
Automated Puzzle Difficulty Estimation
Marc van Kreveld
Utrecht University

M.J.vanKreveld@uu.nl

Maarten Löffler
Utrecht University

M.Loffler@uu.nl

Paul Mutser
Utrecht University

P.Mutser@students.uu.nl

Abstract— We introduce a method for automatically
rating the difficulty of puzzle game levels. Our method
takes multiple aspects of the levels of these games, such
as level size, and combines these into a difficulty function.
It can simply be adapted to most puzzle games, and we
test it on three different ones: Flow, Lazors and Move. We
conducted a user study to discover how difficult players
find the levels of a set and use this data to train the
difficulty function to match the user-provided ratings. Our
experiments show that the difficulty function is capable of
rating levels with an average error of approximately one
point in Lazors and Move, and less than half a point in
Flow, on a difficulty scale of 1–10.

I. INTRODUCTION

With the rise of smartphones over the past few years,
the market for apps is growing rapidly. Especially small
pick-up-and-play games have seen a large increase in
popularity. This group of games includes puzzle games,
which require a large number of sufficiently different and
interesting levels that challenge the players, so that they
will continue to play them.

The creation of levels is a time-consuming process
that is usually performed by hand. A large part of this
process consists of determining how challenging a puzzle
level is. By automating the evaluation of level difficulty,
the level generation pipeline can be made more efficient
and cheaper. Furthermore, user-specific level generation
becomes possible; for example, software may generate
levels and select the very hard ones for the small group of
players that are particularly good at solving a puzzle type,
without the need of making such a level set available
globally.

Automated difficulty estimation is far from trivial, as
we need to determine what factors play a role in the
difficulty of a level. Such factors can be the size of a
level, the number of colors, the number of obstacles,
the number of bends in a solution path, etc. Once these
factors have been found, they need to be combined into

a difficulty function that has a level as its input and a
difficulty rating as its output.

Difficulty is subjective, implying that there is not one
true difficulty rating for each level. The goal of the
difficulty function is to be able to rate levels as close
to the average rating given by players as possible. This
means that it has to be trained to match human ratings,
and for this we need to acquire data on the difficulty
of levels in a game. This can be done by play-testing.
Fortunately, play-testing only needs to be done once on
a small set of levels. The trained function can then be
used to estimate the difficulty of newly created levels
without the need for play-testing each level.

A side effect of using a difficulty function is that the
formula itself can be used to understand what makes a
level difficult. This knowledge can be used to create levels
with specific difficulty, and is a step towards automated
user-specific content generation.

Our goal is to create a method for automated, effective
difficulty estimation. The method is based on a function
that should be able to accurately assign difficulty ratings
to puzzle levels. We aim to create a generic method
that can be applied to most puzzle games. To test how
our method applies to different games, we perform our
experiments on three different puzzle games. They are:

• Flow: the player connects pairs of equal-colored
dots with non-intersecting paths.

• Lazors: the player moves mirrors to direct laser-
beams to hit certain targets.

• Move: the player moves a set of colored balls to
their matching positions.

As the games are quite different, we expect that using a
difficulty function will work well on many other abstract
puzzle games.

This paper is structured as follows. Section II gives a
short overview of previous work in the area of automated



difficulty rating. Section III presents our method for
difficulty estimation. Section IV introduces the games
we use for this research. We also describe how we apply
the difficulty function to these games in this section. We
perform a user study to train the difficulty function on
actual data, which is described in Section V. We evaluate
the results in Section VI by correlation analysis and cross-
validation. The evaluation reveals which factors correlate
most with difficulty, according to the users, and how well
the difficulty function can estimate the difficulty of a
level. We conclude in Section VII and give directions for
future research.

II. RELATED WORK

This section gives a brief overview of research on
difficulty assessment with a focus on automated methods
for puzzle games.

Ashlock and Schonfeld [1] assess the difficulty of
Sokoban puzzles by solving levels automatically. The
average time taken until a solution is found and the
probability that an attempt to find a solution fails are used
as difficulty measures. These measures are subsequently
used to order the levels by difficulty.

