
Assignment P2 – Cache Simulator
Formal assignment description for P2 - INFOMOV

Jacco Bikker, 2024

Introduction

This document describes the requirements for the second assignment for the INFOMOV course. For

this assignment, you will extend a simple cache simulator, which currently implements a fully

associative cache.

Base Code

The base code in game.cpp renders a spiral. The contents of a simulated two-level memory system (L1

cache + RAM) are visualized in real-time: bright colors are cached; darker ones reside in ‘DRAM’. The

provided fully associative cache uses a random eviction policy, so pixels of the spiral will randomly

leave the cache, resulting in a pretty sparkly trail.

An alternative chunk of code renders a Buddhabrot fractal (note: historically Ganesh is more accurate).

This is a fractal similar to the Mandelbrot fractal, and consists of the set of points in the complex plane

for which the sequence 𝑧𝑛+1 = 𝑧𝑛
2 + 𝑐 does not tend to infinity for 𝑧0 = 0 (as described by Wikipedia).

The actual implementation is as mysterious as the previous sentence, on purpose. Luckily, only one

part of that code matters: the two lines that read and write data to iteratively update the image.

Memory access

The two code paths have very different memory access patterns. The Buddhabrot randomly skips over

the screen, while the spiral has a more predictable pattern.

The application has been augmented with an interface to a cache simulator. Every read from - and

write to - the image buffer is replaced by a function call. E.g., reading a uint is now a call to

mem.WriteUint, which takes the address of the uint and returns the value at that address.

The function calls allow us to intercept the memory operations and guide them through the simulator.

The implementation of this cache simulator is the goal of this assignment.

https://en.wikipedia.org/wiki/Buddhabrot

Cache

The starting point for this assignment is a working but basic cache simulator, which implements the

fully associative cache scheme. You can find the implementation in cache.h and cache.cpp.

The implemented cache uses a memory hierarchy, with one cache level (derived from abstract base

class Level), and a simulated DRAM memory (class Memory, also derived from Level). Communication

between DRAM, the single cache level and the MemHierarchy object always happens in full cache lines

(class CacheLine). MemHierarchy is the access point for the ‘CPU’, i.e. our code in game.cpp. The CPU

code may access memory in bytes or uints, although only uints are used in this case.

Details

For this assignment, you will implement a correct N-way set associative cache and expand the single-

level cache to a three-level hierarchy. Building a minimal but correct 3-layer set associative cache

yields the first 5 points for this assignment. You may use a simple eviction policy for this, and you may

use hardcoded cache parameters if you wish.

Additional points beyond the base 5 may be obtained by completing additional challenges:

1. Besides the spiral and the fractal, add a third algorithm to assess cache behaviour /

performance. Try to come up with an access pattern that reveals other characteristics than

the existing two algorithms (up to 1pt).

2. Add support to the code for setting per-level associativity, cache size and cache line width.

These may be compile-time parameters. Use this functionality to answer the following

research question: What is the optimal set of parameters for the spiral, and what parameters

are optimal for the fractal? Which set of parameters do you recommend for general use and

why? (up to 1pt)

3. Implementing LRU, LFU and random eviction for your cache levels and comparing these using

the provided access patterns (spiral + fractal), as well as your own (up to 1pt).

4. Implement a comparison of the implemented eviction policies against the Clairvoyant

algorithm (Bélády's algorithm) (+1pt).

5. Add the option to make the cache inclusive or exclusive. Add a comparison of the efficiency of

both schemes, or include this in the experiments for challenge 2 (up to 1pt).

Note that points may be subtracted if the cache is not correctly implemented. One symptom of this

could be changed application functionality. Other symptoms include cache performance (hit/miss

ratio) that differs significantly from what could be expected; compare with peers to verify your results!

Note that the performance of your simulator is irrelevant. The simulator could very well reduce the

efficiency of the application.

For this assignment you may assume a single core. It is thus not necessary to simulate the effects of

false sharing, nor of any inter-core synchronization.

Team

You may work on this assignment alone, or with one partner. You may team with one partner for all

assignments, but it is also allowed to change teams per assignment. You cannot change your team

halfway an assignment; if for whatever reason you don’t want to finish the project with your partner,

both of you will work alone. Both team members may continue working with the code that was

produced up till the split.

You may exchange information about the project with other students, online or in real life. Do not

share code snippets, limit the exchange to ideas, hints, and concepts.

Deliverables

Your submission will consist of a report, source code and project files.

Make sure the code compiles out-of-the-box in Visual Studio. If any other tools are required to

produce the intended executable, please add a readme.txt that contains build instructions.

The report should describe your cache architecture, an analysis of cache performance, a statement on

work division, references to sources used in the process, and an overview of implemented

functionality (especially for the “additional challenges”).

Deadline

The deadline for this assignment is Friday May 31, 17:00. If you fail to meet this deadline, you may

submit one day later. One point will be subtracted from your grade in this case. Please submit your

work by mail.

Academic Conduct

The work you hand in must be your own original work, or properly referenced. If you used materials

from other sources, please specify this clearly in the report.

Do not store your work in a publicly accessible location (this includes github!). If other students use

your work (now or in the future), you may be reported along with the perpetrators.

Purpose

The purpose of this assignment is to gain insight in the caching system of the CPU. The practical work

partially replaces a literature study, as hands-on experience typically yields a better understanding of

this important topic.

The End

Questions and comments:

bikker.j@gmail.com

INFOMOV 2024

mailto:bikker.j@gmail.com

