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A number of related concepts

• Measure
• Math
• Other

• Metric
• Math
• Other

• Indicator: same as measure/metric, other
• Measurement

Desperate times call for desperate measures
- English proverb (Hippocrates?)



Measures in mathematics

• Functions from “subsets” to the reals
• A measure obeys the properties:

1. Non-negativeness: for any subset X, f(X) ≥ 0
2. Null empty set: For the empty set, f(∅) = 0
3. Additivity: for two disjoint subsets X and Y, 

f(X ∪ Y) = f(X) + f(Y)



Measures in mathematics

• Example 1:  Space is the real line, subsets are disjoint 
unions of intervals, measure is (total) length

• Example 2:  Space is all integers, subsets are finite 
subsets of integers, measure is number of integers in 
a subset

• Example 3:  Space is outcomes of an experiment 
(die rolling), measure is probability of the outcome(s)



Measures in the rest of science

• Functions from “something” to the nonnegative reals
• Capture an intuitive aspect:  size, quality, difficulty, 

distance, similarity, usefulness, robustness, … into 
something well-defined

• Precision and recall in information retrieval
• Support and confidence in association rule mining

• In the world at large:  body mass index, ecological 
footprint, …





Measures in the rest of science

• Albeit well-defined, the real connection of the 
(abstract) function to the intuitive concept is not 
guaranteed ➔ Needs to be justified or tested

• Example 1: similarity measure for two shapes



Measures in the rest of science

• Albeit well-defined, the real connection of the 
(abstract) function to the intuitive concept is not 
guaranteed ➔ Needs to be justified or tested

• Example 2: difficulty rating of a level in a puzzle 
game



Distance functions, or metrics

• Distance: how far things are apart
• A metric or distance function takes two arguments 

and returns a nonnegative real
• Distances on a set X;  for any x, y, z  in X,

a metric is a function d(x,y) → R (the reals) where:
1. d(x,y) ≥ 0 non-negative
2. d(x,y) = 0  if and only if  x = y coincidence
3. d(x,y) = d(y,x) symmetry
4. d(x,z) ≤ d(x,y) + d(y,z) triangle inequality



Examples of metrics on points

• Euclidean distance on the line, in the plane or in a 
higher-dimensional space, L2 distance 
Note: Squared Euclidean distance is not a metric

• City block, Manhattan, or L1 distance (are the 
same)

• L∞ distance (max of differences in the coordinates)

not a metric!



Distances between points in an 
attribute space?
• Suppose points in 3D represent people with their 

age, weight, and length
• Any metric that uses these components is 

influenced by normalization or scaling of an axis
• Any metric makes a choice on how many years 

correspond to one kilo or 
one centimeter, and 
therefore weighs the 
relevance of the 
components

age weight

length

1 year 1 kilo

1 cm



Distances between points in an 
attribute space?
• For a specific point set in an attribute space, one 

can normalize its axes by making the unit the 
standard deviation of its values

• … but then, two different point sets in spaces with 
the same attributes use different distances

age weight

length

1 year 1 kilo

1 cm



Example of metric on polygons

• Area of symmetric difference Asym, is it a metric?

• Three properties (nonnegative, coincidence, 
symmetry) clear, to be verified:  triangle inequality.  
It reads:

Given three polygons P, Q, R, we always have
Asym(P,Q) ≤  Asym(P,R) + Asym (R,Q)

P

Q



Example of metric on polygons

• Given three polygons P, Q, R, we always have
Asym(P,Q) ≤  Asym(P,R) + Asym (R,Q)

• For any polygon R, we consider the parts counted 
in Asym(P,Q): 

• In P, not in Q, and in R: also counted in Asym(R,Q)
• In P, not in Q, and not in R: also counted in Asym(P,R)
• Not in P, in Q, and in R:

also counted in Asym(P,R)
• Not in P, in Q, and not in R:

also counted in Asym(R,Q)
• In both or neither P, Q:

not counted in Asym(P,Q)

