{

position = t;
}

}

char a[] = “abcdfghijklmnopqrstuvwxyz”;
char c = ‘p’;
int position = -1, len = strlen(a);
for (int t = 0; t < len; t++)
{

if (a[t] == c)
{

position = t;
break;

}
}

Common Opportunities in Low-level Optimization

RULE 6: Use the Power of Two

▪ A multiplication / division by a power of two is a (cheap) bitshift
▪ A 2D array lookup is a multiplication too – make ‘width’ a power of 2
▪ Dividing a circle in 256 or 512 works just as well as 360 (but it’s faster)
▪ Bitmasking (for free modulo) requires powers of 2

1-2-4-8-16-32-64-128-256-512-1024-2048-4096-8192-16384-32768-65536

Be fluent with powers of 2 (up to 2^16);
learn to go back and forth for these: 2^9 = 512 = 2^9.
Practice counting from 0..31 on one hand in binary.

INFOMOV – Lecture 2 – “Low Level” 43

Rules of Engagement

Common Opportunities in Low-level Optimization

RULE 7: Do Things Simultaneously

▪ Use those cores
▪ An integer holds four bytes; use these for instruction level parallelism
▪ More on this later.

INFOMOV – Lecture 2 – “Low Level” 44

Rules of Engagement

Common Opportunities in Low-level Optimization

1. Avoid Costly Operations
2. Precalculate
3. Pick the Right Data Type
4. Avoid Conditional Branches
5. Early Out
6. Use the Power of Two
7. Do Things Simultaneously

INFOMOV – Lecture 2 – “Low Level” 45

Rules of Engagement

Today’s Agenda:

▪ The Cost of a Line of Code

▪ CPU Architecture: Instruction Pipeline

▪ Data Types and Their Cost

▪ Rules of Engagement

Get (from the website) project glassball.zip

Using low-level optimization, speed up this application.

1. Avoid Costly Operations
2. Precalculate
3. Pick the Right Data Type
4. Avoid Conditional Branches
5. Early Out
6. Use the Power of Two

Make sure functionality remains intact.
Target: a 10x speedup (this should be easy).

INFOMOV – Lecture 2 – “Low Level” 47

Practice

/INFOMOV/

END of “Low Level”
next lecture: “caching (1)”

