
/INFOMOV/
Optimization	&	Vectorization
A. Chatzimparmpas		- April-June 2025	- Lecture 12: “Fixed	Point”

Welcome!

Slides	Courtesy	of	J.	Bikker

Today’s	Agenda:

§ Introduction

§ Float	to	Fixed	Point	and	Back
§ Operations
§ Fixed	Point	&	Accuracy

§ Demonstration

The	Concept	of	Fixed	Point	Math

Basic	idea:	emulating	floating	point	math	using	integers	.	

Why?

§ Not	every	CPU	has	a	floating	point	unit.

§ Specifically:	cheap	DSPs	do	not	support	floating	point.

§ Mixing	floating	point	and	integer	is	Good	for	the	Pipes.

§ Some	floating	point	ops	have	long	latencies	(div).

§ Data	conversion	can	be	a	significant	part	of	a	task.

§ Fixed	point	can	be	more	accurate.

INFOMOV	–	Lecture	12	–	“Fixed	Point	Math” 3

Introduction

INFOMOV	–	Lecture	12	–	“Fixed	Point	Math” 4

Introduction

vec3 shade(vec3 V, vec3 R)
{

float spec = pow(max(dot(V, R), 0), 32);
return spec * lightColor;

}

Could we evaluate function shade without using
floats?

The	Concept	of	Fixed	Point	Math

Basic	idea:	we	have	𝜋:	3.1415926536.

§ Multiplying	that	by	1010	yields	31415926536 (π).
§ Adding	1	to	 𝜋	 yields	4.1415926536 (π	+	1).
§ But,	we	scale	up	1	by	1010	as	well:
adding	1·1010	 to	the	scaled	up	version	of	 𝜋	 yields	41415926536.

è In	base	10,	we	simulate	𝑁	digits	of	fractional	precision	by	multiplying	our	
numbers	by	10𝑁	(and	remember	where	we	put	that	dot).

INFOMOV	–	Lecture	12	–	“Fixed	Point	Math” 5

Introduction

The	Concept	of	Fixed	Point	Math

Addition	and	subtraction	are	straight-forward	with	fixed	point	math.	

We	can	also	use	it	for	interpolation:

void line(int x1, int y1, int x2, int y2)
{

int dx = (x2 – x1) * 10000;
int dy = (y2 – y1) * 10000;
int pixels = max(abs(x2 – x1), abs(y2 – y1));
dx /= pixels;
dy /= pixels;
int x = x1 * 10000, y = y1 * 10000;
for(int i = 0; i < pixels; i++, x += dx, y += dy)

plot(x / 10000, y / 10000);
}

INFOMOV	–	Lecture	12	–	“Fixed	Point	Math” 6

Introduction

The	Concept	of	Fixed	Point	Math

For	multiplication	and	division	things	get	a	bit	more	complex.

§ π	·	2	≡	31415926536	*	20000000000	=	628318530720000000000
§ π	/	2	≡	31415926536	/	20000000000	=	1	(or	2,	if	we	use	proper	rounding).

Multiplying	two	fixed	point	numbers	yields	a	result	that	is	1010	too	large	(in	this	case).
Dividing	two	fixed	point	numbers	yields	a	result	that	is	1010	too	small.

INFOMOV	–	Lecture	12	–	“Fixed	Point	Math” 7

Introduction

The	Concept	of	Fixed	Point	Math

On	a	computer,	we	obviously	do	not	use	base	10,	but	base	2.	Starting	with	π	 again:

§ Multiplying	by	216	yields	205887.
§ Adding	1·216	 	to	the	scaled-up	version	of	 𝜋	 yields	271423.

In	binary:

§ 205887	=	00000000	00000011	00100100	00111111 (π)
§ 271423	=	00000000	00000100	00100100	00111111 (π	+	1)

Looking	at	the	first	number	(205887),	and	splitting	in	two	sets	of	16	bit,	we	get:

§ 0000000000000011	(base	2)	=	3	(base	10);
§ 0010010000111111(base	2)	=	9279	(base	10);	9279	=	0.141586304.

