
/INFOMOV/
Optimization & Vectorization

J. Bikker - Sep-Nov 2019 - Lecture 4: “Caching (2)”

Welcome!

Today’s Agenda:

▪ Caching: Recap

▪ Data Locality

▪ Alignment

▪ False Sharing

▪ A Handy Guide (to Pleasing the Cache)

Refresher:

Three types of cache:

Fully associative
Direct mapped
N-set associative

In an N-set associative cache, each memory
address can be stored in N slots.

Example:
▪ 32KB, 8-way set-associative, 64 bytes per cache line: 64 sets of 512 bytes.

Recap

INFOMOV – Lecture 4 – “Caching (2)” 3

32KB, 8-way set-associative, 64 bytes per cache line:
64 sets of 512 bytes

Recap

INFOMOV – Lecture 4 – “Caching (2)” 4

32-bit address

31 6 5 01112
offsetset nrtag

32KB, 8-way set-associative, 64 bytes per cache line:
64 sets of 512 bytes

Recap

INFOMOV – Lecture 4 – “Caching (2)” 5

se
t:

 0
..6

3
 (

6
 b

it
)

slot (0..7)

Examples:

0x00001234 0001 001000 110100
0x00008234 1000 001000 110100
0x00006234 0110 001000 110100
0x0000A234 1010 001000 110100
0x0000A240 1010 001001 000000
0x0000F234 1111 001000 110100

32-bit address

31 6 5 01112
offsetset nrtag

32KB, 8-way set-associative, 64 bytes per cache line:
64 sets of 512 bytes

Recap

INFOMOV – Lecture 4 – “Caching (2)” 6

se
t:

 0
..6

3
 (

6
 b

it
)

slot (0..7)

Examples:

0x00001234 0001 001000 110100
0x00008234 1000 001000 110100
0x00006234 0110 001000 110100
0x0000A234 1010 001000 110100
0x0000A240 1010 001001 000000
0x0000F234 1111 001000 110100

32-bit address

31 6 5 01112
offsetset nrtag

32KB, 8-way set-associative, 64 bytes per cache line:
64 sets of 512 bytes

Recap

INFOMOV – Lecture 4 – “Caching (2)” 7

se
t:

 0
..6

3
 (

6
 b

it
)

slot (0..7)

Examples:

0x00001234 0001 001000 110100
0x00008234 1000 001000 110100
0x00006234 0110 001000 110100
0x0000A234 1010 001000 110100
0x0000A240 1010 001001 000000
0x0000F234 1111 001000 110100

32-bit address

31 6 5 01112
offsetset nrtag

32KB, 8-way set-associative, 64 bytes per cache line:
64 sets of 512 bytes

Theoretical consequence:

▪ Address 0, 4096, 8192, … map to the same set (which holds max. 8 addresses)

▪ consider int value[1024][1024]:

▪ value[0,1,2…][x] map to the same set
▪ querying this array vertically:

▪ will quickly result in evictions
▪ will use only 512 bytes of your cache

Recap

INFOMOV – Lecture 4 – “Caching (2)” 8

32-bit address

31 61112
offsetset nrtag

5 0

64 bytes per cache line

Theoretical consequence:

▪ If address 𝑋 is pulled into the cache, so is (𝑋+1…. 𝑋+63).

Example*:

int arr = new int[64 * 1024 * 1024];
// loop 1
for(int i = 0; i < 64 * 1024 * 1024; i++) arr[i] *= 3;
// loop 2
for(int i = 0; i < 64 * 1024 * 1024; i += 16) arr[i] *= 3;

Which one takes longer to execute?

*: http://igoro.com/archive/gallery-of-processor-cache-effects

Recap

INFOMOV – Lecture 4 – “Caching (2)” 9

64 bytes per cache line

Theoretical consequence:

▪ If address 𝑋 is removed from cache, so is (𝑋+1…. 𝑋+63).
▪ If the object you’re querying straddles the cache line boundary, you may suffer

not one but two cache misses.