P

Q



Interesting aspects for measures 
in geometric situations
“Measures” in the loose sense:
• Size (descriptive measure for many things)
• Elongatedness (descriptive measure for a polygon)
• Spread (descriptive measure for a point set)
• Goodness of fit (for e.g. a shape and a point set)
• Similarity / distance (for two things of the same type)
• …



Aggregation in measures

• When defining the distance between two point sets, 
we may want to combine several point-to-point 
distances into one distance measure

• This can be called aggregation of distances



Aggregation in measures

• Bottleneck: aggregation is done by taking a 
minimum or maximum over values
Examples: Hausdorff, Fréchet

• Sum: aggregation is done by taking the sum over 
values
Examples: DTW, EMD, area of symmetric difference

• Sum-of-squares: aggregation is done by taking the 
sum-of-squares over values
Example: Error of regression line model



Aggregation in measures

• Bottleneck: very sensitive to outliers
• Sum: mildly sensitive to outliers
• Sum-of-squares: moderately sensitive to outliers



Well-known geometric 
metrics/measures
• Hausdorff distance (any set; asymmetric, symmetric)
• Area of symmetric difference (for polygons)
• Fréchet distance (for curves)
• Dynamic Time Warping (for time series, or for curves)
• Earth Mover’s Distance



Hausdorff distance

• Defined for any two subsets of the plane (two point 
sets, two curves, two polygons, a curve and a 
polygon, …)

A

B

A

B



Hausdorff distance

• Defined for any two subsets of the plane (two point 
sets, two curves, two polygons, a curve and a 
polygon, …)

• Bottleneck metric
• Asymmetric version: A → B  (or B → A); not a metric
• Symmetric version: Max of the asymmetric versions:

Max ( max min dist(a,b) , max min dist(b,a) )
a∈A b∈Bb∈B a∈A

A → B B → A



Hausdorff distance

• Which is larger: the Hausdorff distance A → B or 
B → A ?

A

B



Hausdorff distance

• Which is larger: the Hausdorff distance A → B or 
B → A ?

A

B



Properties Hausdorff distance

• Where can largest distance from A to B occur?

A

B

A

B

Vertex of 
A

Point internal to edge of A

In this case, the minimum distance must be 
attained from that point on A to two places on B

⇓



Computation area of symmetric 
difference
• Perform map overlay (Boolean operation) on the 

two polygons
• Compute area of symmetric difference of the 

polygons and add up



Computation area of symmetric 
difference
• Perform map overlay (Boolean operation) on the 

two polygons
• Compute area of symmetric difference of the 

polygons and add up

• Worst case: 
O(nm log (nm)) time

• Typical case: 
O((n+m) log (n+m)) time



Fréchet distance

• For two oriented curves in 2D or 3D

• Extensions to surfaces exist (but are not treated)

• Intuitively: a man walks on one curve with possibly 
varying speed, but only forward, and a dog does 
the same on the other curve. The Fréchet distance 
is the minimum leash length needed to allow this
(man-dog distance,
leash distance)



Fréchet distance

Needed: the relative parametrizations 
over the two curves



Fréchet distance

• Definition: 
let α : [0,1] be a parametrization of curve A and 
let β : [0,1] be a parametrization of curve B where

• α(0)  =  the start of A
• α(1)  =  the end of A
• β(0)  =  the start of B
• β(1)  =  the end of B

• α is a continuous bijection between [0,1] and A, and 
β is a continuous bijection between [0,1] and B



Fréchet distance

• Definition:

inf  ( max  dist(α(t), β(t)) )

• Choosing α, β is choosing the relative “speeds”
• Bottleneck distance due to the max over  t
• The Fréchet distance is never smaller than the 

Hausdorff distance; often they are the same 

t ∈ [0,1]α, β



Fréchet distance

• When are the Fréchet distance and Hausdorff 
distance clearly different?