216

INFOMOV	–	Lecture	12	–	“Fixed	Point	Math” 8

Introduction

The	Concept	of	Fixed	Point	Math

Interpolation,	base	10:

void line(int x1, int y1, int x2, int y2)
{

int dx = (x2 – x1) * 10000;
int dy = (y2 – y1) * 10000;
int pixels = max(abs(x2 – x1), abs(y2 – y1));
dx /= pixels;
dy /= pixels;
int x = x1 * 10000, y = y1 * 10000;
for(int i = 0; i < pixels; i++, x += dx, y += dy)

plot(x / 10000, y / 10000);
}

INFOMOV	–	Lecture	12	–	“Fixed	Point	Math” 9

Introduction

The	Concept	of	Fixed	Point	Math

Interpolation,	base	2:

void line(int x1, int y1, int x2, int y2)
{

int dx = (x2 – x1) * 65536;
int dy = (y2 – y1) * 65536;
int pixels = max(abs(x2 – x1), abs(y2 – y1));
dx /= pixels;
dy /= pixels;
int x = x1 * 65536, y = y1 * 65536;
for(int i = 0; i < pixels; i++, x += dx, y += dy)

plot(x / 65536, y / 65536);
}

INFOMOV	–	Lecture	12	–	“Fixed	Point	Math” 10

Introduction

The	Concept	of	Fixed	Point	Math

How	many	bits	do	we	need?

§ The	number	10.3	(base	10)	has	a	maximum	error	
of	0.05:	10.25	≤		10.3		<		10.35.

1 −𝑋

2
1	2−16	=	2−17.

1
2

§ So,	the	error	is	at	most	 10	 (or	x	+	1)	for	x	fractional	digits.
2

§ A	fixed-point	number	with	16	fractional	bits	has	a	maximum	error	of
§ … or	2−16	if	we	always	round	down	(twice	as	much!).
§ This	can	be	prevented	by	adding	 2−16 before	flooring:
round(10.7)	=	floor(10.7	+	0.5)	=	11.

During	interpolation:

If	our	longest	line	is	Y	pixels,
è the	maximum	accumulated	error	with	𝑥	fractional	bits	is:	𝑌	2−(𝑥+1).
Only	if	the	maximum	error	exceeds	1,	the	line	may	differ	from	‘ground	truth’.

INFOMOV	–	Lecture	12	–	“Fixed	Point	Math” 11

Introduction void line(int x1, int y1, int x2, int y2)
{

int dx = (x2 – x1) * 65536;
int dy = (y2 – y1) * 65536;
int pixels = max(abs(x2 – x1), abs(y2 – y1));
dx /= pixels;
dy /= pixels;
int x = x1 * 65536, y = y1 * 65536;
for(int i = 0; i < pixels; i++, x += dx, y += dy)

plot(x / 65536, y / 65536);
}

Practical	example

Texture	mapping	in	Quake	1:	Perspective	Correction

§ Affine	texture	mapping:	interpolate	u/v	linearly	over	polygon
§ Perspective	correct	texture	mapping:	interpolate	1/z,	u/z	and	v/z.
§ Reconstruct	u	and	v	per	pixel	using	the	reciprocal	of	1/z.

INFOMOV	–	Lecture	12	–	“Fixed	Point	Math” 12

Introduction u = u_over_z / z
v = v_over_z / z

rz = 1 / z
u = u_over_z * rz
v = v_over_z * rz

Practical	example

Texture	mapping	in	Quake	1:	Perspective	Correction

§ Affine	texture	mapping:	interpolate	u/v	linearly	over	polygon
§ Perspective	correct	texture	mapping:	interpolate	1/z,	u/z	and	v/z.
§ Reconstruct	u	and	v	per	pixel	using	the	reciprocal	of	1/z.

Quake’s	solution:

§ Divide	a	horizontal	line	of	pixels	in	segments	of	8	pixels;
§ Calculate	u	and	v	for	the	start	and	end	of	the	segment;
§ Interpolate	linearly	(fixed	point!)	over	the	8	pixels.