Example:

struct Pixel { float r, g, b; }; // 12 bytes
Pixel screen[768][1024];

Assuming pixel (0,0) is aligned to a cache line boundary, the offsets in memory of
pixels (0,1..5) are 12, 24, 36, 48, 60, … . Walking column 5 will be very expensive.

Recap

INFOMOV – Lecture 4 – “Caching (2)” 10

Considering the Cache

▪ Size
▪ Cache line size and alignment
▪ Aliasing
▪ Sharing
▪ Access patterns

Recap

INFOMOV – Lecture 4 – “Caching (2)” 11

Today’s Agenda:

▪ Caching: Recap

▪ Data Locality

▪ Alignment

▪ False Sharing

▪ A Handy Guide (to Pleasing the Cache)

Why do Caches Work?

1. Because we tend to reuse data.
2. Because we tend to work on a small subset of our data.
3. Because we tend to operate on data in patterns.

INFOMOV – Lecture 4 – “Caching (2)” 13

Data Locality

Reusing data

▪ Very short term: variable ‘i’ being used intensively in a loop ➔ register

▪ Short term: lookup table for square roots being used on every input element ➔ L1 cache

▪ Mid-term: particles being updated every frame ➔ L2, L3 cache

▪ Long term: sound effect being played ~ once a minute ➔ RAM

▪ Very long term: playing the same CD every night ➔ disk

INFOMOV – Lecture 4 – “Caching (2)” 14

Data Locality

Reusing data

Ideal pattern:

▪ load data sequentially.

Typical pattern:

▪ whatever the algorithm dictates.

INFOMOV – Lecture 4 – “Caching (2)” 16

Data Locality

INFOMOV – Lecture 4 – “Caching (2)” 17

Data Locality

Example: rotozooming

INFOMOV – Lecture 4 – “Caching (2)” 18

Data Locality

Example: rotozooming

INFOMOV – Lecture 4 – “Caching (2)” 19

Data Locality

Method:

X = 1 1 0 0 0 1 0 1 1 0 1 1 0 1

Y = 1 0 1 1 0 1 1 0 1 0 1 1 1 0

M = 1101101000111001110011111001

Example: rotozooming

Improving data locality: z-order / Morton curve

INFOMOV – Lecture 4 – “Caching (2)” 20

Data Locality

Data Locality

Wikipedia:

Temporal Locality – “If at one point in time a particular memory location is referenced,
then it is likely that the same location will be referenced again in the near future.”

Spatial Locality – “If a particular memory location is referenced at a particular time,
then it is likely that nearby memory locations will be referenced in the near future.”

* More info: http://gameprogrammingpatterns.com/data-locality.html

http://gameprogrammingpatterns.com/data-locality.html

INFOMOV – Lecture 4 – “Caching (2)” 21

Data Locality

Data Locality

How do we increase data locality?

Linear access – Sometimes as simple as swapping for loops *

Tiling – Example of working on a small subset of the data at a time.

Streaming – Operate on/with data until done.

Reducing data size – Smaller things are closer together.

How do trees/linked lists/hash tables fit into this?

* For an elaborate example see https://www.cs.duke.edu/courses/cps104/spring11/lects/19-cache-sw2.pdf

https://www.cs.duke.edu/courses/cps104/spring11/lects/19-cache-sw2.pdf

Today’s Agenda:

▪ Caching: Recap

▪ Data Locality

▪ Alignment

▪ False Sharing

▪ A Handy Guide (to Pleasing the Cache)

Cache line size and data alignment

What is wrong with this struct?

struct Particle
{

float x, y, z;
float vx, vy, vz;
float mass;

};
// size: 28 bytes

Two particles will fit in a cache line (taking up 56 bytes).
The next particle will be in two cache lines.

INFOMOV – Lecture 4 – “Caching (2)” 23

Alignment

Better:

struct Particle
{

float x, y, z;
float vx, vy, vz;
float mass, dummy;

};
// size: 32 bytes

Note:

As soon as we read any field
from a particle, the other fields
are guaranteed to be in L1 cache.

If you update x, y and z in one
loop, and vx, vy, vz in a second
loop, it is better to merge the two
loops.