Fréchet distance

• Computation using the free-space diagram

free-space diagram to 
decide whether the Fréchet 
distance is at most ε



In-class exercise

• Suppose we want to compare shapes like the 
ones shown. Which measure appears better:
• Hausdorff distance
• Frechet distance (on the boundaries)
• Area of symmetric difference

• When does which one
not work well?

• Think and discuss with
your neighbors



Discrete Fréchet distance

• The discrete Fréchet distance is like the Fréchet 
distance, but only measured between vertices

• Vertices must be visited in the right order, but a 
vertex can be used more than once

• The discrete Fréchet distance can be larger or 
smaller than the normal Fréchet distance

• The discrete Fréchet distance can be computed in 
O(nm) time by standard dynamic programming



Dynamic Time Warping

• Popular distance measure in time series analysis
• Uses summed distances, not a bottleneck distance
• Uses only distances between vertices

A[1],…, A[n]

B[1],…, B[m]

DTW(A[i..n], B[j..n]) = min
• dist(A[i],B[j]) + DTW(A[i+1..n], B[j+1..m])
• dist(A[i],B[j]) + DTW( A[ i..n],   B[j+1..m])
• dist(A[i],B[j]) + DTW(A[i+1..n], B[j..m])



Dynamic Time Warping

• Computable in O(nm) time 
by dynamic programming

Matrix M with dist(A[i], B[j]) 
in entry M[i,j]

The DTW distance is the 
cost of the cheapest path



Dynamic Time Warping

• DTW distance is not a metric:  it does not satisfy the 
triangle inequality

1/3
1/3

1/3

DTW(blue, red) ≈ 5/3

DTW(blue, green) ≈ 1/3
DTW(green, red)  ≈ 1/3

DTW(blue, red) > DTW(blue, green) + DTW(green, red) 



Earth Mover’s Distance

• Metric for distance between two weighted point 
sets with the same total weight

• Captures the minimum amount of energy needed 
to transport the weight from the one set to the 
other, where:  energy = weight x distance

1

3

1 1 1

21



Earth Mover’s Distance

• Metric for distance between two weighted point 
sets with the same total weight

• Captures the minimum amount of energy needed 
to transport the weight from the one set to the 
other, where:  energy = weight x distance

1

3

1 1 1

21

1 + 1 + 2x½ + √1¼ 
= 3 + √ 1¼ = 4.12



Earth Mover’s Distance

• Metric for distance between two weighted point 
sets with the same total weight

• Captures the minimum amount of energy needed 
to transport the weight from the one set to the 
other, where:  energy = weight x distance

1

3

1 1 1

21

1 + ½ + 2x½ + √2
= 2 ½ + √2 = 3.91



Earth Mover’s Distance

• Also known as the Wasserstein distance/metric
• Computable in O(n3) time when there are n points, 

using a solution to the assignment problem 
(Hungarian algorithm)



Outliers and measures
• Outliers can influence bottleneck measures 

significantly, but also sum-of-squares measures 
and (less so) sum measures

Hausdorff
distance

Hausdorff
distance



Outliers and measures
• Solutions include:

• Removing outliers in preprocessing
• Redefining the measure to not include a small subset of 

the data
• Using a different aggregation, like sum-of-square-roots, 

when sum is considered too sensitive to outliers



Designing measures

• A balance between simplicity and relevance
• Simplicity:

• Intuitively easy to understand
• Easy to define properly, mathematically
• Easy and efficient to compute

• Relevance:
• Captures the intuitive notion well – no more and no less
• Can discriminate differences well



Designing measures

• Example 1:  Given a set of red points R and a set of 
blue points B, design a measure (score) that captures 
for any curve C, that C is close to R and not close to B

C1

C2

C1 should get a 
higher value in 
the measure 
than C2



Designing measures

• Possibility 1:  Percentage of the length of C that is 
closer to R than to B, based on closest point

C1

C2

100

72



Designing measures

• Possibility 1:  Percentage of the length of C that is 
closer to R than to B, based on closest point

