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Fundamental Research

• Fully defined problem statement
• In a completely specified framework/setting
• Search for universal truths (no data)
• For GMT: with relevance to games, virtual 

environments, interaction, visualization, 
multimedia, …



Fundamental research

• Research for which data or people are not needed

• Synonyms: foundational research, pure research
• Complementary to experimental research, user 

studies, …



Fundamental research
Fundamental research question Applied research question

Fundamental 
research 
approach

Can any planar graph with n vertices be 
drawn planarly with all vertices on an 
n x n integer grid and straight edges?

Can we compute a motion for 
a robot amidst polygonal
obstacles, if one exists?

Experimental
research 
approach

Can all randomly generated planar 
graphs with n vertices be drawn planarly
on an n x n grid and straight edges?

Does the probabilistic path 
planner always find a motion 
for a robot, if one exists? 



Types of fundamental research

• Algorithmic efficiency
• Approximation factor
• Competitive ratio
• Probabilistic bounds
• Comparisons on models of computation
• Comparisons of measures or models



Methods of fundamental research

• Proofs
• By induction
• By contradiction
• By construction
• By algebra (formula manipulation)

• Algorithm design
• Constructions

Formulate results as lemmas or theorems



Interest of fundamental research

• Intrinsic: interesting question on its own, curiosity
• Link to (an abstraction of) an application



Algorithmic efficiency

• Efficiency of algorithms expressed using order 
notation in size of the input (and sometimes output)

• Complexity classes
• PSPACE-hardness
• NP-hardness
• Polynomial-time solvable

• Efficiency proofs
• Worst-case upper bounds – all inputs
• Worst-case lower bounds – one input class



Approximation

• Constant-factor approximation
• PTAS: for any constant ε > 0, there is a polynomial-time 

(1+ ε)-approximation  algorithm (running time may depend 
exponentially on ε, like in O(2ε n2) )

• LTAS: polynomial  linear (dependency on n)
• FPTAS: running time depends polynomially on n and ε, like 

in O(n2/ ε3)
• log n / root(n)-approximation (not constant because 

approximation quality depends on n, the input size)



Competitive ratio

• For strategies to deal with unknown information
• “the cost of not knowing”: how much worse might 

we do compared to if we knew (in ratio)?

• Most commonly: search strategies where either the 
target or the environment (or both) is unknown



Searching: competitive analysis
• Best known:  finding a door in a wall
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Searching: competitive analysis
• Best known:  finding a door in a wall

Assume we know the door is D away, but we do
not know if it is left or right

We walk D or 3D; she who knows, walks only D
 3-competitive strategy 



Searching: competitive analysis

• Theorem: Given a searcher looking for a point on 
the real line who knows the exact distance to the 
point, there exists a search strategy that is 3-
competitive

• The theorem statement assumes certain terms and 
the model to be known (competitive, precise 
measurement of walking distance)

• Proof by giving the strategy and analyzing it



Searching: competitive analysis
• Best known:  finding a door in a wall



Searching: competitive analysis
• Best known:  finding a door in a wall

We walk: 1 + (1+2) + (2+4) + (4+8) + …

12 48

Now assume we do not know the distance



Searching: competitive analysis
• Best known:  finding a door in a wall

Suppose the door is D = 2k + d away, 0 < d < 2k+2

12 48

We walk: 1 + (1+2) + … + (2k + 2k+1 ) + 2k+1 + D  =

2 x 2k+2 – 2 + D < 8 x 2k + 2k + d = 9 x 2k + d



Searching: competitive analysis

• The competitive ratio is

9 x 2k + d
2k + d

walked by strategy
walked by knower = where 0 < d < 2k+2

This is maximized for d as small as possible (near zero), in 
which case the competitive ratio approaches 9; it is always < 9



Searching: competitive analysis

• Theorem: Given a searcher looking for a point on 
the real line, there exists a search strategy that is 9-
competitive

• Not quite true ….



Searching: competitive analysis

• Theorem: Given a searcher looking for a point on 
the real line, there exists a search strategy that is 9-
competitive, assuming the point is at least some 
known, arbitrarily small distance away from the 
starting position

• Proof by giving the strategy and analyzing it



Probabilistic bounds

• Random samples of a data set
• Random sampling of a real-world phenomenon
• Random choices in an algorithm



Models of computation

• What do we allow the machine model (Turing 
machine?) to do in a unit of time?