Cache line size and data alignment

What is wrong with this allocation?

struct Particle
{

float x, y, z;
float vx, vy, vz;
float mass, dummy;

};
// size: 32 bytes
Particle particles[512];

Although two particles will fit in a cache line, we have no
guarantee that the address of the first particle is a
multiple of 64.

INFOMOV – Lecture 4 – “Caching (2)” 24

Alignment

Note:

Is it bad if particles straddle a
cache line boundary?

Not necessarily: if we read the
array sequentially, we sometimes
get 2, but sometimes 0 cache
misses.

For random access, this is not a
good idea.

Cache line size and data alignment

Controlling the location in memory of arrays:

An address that is dividable by 64 has its lowest 6 bits set
to zero. In hex: all addresses ending with 40, 80 and C0.

Enforcing this:

Particle* particles =
_aligned_malloc(512 * sizeof(Particle), 64);

Or:

__declspec(align(64)) struct Particle { … };

INFOMOV – Lecture 4 – “Caching (2)” 25

Alignment

Today’s Agenda:

▪ Caching: Recap

▪ Data Locality

▪ Alignment

▪ False Sharing

▪ A Handy Guide (to Pleasing the Cache)

Multiple Cores using Caches

Two cores can hold copies of the same data.

Not as unlikely as you may think – Example:

byte data = new byte[COUNT];
for(int i = 0; i < COUNT; i++)

data[i] = rand() % 256;
// count byte values
int counter[256];
for(int i = 0; i < COUNT; i++)

counter[byteArray[i]]++;

INFOMOV – Lecture 4 – “Caching (2)” 27

False Sharing

T0

T1

L1 I-$

L1 D-$
L2 $

T0

T1

L1 I-$

L1 D-$
L2 $

T0

T1

L1 I-$

L1 D-$
L2 $

T0

T1

L1 I-$

L1 D-$
L2 $

L3 $

Today’s Agenda:

▪ Caching: Recap

▪ Data Locality

▪ Alignment

▪ False Sharing

▪ A Handy Guide (to Pleasing the Cache)

How to Please the Cache

Or: “how to evade RAM”

1. Keep your data in registers

Use fewer variables
Limit the scope of your variables
Pack multiple values in a single variable
Use floats and ints (they use different registers)
Compile for 64-bit (more registers)
Arrays will never go in registers
Unions will never go in registers

INFOMOV – Lecture 4 – “Caching (2)” 30

Easy Steps

How to Please the Cache

Or: “how to evade RAM”

2. Keep your data local

Read sequentially
Keep data small
Use tiling / Morton order
Fetch data once, work until done (streaming)
Reuse memory locations

INFOMOV – Lecture 4 – “Caching (2)” 31

Easy Steps

How to Please the Cache

Or: “how to evade RAM”

3. Respect cache line boundaries

Use padding if needed
Don’t pad for sequential access
Use aligned malloc / __declspec align
Assume 64-byte cache lines

INFOMOV – Lecture 4 – “Caching (2)” 32

Easy Steps

How to Please the Cache

Or: “how to evade RAM”

4. Advanced tricks

Prefetch
Use a prefetch thread (theoretical…)
Use streaming writes
Separate mutable / immutable data

INFOMOV – Lecture 4 – “Caching (2)” 33

Easy Steps

How to Please the Cache

Or: “how to evade RAM”

5. Be informed

Use the profiler!

INFOMOV – Lecture 4 – “Caching (2)” 34

Easy Steps

Today’s Agenda:

▪ Caching: Recap

▪ Data Locality

▪ Alignment

▪ False Sharing

▪ A Handy Guide (to Pleasing the Cache)

/INFOMOV/

END of “Caching (2)”
next lecture: “SIMD (1)”

/INFOMOV/

Practical

1. Timing the Rotozoomer

INFOMOV – Lecture 4 – “Caching (2)” 39

Data Locality

Example: rotozooming

INFOMOV – Lecture 4 – “Caching (2)” 40

Data Locality

Example: rotozooming

2. Simple Access Pattern

INFOMOV – Lecture 4 – “Caching (2)” 42

Data Locality

Example: dotcloud

3. LUTs Gone Wrong

/INFOMOV/

End of Practical