Mantere and Koljonen [2] use genetic algorithms to
solve, generate and rate Sudoku puzzles. They make use
of a genetic Sudoku solver to rate the difficulty. Their
assumption is that puzzles that take longer to solve by the
algorithm are also perceived as more difficult by humans,
which is tested by comparing their solving times to the
provided difficulty ratings of the puzzles. They conclude
that their results support this assumption.

Jarušek and Pelánek [3] argue that human factors
should be taken into account explicitly. User study
data for Sokoban levels is used to determine difficulty,
measured as the average time taken to solve a level. They
use various metrics based on the shortest solution to find
the correlation between those metrics and the difficulty
of a level. They also use more abstract measures.

Browne [4] uses linear functions and features of board
games to generate enjoyable games. While his goals are
different, his approach is also applicable to determining
difficulty. Using a user study, Browne finds the aspects of
board games that makes those games enjoyable. This data
is then used to create a linear function that determines
the enjoyability of other board games. An evolutionary
algorithm is then used to create a very enjoyable game,

Yavalath. The same process can be used to rate the
difficulty of levels, and generate levels with a certain
difficulty.

We also mention the work of Aponte, Levieux and
Natkin [5], who calculate the difficulty of a game by
seeing it as a series of challenges whose difficulty is
calculated separately by a probability of succeeding.
András, Sipos and Sóos [6] analyse the difficulty of Happy
Cube puzzles, and performed a user study to determine
the time taken to solve different puzzles. Furthermore,
they develop a solver and try to characterize difficulty
by analyzing the number and types of backtracks, etc.
Guid and Bratko [7] estimate problem difficulty for
humans based on searching between alternatives, using
chess. Finally, we note that procedural level generation
also needs evaluation of the levels (e.g., Taylor and
Parberry [8]).

It has been suggested that the difficulty of a level can
be found by measuring the time players take to solve that
level. This is not necessarily true, as a level consisting of
one hard challenge may require less time to solve than a
level consisting of multiple simple challenges. Similarly,
the number of moves required to solve a level is often
not related to the difficulty of that level. There may be
a high correlation between the difficulty of a level and
the number of moves, but sometimes a level requires
many moves in its solution that are all simple. In other
puzzles, like Flow, the number of moves may be fixed,
since every empty grid cell must be filled with exactly
one connection, rendering number of moves useless to
evaluate difficulty.

We use a similar method to Browne [4] in our research
by also combining several aspects of a game into a linear
function. Our function is also trained with real data that
we obtain from a user study. We use this function to
define the difficulty of levels.

III. DIFFICULTY ESTIMATION

To automatically determine the difficulty of a level, we
design a function that takes a level as its input and outputs
a value that indicates the difficulty. As every game is
different and has other elements defining the difficulty,
each game requires its own function. We use the function
in a general methodology to estimate the difficulty of a
level of a puzzle game. The methodology consists of three
steps. First, we determine measurable, simple aspects of
levels in a game that are likely to influence their difficulty.

2



Second, we combine these aspects by weighted linear
combination into a single difficulty function. Third, we
determine the weights by optimizing the function over
a set of levels with a known “ground truth” difficulty,
yielding a function that can estimate the difficulty of any
level of the game.

A. Choosing Variables

For our difficulty function to be effective, each game
requires a set of variables that together are enough to
obtain a good estimate of the difficulty. These variables
are usually chosen by playing the game, or observing
others playing the game, and looking for properties that
are common in difficult levels and uncommon in easy
levels, or vice versa. This is mostly a trial and error
process, as occasionally the chosen variables are in reality
a poor representation of level difficulty. As the variables
are meant to give a partial measure of the difficulty of a
level, we also refer to them as difficulty measures.

When choosing the variables, we take into account
the number of variables and the ease of measuring the
variables. As we want to use the difficulty function
for fast classification of levels, we prefer variables for
which the value is easily determined. These are usually
simple counts of the number of objects of a certain
kind. To improve the process of determining the weights
in the difficulty function, we try to limit the number
of variables each game uses. We found that four to
seven variables is enough to make a good estimate of
the difficulty. A smaller number does not contain enough
data to accurately estimate the difficulty of a level, while
a larger number would require a lot more reference data
to properly set the weights of the variables.