And:

Start	the	floating	point	division	(39	cycles)	for	the	next	segment,	so	it
can	complete	while	we	execute	integer	code	for	the	linear	interpolation.

INFOMOV	–	Lecture	12	–	“Fixed	Point	Math” 13

Introduction

Today’s	Agenda:

§ Introduction

§ Float	to	Fixed	Point	and	Back
§ Operations
§ Fixed	Point	&	Accuracy

§ Demonstration

Practical	Things

Converting	a	floating	point	number	to	fixed	point:

Multiply	the	float	by	a	power	of	2	represented	by	a	floating	point	value,	and	cast	
the	result	to	an	integer.	E.g.:

int fp_pi = (int)(3.141593f * 65536.0f); // 16 bits fractional
(rookie mistake: int fp_pi = (int)3.141593f * 65536.0f;

After	calculations,	cast	the	result	to	int	by	discarding	the	fractional	bits.	E.g.:
int result = fp_pi >> 16; // divide by 65536

Or,	get	the	original	float	back	by	casting	to	float	and	dividing	by	2fractionalbits	:

float result = (float)fp_pi * (1.0f / 65536.0f);

Note	that	this	last	option	has	significant	overhead,	which	should	be	outweighed
by	the	gains.

INFOMOV	–	Lecture	12	–	“Fixed	Point	Math” 15

Conversions

for(int i = 0; i < 256; i++)
sintab[i] = (int)(FP_SCALE * sinf((float)i / 128.0f * PI)),
costab[i] = (int)(FP_SCALE * cosf((float)i / 128.0f * PI));

What	is	the	best	value	for	FP_SCALE	in	this	case?	And	should	we	use	int or
unsigned int for	the	table?

Sine/cosine:	range	is	[-1,	1].	In	this	case,	we	need	1	sign	bit,	and	1	bit	for	the	whole	
part	of	the	number.	So:

è We	use	30	bits	for	fractional	precision,	1	for	sign,	1	for	range.	In	
base	10,	the	fractional	precision	is	~10	digits	(float	has	7).

INFOMOV	–	Lecture	12	–	“Fixed	Point	Math” 16

Conversions

Practical	Things	-	Considerations

Example:	precomputed	sin/cos	table

#define FP_SCALE 65536.0f
int sintab[256], costab[256];

1073741824.0f (or 2^30)

INFOMOV	–	Lecture	12	–	“Fixed	Point	Math” 17

Conversions

Practical	Things	-	Considerations

Example:	values	in	a	z-buffer

A	3D	engine	needs	to	keep	track	of	the	depth	
of	pixels	on	the	screen	for	depth	sorting.	For	
this,	it	uses	a	z-buffer.

We	can	make	two	observations:

1. All	values	are	positive	(no	objects	behind	the	camera	are	drawn);
2. Further	away	we	need	less	precision.

By	adding	1	to	z,	we	guarantee	that	z	is	in	the	range	[1..infinity].	
The	reciprocal	of	z	is	then	in	the	range	[0..1].
We	store	1/(z+1)	as	a	0:32	unsigned	fixed	point	number	for	
maximum	precision.

INFOMOV	–	Lecture	12	–	“Fixed	Point	Math” 18

Conversions

Practical	Things	-	Considerations

Example:	particle	simulation

A	particle	simulation	operates	on	particles	inside	a	
100x100x100	box	centered	around	the	origin.	What	fixed	
point	format	do	you	use	for	the	coordinates	of	the	particles?

1. Since	all	coordinates	are	in	the	range	[-50,50],	we	need	a	sign.
2. The	maximum	integer	value	of	50	fits	in	6	bits (2^6	– 1	=	0-63).
3. This	leaves	25	bits	fractional	precision	(a	bit	more	than	8	decimal	digits).

è We	use	a	6:25	signed	fixed	point	representation.