• Any memory look-up or write
• Any comparison or computation on two reals
• Any root-finding of a constant-degree polynomial?
• Trigonometric functions?
• …

• What do we allow the machine model to do at all?



Models of computation

• What is harder to compute: the area or the 
perimeter of a simple polygon?



Models of computation

• What is harder to compute: the area or the 
perimeter of a simple polygon?

• Answer 1: Both can be done in O(n) time, if the 
polygon has n vertices
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Models of computation

• What is harder to compute: the area or the 
perimeter of a simple polygon?
Assume the vertices are given by integer 
coordinates

• Answer 2: 
• The area can be computed using only +, -, *, and divide 

by 2 on integers
• The perimeter requires computing sums of square roots



(0,1)

(2,0)

(5,1)

(3,4)

√5 √10

√133√2

Perimeter = 3√2 + √13 + √10 + √5

Area = 10



Models of computation

• What is harder to compute: a point that minimizes 
the sum of distances to n other points, or a point 
that minimizes the sum of squared-distances to n
other points?



(0,1)

(2,0)

(5,1)

(3,4)

(4,3)

(x,y)

Minimize: 

x 2 + (y-1)2 + (x-2)2 + y2 + (x-5)2 + (y-1)2 + (x-4)2 + (y-3)2 + (x-3)2 + (y-4)2

√ √ √ √ √



Models of computation

• Minimizing a quadratic function in x and y is easy, 
by computing partial derivatives.  We need to find 
the root of a linear function

• Minimizing a function that has the unknowns in 
several different square roots is hard (even for a 
single unknown).  No closed-form solution exists 
(a formula like the abc-formula or pq-formula for 
finding roots of a quadratic equation)



Models of computation

• What number type is needed to solve a problem?
• Integers Z
• Rational numbers (e.g., 2/3) Q
• Algebraic numbers (e.g., root(2))
• Transcendental numbers (e.g., π) R
• Complex numbers (e.g., π + 3i) C



Puzzle game

• Example from a puzzle game: 90 degree rotations

Recent master thesis project of Casper van Dommelen



Puzzle game

• In every step we may need extra precision worth 
one bit, but not more

(a,b)

(c,d)
New coordinates:

( (a-b+c+d)/2,  (a+b-c+d)/2  )
( (a+b+c-d)/2, (-a+b+c+d)/2 )

If  a, b, c, and d are integer, then the 
new coordinates may contain halves 
but not worse  one extra bit needed

(very easy algebraic proof)



Puzzle game

• Theorem: for any point set P, the center of mass of 
P does not change under a 90 degree rotate of two 
points of P about their midpoint

• Proof by algebra
• Theorem: for any point set P, the sum of squared 

distances to the center of mass does not change 
under a 90 degree rotate of two points of P about 
their midpoint

• Proof by algebra



Puzzle game

• Fundamental question: Is it possible to define a 
constant-size play area such that for any graph 
whose vertices lie in [0,1] x [0,1], any set of rotates 
stays within that play area?

• Possible answer YES: need proof
• Possible answer NO: need graph (construction) and 

rotate sequence that gets vertices arbitrarily far 
away (which is the basis of the proof)



Puzzle game
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Puzzle game

• Fundamental question: Is it possible to define a 
constant-size play area such that for any graph 
whose vertices lie in [0,1] x [0,1], any set of rotates 
stays within that play area?

• Answer is NO: proof by construction: a graph class 
and rotate sequence that gets vertices arbitrarily 
far away



Puzzle game

• Theorem:  For any bounded region R and any unit 
size region U inside it, a graph exists that starts in U
and can get a vertex outside R after finitely many 
rotations

U

R



Puzzle game

• Any single graph cannot give the no-answer (it must 
be a graph class)

• Let G be any graph, assume it has n vertices, and 
assume they lie in a radius-1 disk

• Then the sum of squared distances is at most n
• So no vertex can be further than root(n) away from 

the center of mass



Puzzle game

• Any single graph cannot give the no-answer (it must 
be a graph class)

• Let G be any graph, assume it has n vertices, and assume 
they lie in a radius-1 disk

• Then the sum of squared distances is at most n
• So no vertex can be further than root(n) away from the 

center of mass

• For any given graph, n is just a value, but a 
construction that works for n arbitrarily large is a 
graph class



Puzzle game

• The most interesting theoretical question (to me):

Given any non-planar placement of a connected 
planar graph, can it always be made planar by 
rotate-90-degree moves?