B. Models

There are two ways to combine values of different
factors: either treat these variables independently and
add them together after weighing, or combine multiple
variables into single terms by more general methods. The
second option is more versatile, but also more compli-
cated to use and fine-tune than independent variables.
Since simplicity of a method is preferable (cf. Occam’s
Razor), we choose to treat the variables independently.

There are still multiple options when using sepa-
rate variables. It is simplest to use a weighted linear
combination, although it can be that for some game
and some factor, the difficulty grows quadratically or

even exponentially in that factor. Again, for the sake of
simplicity we use a weighted linear combination:

Difficulty(L) =
n∑

i=1

(wi ∗ Vi(L)) + w0 (1)

Each game is assigned a number of variables Vi which
influence the difficulty of a level L in the game. This
number, n in the function, may vary between games. As
our model is linear, it allows us to use linear regression
to set the values for the weights.

C. Determining the Weights

To find the weights wi in the difficulty function, we
attempt to fit the function to a dataset of levels with
known difficulty, obtained from a user study. The way
these levels were obtained is detailed in Section IV-C.
Details on the user study are given in Section V. We
assume for now that the difficulty of each level is known,
for example as the average of the user ratings.

Once we obtain this dataset, we attempt to set the
weights in the difficulty function in such a way, that when
we apply the function to the levels from the dataset, a
difficulty score is calculated that is as close as possible
to the score assigned to that level by the participants
in our user study. This is a well-researched problem in
mathematics, and there are many methods available to
solve it, each with its pros and cons.

Among the exact solutions, linear programming [9]
seems a logical choice to determine weights. The di-
mension of the linear program is equal to the number
of variables, so it is typically a small constant less
than ten. Hence, linear programming can be done in
time linear in the number of constraints [10]. While our
constraints are exact if we consider the difficulty ratings
to be exact, the linear program will generally not be
solvable since we have (many) more constraints than
unknowns. Instead, we may choose a margin. Instead of
letting Difficulty(Lj) = Dj for a level j with difficulty
Dj , we can use constraints Difficulty(Lj) ≤ Dj + δ
and Difficulty(Lj) ≥ Dj − δ for some chosen margin
δ > 0. However, a small number of levels with outlier
ratings may force us to choose the margin large, leading
to poor performance. There are other ways to apply linear
programming, but it is beyond the scope of this paper to
discuss these.

Since outlying values may be present we choose to
use a standard linear regression [11] to set the weights in

3



such a way that the average squared difference between
the result of the difficulty function and the user-assigned
score is minimal.

IV. GAMES FOR OUR EXPERIMENTS

A. Games

For our experiments we used three different games.
We decided to use multiple games to be able to test how
well our method can be adapted to different applications.
As our aim was to create a general method, we want it to
perform well in more than one case. The rules of these
games will be explained next.

(a) initial configuration (b) solution

Fig. 1: Example of a level in Flow and its solution

1) Flow: A level of Flow1 consists of a grid that
contains multiple pairs of balls, where each pair of balls
has a different color. Figure 1a shows a level of the game
in its initial configuration. The goal of the game is to
draw paths on the grid to connect both balls of each
pair. Paths are not allowed to intersect, and the paths
should cover the entire grid. The level is solved once all
pairs are connected, and the entire grid is covered, see
Figure 1b.

Although the rules of Flow are fairly straightforward,
levels can become difficult when paths need to twist
around each other to reach a solution. In some levels it
is possible to connect all pairs without using the entire
grid. This results in holes that need to be filled to reach
a solution. Creating a path that fills these holes is also
not always a simple task.

1Big Duck Games, http://blog.bigduckgames.com/. Also known as
Number Link or as Arukone. The origins are unclear, but date back to
1932 or earlier.

(a) initial (b) solution

Fig. 2: Example of a level of Lazors and its solution

2) Lazors: In Lazors2 there are three types of objects.
First, there are lasers. These emit a beam of light across
the level. Second, there are light targets. These are
activated when there is light shining through it. Once all
targets in a level are activated, that level is solved. Third,
there are blocks, objects that interact with the light. The
player can move these blocks to certain open spaces in
the level to solve it. Our implementation is a simplified
version of the game with only mirror blocks. This is done
to reduce the number of variables possibly influencing
the difficulty of the level. Figure 2a shows a level in the
game, together with its solution in Figure 2b.