Better:	scale	the	simulation	to	a	box	of	127x127x127	for	better	use	of	the	full	
range;	this	gets	you	~8.5	decimal	digits	of	precision.

INFOMOV	–	Lecture	12	–	“Fixed	Point	Math” 19

Conversions

Practical	Things	-	Considerations

We	pick	the	right	precision	based	on	the	problem	at	hand.	

Sin/cos:	original	values	[-1..1];
è sign	bit	+	1	range/integer	bit	+	30	fractional	bits;
è 1:30	signed	fixed	point.

Storing	1/(z+1):	original	values	[0..1];
è 32	fractional	bits;
è 0:32	unsigned	fixed	point.

Particles:	original	values	[-50..50];
è sign	bit	+	6	integer	bits,	32-7=25	fractional	bits;
è 6:25	signed	fixed	point.

In	general:

§ first	determine	if	we	need	a	
sign;

§ then,	determine	how	many	bits	
are	need	to	represent	the	
integer	range;

§ use	the	remainder	as	fractional	
bits.

§ If	too	imprecise:	use	64-bit	
integers	(use	sparsely	on	
platforms	that	do	not	support	
this	natively!).

Today’s	Agenda:

§ Introduction

§ Float	to	Fixed	Point	and	Back
§ Operations
§ Fixed	Point	&	Accuracy

§ Demonstration

INFOMOV	–	Lecture	12	–	“Fixed	Point	Math” 21

Basic	Operations	on	Fixed	Point	Numbers

Operations	on	mixed	fixed	point	formats:

§ A+B	 (𝐼𝐴	:	𝐹𝐴	+	𝐼𝐵:	𝐹𝐵)

To	be	able	to	add	the	numbers,	they	must	be	in	the	same	format.

Example:	𝐼𝐴	:	𝐹𝐴	=4:28,	𝐼𝐵	:	𝐹𝐵	=16:16	

Option	1:	A	>>=	12	(to	make	it	16:16)
Option	2:	B	<<=	12	(to	make	it	4:28)

Problem	with	option	2:	we	do	not	get	4:28,	we	get	16:28!
Problem	with	option	1:	we	drop	12	bits	from	A…

Operations

INFOMOV	–	Lecture	12	–	“Fixed	Point	Math” 22

Basic	Operations	on	Fixed	Point	Numbers

Operations	on	mixed	fixed	point	formats:

§ A∗B	 (𝐼𝐴	:	𝐹𝐴	 ∗	𝐼𝐵	:	𝐹𝐵)	è yields	(IA+IB):(FA+FB)

We	can	however	freely	mix	fixed	point	formats	for	multiplication.	

Example:
𝐼𝐴	:	𝐹𝐴	=16:16,	𝐼𝐵	:	𝐹𝐵	=16:16
Result:	32:32,	shift	to	the	right	by	32	to	get	a	32:16	number.
𝐼𝐴	:	𝐹𝐴	=18:14,	𝐼𝐵	:	𝐹𝐵	=14:18
Result:	32:32,	shift	to	the	right	by	18	to	get	a	..:14	number,	or	by	14	to	get	a	..:18	number.

Problem:

§ The	intermediate	result	doesn’t	fit	in	a	32-bit	register.
§ The	answer	may	not	fit	in	a	32-bit	register.

Operations

Multiplication

Color	scaling,	base	2:

uint ScaleColor(const uint c, const uint x) // x = 0..255
{

uint redblue = c & 0x00FF00FF;
uint green = c & 0x0000FF00;
redblue = (redblue * x) & 0xFF00FF00;
green = (green * x) & 0x00FF0000;
return (redblue + green) >> 8;

}

We	did	0:8 * 0:8	fixed	point	multiplication	here,	which	yields	0:16	results.
Fore	more	details,	check:	https://jacco.ompf2.com/2020/05/12/opt3simd-part-1-of-2/

