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A number of related concepts

• Measure
• Math
• Other

• Metric
• Math
• Other

• Indicator: same as measure/metric, other
• Measurement

Desperate times call for desperate measures
- English proverb (Hippocrates?)



Measures in mathematics

• Functions from “subsets” to the reals
• A measure obeys the properties:

1. Non-negativeness: for any subset X, f(X) ≥ 0
2. Null empty set: For the empty set, f(∅) = 0
3. Additivity: for two disjoint subsets X and Y, 

f(X ∪ Y) = f(X) + f(Y)



Measures in mathematics

• Example 1:  Space is the real line, subsets are disjoint 
unions of intervals, measure is (total) length

• Example 2:  Space is all integers, subsets are finite 
subsets of integers, measure is number of integers in 
a subset

• Example 3:  Space is outcomes of an experiment 
(die rolling), measure is probability of the outcome(s)



Measures in the rest of science

• Functions from “something” to the nonnegative reals
• Capture an intuitive aspect:  size, quality, difficulty, 

distance, similarity, usefulness, robustness, … into 
something well-defined

• Precision and recall in information retrieval
• Support and confidence in association rule mining

• In the world at large:  body mass index, ecological 
footprint, …





Measures in the rest of science

• Albeit well-defined, the real connection of the 
(abstract) function to the intuitive concept is not 
guaranteed ➔ Needs to be justified or tested

• Example 1: similarity measure for two shapes



Measures in the rest of science

• Albeit well-defined, the real connection of the 
(abstract) function to the intuitive concept is not 
guaranteed ➔ Needs to be justified or tested

• Example 2: difficulty rating of a level in a puzzle 
game



Distance functions, or metrics

• Distance: how far things are apart
• A metric or distance function takes two arguments 

and returns a nonnegative real
• Distances on a set X;  for any x, y, z  in X,

a metric is a function d(x,y) → R (the reals) where:
1. d(x,y) ≥ 0 non-negative
2. d(x,y) = 0  if and only if  x = y coincidence
3. d(x,y) = d(y,x) symmetry
4. d(x,z) ≤ d(x,y) + d(y,z) triangle inequality



Examples of metrics on points

• Euclidean distance on the line, in the plane or in a 
higher-dimensional space, L2 distance 
Note: Squared Euclidean distance is not a metric

• City block, Manhattan, or L1 distance (are the 
same)

• L∞ distance (max of differences in the coordinates)

not a metric!



Combining measures
Suppose we have a measure in [0,1] for elongatedness 
of a shape and another one for frilliness, called E and F

How can we combine these into a score for both 
elongatedness and frilliness?
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Combining measures
Suppose we have a measure in [0,1] for elongatedness 
of a shape and another one for frilliness, called E and F

How can we combine these into a score for both 
elongatedness and frilliness? 

• Weighted linear combination:  α E + (1-α) F 
with α ∈ [0,1]

• Multiplication: E F
• Weighted version: E α F 1-α  with α ∈ [0,1]



Combining measures
Suppose we have a measure in [0,1] for elongatedness 
of a shape and another one for frilliness, called E and F

How can we combine these into a score for both 
elongatedness and frilliness?

elongated frilly combined 
WLC

combined 
Mult.

0 0 0 0

1 1 1 1

0 1 0.5 0

0.5 0.5 0.5 0.5

0.5 1 0.75 0.707

0.75 0.75 0.75 0.75

α = 0.5 α = 0.5



t-norms

• A t-norm is a function T: [0, 1] × [0, 1] → [0, 1] 
which satisfies the following properties:

• Commutativity: T(a, b) = T(b, a)
• Monotonicity: T(a, b) ≤ T(c, d) if a ≤ c and b ≤ d
• Associativity: T(a, T(b, c)) = T(T(a, b), c)
• The number 1 acts as identity element: T(a, 1) = a 

Minimum t-norm 
T(a, b) = min(a, b)



t-norms

• A t-norm is a function T: [0, 1] × [0, 1] → [0, 1] 
which satisfies the following properties:

• Commutativity: T(a, b) = T(b, a)
• Monotonicity: T(a, b) ≤ T(c, d) if a ≤ c and b ≤ d
• Associativity: T(a, T(b, c)) = T(T(a, b), c)
• The number 1 acts as identity element: T(a, 1) = a 

Product t-norm 
T(a, b) = ab



t-conorms

• Similar to t-norms but 0 is the identity: T(a, 0) = a

• Example: Einstein sum T(a, b) = (a + b) / (1 + ab) 



Discussion

• Why are measures and metrics useful?
• Do they play a role in fundamental research, in 

experimental research, and in user study research?
• Measures for what type of concepts?
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