(a) start (b) move up (c) move left

(d) move down (e) move right (f) move right (2x)

Fig. 3: Example of a level in Move and its solution

3) Move: The game Move3 is is played on a small
grid onto which three types of elements are placed: balls,

2Pyrosphere, http://pyrosphere.net/lazors/. A type of light-and-mirror
puzzle, in physical form several centuries old. A related computer game
is Deflektor (1987).

3Nitako Brain Puzzles, http://www.nitako.com/.

4



goals and rocks. Balls and goals are each assigned a color,
with each ball having a corresponding goal of the same
color. Multiple balls can have the same color, in which
case they can be matched to any goal of the same color.
Finally, a number of rocks are placed on the grid. The
initial configuration of a level can be seen in Figure 3a.

The goal of the game is to move each ball to a goal of
the same color. Balls can be moved one square left, right,
up or down, but the player can only move all balls at the
same time. Rocks block the movement of the balls, as
do the edges of the grid and other balls. When a ball is
blocked, that ball will not move, but the other balls can
still be moved in that direction. Figure 3 shows how a
level is solved from its initial configuration to the solution
shown in Figure 3f.

This game becomes hard as often moving one ball
towards its goal results in another ball moving away
from its goal. Players must make clever use of the rocks
to get each ball in the right position to solve the level.

B. Implementation

All three games were reimplemented using javascript
on an html5 page. The choice for a web-based approach
was made to ensure that as many people as possible would
be able to participate in our user study, and to keep the
effort required to participate to a minimum. Javascript
also allowed us to have support for both mouse/keyboard
control as well as touchscreen devices.

C. Levels

The three games came with sufficiently many levels
to be able to select a good subset for the user study.
For Flow, we selected 40 levels for the user study and
another 10 for training. For Lazors, we selected 65 levels
for the user study and another 10 for training. However,
the supplied levels for Move were all rather easy, so we
implemented a level generator to make our own set to
have a larger variety in difficulty among the levels. We
picked 80 levels in such a way that for 3 ≤ x ≤ 10 there
were 10 levels solvable in x moves.

D. Difficulty Measures

In this section we detail the difficulty measures we
use in the three games. Recall that our goal is to find a
small set of features for each game, which together are
enough to give a good estimate of the difficulty of a level
in that game using a weighted linear combination. We

want this set to be small, as larger sets of features can
lead to overfitting on our dataset, causing our difficulty
function to work well on our dataset but not on others.

We identify three different types of difficulty measure.
The first type is initial features, and includes features of
the level in its initial configuration. Examples of initial
features are the (grid) size of the level and the number of
game elements the player can interact with. These values
are usually easy to determine for a given level.

The second type is solution features. This type includes
features of the level in its solved configuration. An
example of a solution feature is the location and state of
game elements in the solution. They can in some cases
be more useful than initial features, as for certain games,
the solved state tells more about the difficulty than the
initial configuration does. Values for difficulty measures
of this type are harder to determine, as they require a
level to be solved first.

The last type is dynamic features, including all features
related to the process of solving a level. Examples of
dynamic features are the minimum number of moves
required to solve a level, and the type of moves used.
The values for these difficulty measures are usually the
hardest to determine, as they often require a solver that
can find a solution with a minimal number of moves.
Albeit different in nature, the time to solve a level for a
player or automated solver is also a dynamic feature.

We note that levels that have multiple solutions require
extra attention to define solution features and dynamic
features appropriately. We also note that some games do
not have solution features other than the initial features.
An example is Move, where the final state of the game
is immediately obvious from the initial configuration.

1) Flow: For the game Flow, we use the following
features as variables in our difficulty function:

• Level size (initial): The size of the level, defined
by the number of squares on the board. We expect
larger levels to be more difficult, as the player has
more space to fill. The creators of the original game
use the size of the level as their only rating of level
difficulty.