INFOMOV	–	Lecture	12	–	“Fixed	Point	Math” 23

Operations

31 24 23 16 15 8 7 0

31 24 23 16 15 8 7

https://jacco.ompf2.com/2020/05/12/opt3simd-part-1-of-2/
https://jacco.ompf2.com/2020/05/12/opt3simd-part-1-of-2/
https://jacco.ompf2.com/2020/05/12/opt3simd-part-1-of-2/
https://jacco.ompf2.com/2020/05/12/opt3simd-part-1-of-2/
https://jacco.ompf2.com/2020/05/12/opt3simd-part-1-of-2/
https://jacco.ompf2.com/2020/05/12/opt3simd-part-1-of-2/
https://jacco.ompf2.com/2020/05/12/opt3simd-part-1-of-2/
https://jacco.ompf2.com/2020/05/12/opt3simd-part-1-of-2/
https://jacco.ompf2.com/2020/05/12/opt3simd-part-1-of-2/

Multiplication

§ “Ensure	that	intermediate	results	never	exceed	32	bits.”

Suppose	we	want	to	multiply	two	20:12	unsigned	fixed	point	numbers:

1.	 (fp_a * fp_b) >> 12; // good if fp_a and fp_b are very small
2.	 (fp_a >> 12) * fp_b; // good if fp_a is a whole number
3.	 (fp_a >> 6) * (fp_b >> 6); // good if fp_a and fp_b are large
4.	 ((fp_a >> 3) * (fp_b >> 3)) >> 6; // hybrid: good for medium values

Which	option	we	chose	depends	on	the	parameters.	For	example:

fp_a = PI;
fp_b = 0.5f * 2^12; // 0.5 in fixed point
int fp_prod = fp_a >> 1; // divide by 2 J

INFOMOV	–	Lecture	12	–	“Fixed	Point	Math” 24

Operations

Division

§ “Ensure	that	intermediate	results	never	exceed	32	bits.”

Dividing	two	20:12	fixed	point	numbers:

1.	 (fp_a << 12) / fp_b; // good if fp_a and fp_b are very small
2.	 fp_a / (fp_b >> 12); // good if fp_b is a whole number
3.	 (fp_a << 6) / (fp_b >> 6); // good if fp_a and fp_b are large
4.	 ((fp_a << 3) / (fp_b >> 3)) << 6; // hybrid: good for medium values

Note	that	a	division	by	a	constant	can	be	replaced	by	a	multiplication	by	its	reciprocal:

fp_reci = (1 << 12) / fp_b;
fp_prod = (fp_a * fp_reci) >> 12; // or one of the alternatives

INFOMOV	–	Lecture	12	–	“Fixed	Point	Math” 25

Operations

INFOMOV	–	Lecture	12	–	“Fixed	Point	Math” 26

Multiplication,	Take	2

§ “Use	a	64-bit	intermediate	result.”

A∗B	 (𝐼𝐴	:	𝐹𝐴	 ∗	𝐼𝐵	:	𝐹𝐵)

Example:	𝐼𝐴	:	𝐹𝐴	=16:16,	𝐼𝐵	:	𝐹𝐵	=16:16	
Result:	32:32

Calculate	a	64-bit	result	(with	enough	room	for	32:32),	
throw	out	32	bits	afterwards.

x86	MUL	instruction:

MUL	EDX

Functionality:

multiplies	EDX	by	EAX,	stores	the	
result	in	EDX:EAX.

è Tossing	32	bits:	ignore	EAX.
è x86	is	designed	for	16:16.

Operations

INFOMOV	–	Lecture	12	–	“Fixed	Point	Math” 27

Multiplication

Special	case:	multiply	or	divide	by	a	32:0	number.

int fp_pi = (int)(3.141593f * 65536.0f); // 16 bits fractional
int fp_2pi = fp_pi * 2; // 16 bits fractional

We	did	this	in	the	line	function:

dx /= pixels; // dx is 16:16, pixels is 32:0
dy /= pixels;

Operations

Square	Root

For	square	roots	of	fixed	point	numbers,	optimal	performance	is	achieved	via
_mm_rsqrt_ps	(via	float).	If	precision	is	of	little	concern,	use	a	lookup	table,	optionally	
combined	with	interpolation	and	/	or	a	Newton-Raphson	iteration.

