Measures and metrics intro

Scientific Perspectives on GMT 2019/2020 Marc van Kreveld

A number of related concepts

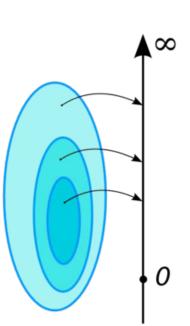
- Measure
 - Math
 - Other
- Metric
 - Math
 - Other
- Indicator: same as measure/metric, other
- Measurement

Desperate times call for desperate measures

- English proverb (Hippocrates?)

Measures in mathematics

- Functions from "subsets" to the reals
- A *measure* obeys the properties:
 - 1. Non-negativeness: for any subset X, $f(X) \ge 0$
 - 2. Null empty set: For the empty set, $f(\emptyset) = 0$
 - Additivity: for two disjoint subsets X and Y,
 f(X U Y) = f(X) + f(Y)

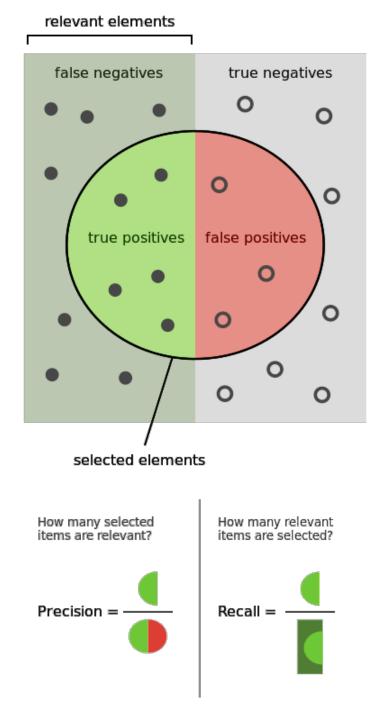


Measures in mathematics

- Example 1: Space is the real line, subsets are disjoint unions of intervals, measure is (total) length
- Example 2: Space is all integers, subsets are finite subsets of integers, measure is number of integers in a subset
- Example 3: Space is outcomes of an experiment (die rolling), measure is probability of the outcome(s)

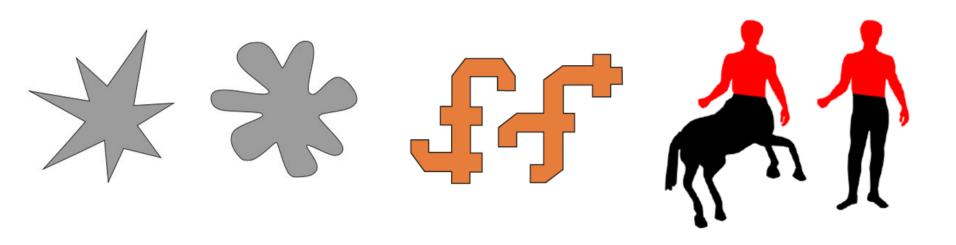
Measures in the rest of science

- Functions from "something" to the nonnegative reals
- Capture an intuitive aspect: size, quality, difficulty, distance, similarity, usefulness, robustness, ... into something well-defined
- Precision and recall in information retrieval
- Support and confidence in association rule mining
- In the world at large: body mass index, ecological footprint, ...



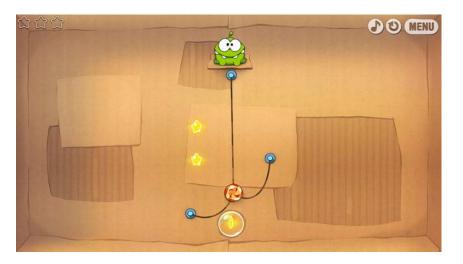
Measures in the rest of science

- Albeit well-defined, the real connection of the (abstract) function to the intuitive concept is not guaranteed → Needs to be justified or tested
- Example 1: similarity measure for two shapes



Measures in the rest of science

- Albeit well-defined, the real connection of the (abstract) function to the intuitive concept is not guaranteed → Needs to be justified or tested
- Example 2: difficulty rating of a level in a puzzle game



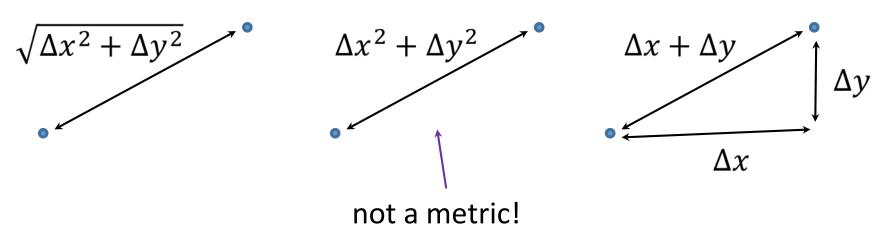
Distance functions, or metrics

- Distance: how far things are apart
- A metric or distance function takes *two* arguments and returns a nonnegative real
- Distances on a set X; for any x, y, z in X, a *metric* is a function $d(x,y) \rightarrow R$ (the reals) where:
 - 1. $d(x,y) \ge 0$
 - 2. d(x,y) = 0 if and only if x = y
 - 3. d(x,y) = d(y,x)
 - 4. $d(x,z) \le d(x,y) + d(y,z)$