• Colors (initial): The number of different colors
to connect to each other. With smaller numbers
of colors, paths will need to fill more space, and
become longer, and possibly more difficult. With
larger numbers of colors, we expect the paths to

5



block each other more, which may also lead to higher
difficulty. We therefore do not know beforehand how
this measure will affect the difficulty of a level.

• Average distance (initial): The average distance
between the start- and endpoints of the same color.
We measure this using city block distance (L1

distance). When this value is low, it means that
the paths of the solution are more indirect, as the
complete level still needs to be filled. We therefore
expect lower values to cause higher difficulty.

• Turns (solution): The number of turns used in the
solution. More turns implies that the connection
between start- and endpoints is more convoluted,
which may imply a more difficult puzzle.

2) Lazors: For the game Lazors, we use the following
features for our difficulty function:4

• Level size (initial): The size of the level, defined
as the area of the smallest bounding box around the
usable tiles.

• Usable tiles (initial): The number of usable tiles.
• Emitters (initial): The number of laser emitters.
• Receivers (initial): The number of targets that need

to be activated to solve the level.
• Mirrors (initial): The number of mirrors.
• Reflections (solution): The number of times a laser

reflects from a mirror in the solution. This measure
indicates how indirect the path of the lasers is.

• Intersections (solution): The number of times two
laserbeams cross path in the solution. We use this
as a measure of how cluttered a level is.

3) Move: For the game Move, we use the following
features for our difficulty function:

• Level size (initial): The size of the level, defined
by the number of squares on the board.

• Balls (initial): The number of balls controlled by
the player.

• Colors (initial): The number of unique ball colors.
• Rocks (initial): The number of rocks in the level.
• Moves (dynamic): The minimum number of moves

required to solve a level.
• Counterintuitive moves (dynamic): The number

of moves in the shortest solution that are counterin-
tuitive. A move is counterintuitive when the average
distance between the balls and their closest goal of
the same color increases in that move.

4We no longer discuss how a feature may influence the difficulty,
given the space limitations.

V. USER STUDY

To be able to set the weights in our difficulty function
in such a way that it accurately predicts the difficulty of
a level, we require “ground truth” data. This data comes
in the form of a set of levels and the difficulty rating
they should have, obtained from a user study. In total, 86
participants played Flow, 105 participants played Lazors,
and 57 participants played Move. Their ages differed,
but the majority was between 18 and 28. The level of
education was relatively high.

Participants started the experiment with a tutorial
of a game with 10 levels of increasing difficulty.
Then the other levels were offered in random order
to avoid learning effects. After solving a level, the
participant was asked to rate the difficulty on a
scale of 1–10. The levels can still be played at
http://www.staff.science.uu.nl/∼loffl001/
puzzles/experiments/games/ in the same interface
as used in the study.

VI. RESULTS

In this section we give an overview of the results of the
user study: in particular, a correlation analysis between
difficulty and the chosen measures, and the quality of fit
of the difficulty function after setting the weights.

A. Flow

We start by comparing the results of the user study
to the values for the difficulty measures. Besides the
difficulty rating provided by the users, we also consider
the scaled difficulty rating (where each user has their
scores scaled to cover the full range 1–10), the time taken
to solve a level, and the number of moves performed by
the users. We define a move in Flow as the drawing of
one (partial) path from the moment the mouse button is
pressed to the moment the mouse button is released. The
correlation coefficients are shown in Figure 4.

We notice that the correlation coefficients of solving
time with the difficulty measures are much lower. This
can be explained by a high variation between users for
the time taken to solve a level. Users tend to agree on
difficulty ratings and use a similar number of moves, but
some players are significantly faster than others.

6



Rating Scaled Time Moves
0

0.5

1

0
.6
0
1

0
.6
3
8

0
.1
3
5

0
.5
8

0
.4
7
1

0
.5
0
6

0
.0
9
7

0
.5
0
5

0
.4
4
6

0
.4
7
6

0
.0
9
4

0
.4
0
7

0
.5
4

0
.5
8
2

0
.1
1
8

0
.5
2
1

Fig. 4: Correlation coefficients between difficulty Rating,
Scaled version of this rating, solving Time, and number
of Moves, and difficulty measures for Flow. From left
to right these are level size (red), colors (blue), average
distance (yellow), and turns (green).