• Why is “connected” in the statement?
• Do you see graph subclasses of planar graphs for 

which you can give an answer?



Puzzle game

• If no, what is the smallest counterexample?
• If yes, can the number of rotates be  bounded by a 

function of n, the number of vertices in the graph?



A probabilistic bound

• Suppose n numbers are in random order in array A
• We find the max by going from A[1] to A[n] and 

updating max when we find a higher number
• What is the expected number of times we update 

max?



A probabilistic bound

• What is the probability that we update max after 
checking A[i]?

• This happens only if A[i] > A[1], …, A[i-1]
• Since A[1], …, A[i] are in random order the 

probability is 1/i
• The expected number of updates in total is

1/1 + 1/2 + 1/3 + 1/4 + 1/5 + …. + 1/n <  ln(n) +1



Model comparison

• Text placement on maps:
• 1-position model
• 2-position model
• 4-position model
• Any c-position model
• 1-slider model
• 2-slider model
• 4-slider model

• All labels are assumed
to be unit squares



Model comparison

• How much better can one model be than another, 
in the worst (best?) case for any set of points to be 
labeled?

1-position model 2-position model



Model comparison

• The 2-position model can sometimes allow twice as 
many labels as the 1-position model (for arbitrarily 
large n): by construction of an example class

• Can it be even worse?

…



Model comparison

• The 2-position model never allows more than twice 
as many labels as the 1-position model:

• Take an optimal solution in the 2-position model
• If at least half the points have their label top-right, then 

we are done: the 1-position model can choose these
• Otherwise, at least half the points have their label top-

left
• Choose these points but with a label top-right
• These are non-intersecting if and only if the top-left 

ones were, because all labels move exactly one unit to 
the right



Model comparison

• Theorem:  For any set of n points in the plane, if a 
disjoint labeling with unit squares exists of a subset 
of k points that are either to the top-left or top-
right, then a disjoint labeling with unit squares 
exists of at least k/2 points that are to the top-right

(For any n,) there exists a set of n points that allows 
n unit squares to the top-left or top-right, but only 
n/2 unit squares to the top-right

(The top statement is a worst-case optimal bound: We have 
no hope of placing more than k/2 squares in all cases)



Model comparison

• Similar arguments can be used to compare 1-, 2-
and 4-position models



Model comparison

• How do the 2-position model and 1-slider model 
compare?



Model comparison

• How do the 2-position model and 1-slider model 
compare?

• Sometimes, the 1-slider model allows (nearly) twice 
as many labels, for any n

1 – 1/n



Model comparison

• This construction (class of points) allows all n points 
to be labeled in the 1-slider model and only 
n/2+1 points in the 2-position model

• Can it be worse?



Model comparison

• No, by proof
• Recall labels are unit squares
• Consider the lines x=0, x=1, x=2, x=3, …
• Consider an optimal solution in the 1-slider model: 

any placed label intersects exactly one line
• Take the labels intersecting the odd or even lines, 

whichever intersects more labels from the optimal 
1-slider solution 
(by pigeonhole principle at least half)



Model comparison

• Slide these labels left or right to a corner position 
of their square, while still intersecting the same line



Model comparison

• Slide these labels left or right to a corner position 
of their square, while still intersecting the same line

Squares intersecting different 
blue lines cannot intersect; 
squares intersecting the same 
blue line did not intersect in 
the 1-slider solution



Types of fundamental research

• Algorithmic efficiency – well known
• Approximation factor – well known
• Competitive ratio – searching, unknown information
• Probabilistic bounds – sampling or randomized 

algorithms
• Comparisons on models of computation –

complexity of the basic operations
• Comparisons of measures or models

Results are given by lemmas and theorems
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