- non-negative
- coincidence
- symmetry
- triangle inequality

Examples of metrics on points

- Euclidean distance on the line, in the plane or in a higher-dimensional space, L₂ distance
 Note: Squared Euclidean distance is not a metric
- City block, Manhattan, or L₁ distance (are the same)
- L_{∞} distance (max of differences in the coordinates)



Suppose we have a measure in [0,1] for elongatedness of a shape and another one for frilliness, called *E* and *F*

Suppose we have a measure in [0,1] for elongatedness of a shape and another one for frilliness, called *E* and *F*

How can we combine these into a score for both elongatedness and frilliness?

• Weighted linear combination: $\alpha E + (1-\alpha) F$ with $\alpha \in [0,1]$

Suppose we have a measure in [0,1] for elongatedness of a shape and another one for frilliness, called *E* and *F*

- Weighted linear combination: $\alpha E + (1-\alpha) F$ with $\alpha \in [0,1]$
- Multiplication: *E F*

Suppose we have a measure in [0,1] for elongatedness of a shape and another one for frilliness, called *E* and *F*

- Weighted linear combination: $\alpha E + (1-\alpha) F$ with $\alpha \in [0,1]$
- Multiplication: *E F*
- Weighted version: $E^{\alpha} F^{1-\alpha}$ with $\alpha \in [0,1]$

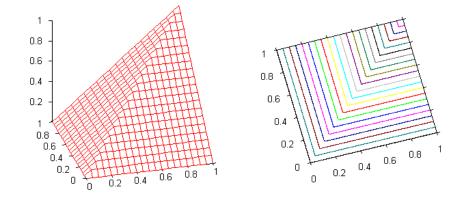
Suppose we have a measure in [0,1] for elongatedness of a shape and another one for frilliness, called *E* and *F*

elongated	frilly	combined WLC $\alpha = 0.5$	combined Mult. $\alpha = 0.5$
0	0	0	0
1	1	1	1
0	1	0.5	0
0.5	0.5	0.5	0.5
0.5	1	0.75	0.707
0.75	0.75	0.75	0.75

t-norms

- A t-norm is a function T: [0, 1] × [0, 1] → [0, 1] which satisfies the following properties:
 - Commutativity: T(a, b) = T(b, a)
 - Monotonicity: $T(a, b) \le T(c, d)$ if $a \le c$ and $b \le d$
 - Associativity: T(a, T(b, c)) = T(T(a, b), c)
 - The number 1 acts as identity element: T(a, 1) = a

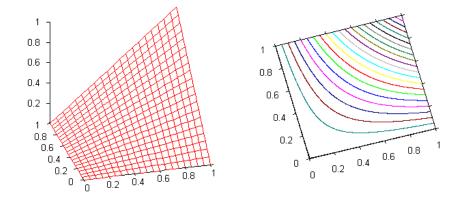
```
Minimum t-norm
T(a, b) = min(a, b)
```



t-norms

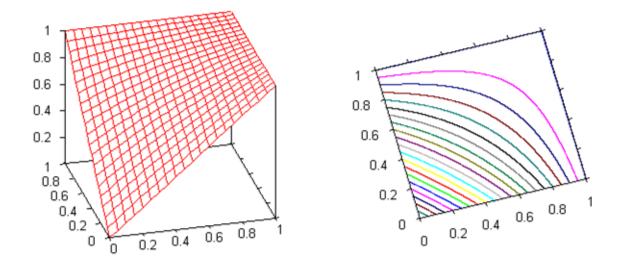
- A t-norm is a function T: [0, 1] × [0, 1] → [0, 1] which satisfies the following properties:
 - Commutativity: T(a, b) = T(b, a)
 - Monotonicity: $T(a, b) \le T(c, d)$ if $a \le c$ and $b \le d$
 - Associativity: T(a, T(b, c)) = T(T(a, b), c)
 - The number 1 acts as identity element: T(a, 1) = a

Product t-norm T(a, b) = ab



t-conorms

- Similar to t-norms but 0 is the identity: T(a, 0) = a
- Example: Einstein sum T(a, b) = (a + b) / (1 + ab)



Discussion

- Why are measures and metrics useful?
- Do they play a role in fundamental research, in experimental research, and in user study research?
- Measures for what type of concepts?