The size of the level (red) has the highest correlation
with all four aspects, followed by the number of turns
(green), the number of colors (blue), and last the average
distance between endpoints (yellow). Even so, the average
distance measure still shows a fairly high correlation with
all aspects (except the solving time).

We split our data into 5 sets, each containing the data
for 8 different levels in order, such that set 1 contains
the data for levels 1–8, set 2 contains the data for levels
9–16 and so on. We train the difficulty function for
each set using the data from the other four sets, so that
the difficulty function for each set is not influenced by
the data in this set. This way we can perform a proper
analysis on how the difficulty function would perform
on new levels outside of our dataset (cross-validation).

The difficulty function, averaged over the sets, is 0.088·
Level size − 0.30 · Colors − 0.40 · Average distance +
0.040 · Turns. Note that the weights do not have a clear
meaning, nor the fact that some weights are negative.
The measures were not normalized and they are not
independent variables. We use the difficulty function
to calculate the difficulty for all levels, so that we can
compare this to the original ratings by the users. We also
do this for scaled difficulty, time to solve, and number
of moves. An overview of the average error over the sets
is presented in Table I.

The difficulty function gives us an average error of
0.4103 points, or 0.4040 points when we weigh the error
for each level by the number of times that level has
been played. For the scaled difficulty rating this error
is 0.6502 points, or 0.6423 when the error is weighted.
This is noteworthy, since we introduced the scaled rating

Rating Scaled Time Moves

Unweighted 0.4103 0.6502 42.84% 12.19%
Weighted 0.4040 0.6423 43.21% 11.86%

TABLE I: Average errors of Flow produced by the
difficulty function when compared to user study data.
Shown for difficulty rating and scaled difficulty rating
(in absolute points), and time and number of moves (as
relative error). All scores are given both unweighted and
weighted by number of level ratings.

to decrease the error, but it actually increases. This can
partly be explained by the fact that the scaled difficulty
makes use of a larger range of scores. The range is,
however, only ∼ 1.3 times as large on the average, and
this accounts for only half of the difference.

B. Lazors

For Lazors we give the correlation coefficients in
Figure 5 and the errors obtained after fitting, using cross-
correlation, in Table II. The scaled rating again makes
the error larger, and more than can be expected from
the increase in range. Therefore, the scaled difficulty
rating is omitted in Figure 5. The number of emitters and
receivers correlates little with the difficulty, which may
be due to too little variation in the levels. We observe that
the remaining error after fitting is considerably higher
than for Flow: slightly over 1 point on a scale 1–10.

Rating Time Moves

0
0.1
0.2
0.3
0.4
0.5
0.6

0
.4
2
7

0
.3
4 0
.4
3
2

0
.4
2
4

0
.3
5
5

0
.4
4
8

0
.0
1
8

−
0
.0
3
4

−
0
.0
7
4

0
.1
3
5

0
.1
0
9

0
.0
7
4

0
.4
3
3

0
.3
5
3

0
.4
0
6

0
.4
6
7

0
.3
8
5

0
.4
1
5

0
.3
8
5

0
.3
2
3

0
.3
4
4

Fig. 5: Correlation coefficients between user difficulty
Ratings, solving Time and number of Moves, and
difficulty measures for Lazors. From left to right, the
difficulty measures are level size, usable tiles, emitters,
receivers, mirrors, reflections, and intersections.

7



Rating Scaled Time Moves

Unweighted 1.0957 1.5410 96.79% 72.84%
Weighted 1.0138 1.4337 108.39% 82.54%

TABLE II: Average errors of Lazors produced by the
difficulty function when compared to user study data.
Shown for difficulty rating, scaled difficulty, time, and
number of moves, both unweighted and weighted by
number of level ratings.

C. Move

For Move we again get similar observations. The
variable counterintuitive moves has the highest correlation
with the difficulty, and the number of rocks has a negative
correlation. The size of the level has only a small positive
correlation. Table III shows that an error of 0.93 on a
scale of 1–10 is obtained in the weighted case.