Sine	/	Cosine	/	Log	/	Pow	/	etc.

Almost	always	a	LUT	is	the	best	option*.

…But,	if	you	must: https://github.com/chmike/fpsqrt

INFOMOV	–	Lecture	12	–	“Fixed	Point	Math” 28

Operations

int sqrt_i32(int v)
{

1<<30, q = 0, r = v;
> r) b >>= 2;
> 0)

uint b =
while (b
while (b
{

uint t = q + b;

t, q += b;
q >>= 1;
if (r >= t) r -=
b >>= 2;

}
return q;

}

*:	Not	on	the	GPU	however.	Alternative:	
https://www.reddit.com/r/programming/comments/1vbb5l/fast_fixedpoint_sine_approximation/

https://github.com/chmike/fpsqrt
https://www.reddit.com/r/programming/comments/1vbb5l/fast_fixedpoint_sine_approximation/

Fixed	Point	&	SIMD

For	a	delicious	world	of	hurt,	combine	SIMD	and	fixed	point:

_mm_mul_epu32
_mm_mullo_epi16
_mm_mulhi_epu16
_mm_srl_epi32
_mm_srai_epi32

See	MSDN	/	Intel	Intrinsic	list	for	more	details.

INFOMOV	–	Lecture	12	–	“Fixed	Point	Math” 29

Operations

Today’s	Agenda:

§ Introduction

§ Float	to	Fixed	Point	and	Back
§ Operations
§ Fixed	Point	&	Accuracy

§ Demonstration

Range	versus	Precision

Looking	at	the	line	code	once	more:

void line(int x1, int y1, int x2, int y2)
{

int dx = (x2 – x1) << 16;
int dy = (y2 – y1) << 16;
int pixels = max(abs(x2 – x1), abs(y2 – y1));
dx /= pixels;
dy /= pixels;
int x = x1 << 16, y = y1 << 16;
for(int i = 0; i < pixels; i++, x += dx, y += dy)

plot(x >> 16, y >> 16);
}

INFOMOV	–	Lecture	12	–	“Fixed	Point	Math” 31

Accuracy

dx=15:16, range is 32767. precision: 16 bits,
maximum error: 1

216 ∗	0.5	=
1
217 .

Interpolating a 1024 pixel line,
the maximum cumulative error
is 210	 ∙ 1	 1

217	 27=	 ≈	0.008.

INFOMOV	–	Lecture	12	–	“Fixed	Point	Math” 32

Accuracy

Range	versus	Precision:	Error

In	base	10,	error	is	clear:

PI	=	3.14	means:	 3.145	 >		𝑃𝐼	 >		3.135
The	maximum	error	is	thus	1 1

2	 102
=	0.005.

In	base	2,	we	apply	the	same	principle:

16:16	fixed	point	numbers	have	a	maximum	error	of 1	 1 1
2	 216	 217=	 ≈	7.6	·	10−6	 .

è We	get	slightly	more	than	5	digits	of	decimal	precision.

For	reference:	32-bit	floating	point	numbers:

§ 1	sign	bit,	8	exponent	bits,	23	mantissa/fractional	bits
§ 223	≈	8,000,000;	floats	thus	have	~7	digits	of	decimal	precision.

Error

Careful	balancing	of	range	and	precision	in	fixed	point	calculations	can	reduce	this	problem.

Note	that	accuracy	problems	also	occur	in	float	calculations;	they	are	just	exposed	more	
clearly	in	fixed	point.	And:	this	time	we	can	do	something	about	it.

INFOMOV	–	Lecture	12	–	“Fixed	Point	Math” 34

Accuracy

Today’s	Agenda:

§ Introduction

§ Float	to	Fixed	Point	and	Back
§ Operations
§ Fixed	Point	&	Accuracy

§ Demonstration Bilinear

Interpolation

/INFOMOV/

END	of	“Fixed	Point	Math”
next lecture: “Recap”