Rating Time Moves

0
0.1
0.2
0.3
0.4
0.5
0.6

0
.1
1
3

0
.1
2
5

0
.1
0
2

0
.1
8
7

0
.1
7
1

0
.1
5
6

0
.0
8
2

0
.1
1
4

0
.0
4
4

−
0
.0
5
3

−
0
.1
0
1

−
0
.1
1
4

0
.3
7

0
.2
5
4

0
.3
3
80
.4
4
7

0
.3
2

0
.3
8

Fig. 6: Linear correlation coefficients between user
difficulty ratings, solving times and number of moves,
and difficulty measures for Move. From left to right, the
difficulty measures are level size, balls, colors, rocks,
moves, and counterintuitive moves

Rating Scaled Time Moves

Unweighted 0.9456 1.3399 84.05% 63.45%
Weighted 0.9276 1.2930 86.34% 64.35%

TABLE III: Average errors of Move.

VII. CONCLUSION AND FUTURE WORK

We presented a methodology to determine the difficulty
of a level in a puzzle game automatically after a user
study on a number of levels. We tested the method on
three simple puzzle games, Flow, Lazors, and Move, and
showed that the difficulty can be estimated with an error

of roughly 1 or less on a scale of 1–10. This means that
our difficulty function can give a quite good estimation.
For solving time or number of moves, a similar approach
gives less good estimates. Along the way we studied
various features in these puzzle games, classified them
as initial, solution or dynamic, and determined how they
correlated with different ways of measuring difficulty:
by user ratings, solution time, and number of moves.
We expect that our methodology extends to other puzzle
games that involve connecting, moving, or coloring.

Whether our methodology can also be used for puzzle-
like games that involve some dexterity (Cut the Rope,
Angry Birds) is topic of future research. It is also
interesting to analyze whether more complex, non-linear
combinations of features gives error reductions that are
substantiate the increased complexity of the model.

ACKNOWLEDGEMENTS

M.L. was partially supported by the Netherlands
Organisation for Scientific Research (NWO) under grant
number 639.021.123.

REFERENCES

[1] D. Ashlock and J. Schonfeld, “Evolution for automatic assessment
of the difficulty of Sokoban boards,” in IEEE Congress on
Evolutionary Computation (CEC), July 2010, pp. 1–8.

[2] T. Mantere and J. Koljonen, “Solving, rating and generating
Sudoku puzzles with GA,” in IEEE Congress on Evolutionary
Computation (CEC), 2007, pp. 1382–1389.

[3] P. Jarušek and R. Pelánek, “Difficulty rating of Sokoban
puzzle,” in Proc. Fifth Starting AI Researchers’ Symposium
(STAIRS). IOS Press, 2010, pp. 140–150. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1940526.1940539

[4] C. Browne, Evolutionary Game Design. Springer, 2011.
[5] M.-V. Aponte, G. Levieux, and S. Natkin, “Measuring the level of

difficulty in single player video games,” Entertainment Computing,
vol. 2, no. 4, pp. 205–213, 2011.

[6] S. András, K. Sipos, and A. Sóos, “Which is harder?-classification
of happy cube puzzles,” 2013.

[7] M. Guid and I. Bratko, “Search-based estimation of problem
difficulty for humans,” in Artificial Intelligence in Education,
16th International Conference AIED, ser. LNAI, no. 7926, 2013,
pp. 860–863.

[8] J. Taylor and I. Parberry, “Procedural generation of sokoban
levels,” in Proc. 6th Annual North American Conference on AI
and Simulation in Games (GAMEON-NA), 2011, pp. 5–12.

[9] D. Bertsimas and J. Tsitsiklis, Introduction to Linear Optimization.
Athena Scientific, 1997.

[10] M. Dyer, N. Megiddo, and E. Welzl, “Linear programming,”
in Handbook of Discrete and Computational Geometry,
2nd ed., J. E. Goodman and J. O’Rourke, Eds. Chapman
and Hall/CRC, 2004, pp. 999–1014. [Online]. Available:
http://dx.doi.org/10.1201/9781420035315.pt6

[11] N. Draper and H. Smith, Applied Regression Analysis, ser.
Applied Regression Analysis. Wiley, 1981, no. dl. 766. [Online].
Available: http://books.google.nl/books?id=7mtHAAAAMAAJ

8