• Does not capture closeness itself; a curve twice as far 
may still get a score of 100

C1

C2

100

72

C3

100



Designing measures

• Possibility 1:  Percentage of the length of C that is 
closer to R than to B, based on closest point

• Does not capture closeness itself; a curve twice as far 
may still get a score of 100

• Not “robust”: a small movement of the curve can 
change its score from 0 to 100

• When there are no blue points, any curve gets score 100 
(so it does not capture that C is close to R)

0
100



Designing measures

• Possibility 2:  Average (over the curve length) of the 
distance to the nearest blue point – distance to the 
nearest red point

C



Designing measures

• Possibility 2:  Average (over the curve length) of the 
distance to the nearest blue point – distance to the 
nearest red point

C



Designing measures

• Possibility 2:  Average (over the curve length) of the 
distance to the nearest blue point – distance to the 
nearest red point

• Robust
• Not scale-invariant
• Does not capture closeness to R, only relative to B
• Does not work when there are no blue points

nearly same score



Designing measures

• Example 2:  Given a set of red points R and a set of 
blue points B, design a distance measure for them

• Immediate question: Are R and B samples from a 
region, and we are really interested in how much 
these regions are alike, or are R and B really point 
data (e.g. locations of burglaries and car break-ins)?

In the first case these point 
sets are very similar, in the 
second case they are not



Designing measures

• In the first case:  reconstruct the regions (e.g. by 
alpha-shapes) and use area of symmetric 
difference

• Alternatively, use the Hausdorff distance

• In the second case:  equalize the total weights in 
the two sets by making the points in the smaller set 
heavier than 1, and use the Earth Mover’s Distance



Combining measures
Suppose we have a measure in [0,1] for elongatedness 
of a shape and another one for frilliness, called E and F

How can we combine these into a score for both 
elongatedness and frilliness?



Combining measures
Suppose we have a measure in [0,1] for elongatedness 
of a shape and another one for frilliness, called E and F

How can we combine these into a score for both 
elongatedness and frilliness? 

• Weighted linear combination:  α E + (1-α) F 
with α ∈ [0,1] 



Combining measures
Suppose we have a measure in [0,1] for elongatedness 
of a shape and another one for frilliness, called E and F

How can we combine these into a score for both 
elongatedness and frilliness? 

• Weighted linear combination:  α E + (1-α) F 
with α ∈ [0,1]

• Multiplication: E F



Combining measures
Suppose we have a measure in [0,1] for elongatedness 
of a shape and another one for frilliness, called E and F

How can we combine these into a score for both 
elongatedness and frilliness? 

• Weighted linear combination:  α E + (1-α) F 
with α ∈ [0,1]

• Multiplication: E F
• Weighted version: E α F 1-α  with α ∈ [0,1]



Combining measures
Suppose we have a measure in [0,1] for elongatedness 
of a shape and another one for frilliness, called E and F

How can we combine these into a score for both 
elongatedness and frilliness?

elongated frilly combined 
WLC

combined 
Mult.

0 0 0 0

1 1 1 1

0 1 0.5 0

0.5 0.5 0.5 0.5

0.5 1 0.75 0.707

0.75 0.75 0.75 0.75

α = 0.5 α = 0.5



t-norms

• A t-norm is a function T: [0, 1] × [0, 1] → [0, 1] 
which satisfies the following properties:

• Commutativity: T(a, b) = T(b, a)
• Monotonicity: T(a, b) ≤ T(c, d) if a ≤ c and b ≤ d
• Associativity: T(a, T(b, c)) = T(T(a, b), c)
• The number 1 acts as identity element: T(a, 1) = a 

Minimum t-norm 
T(a, b) = min(a, b)



t-norms

• A t-norm is a function T: [0, 1] × [0, 1] → [0, 1] 
which satisfies the following properties:

• Commutativity: T(a, b) = T(b, a)
• Monotonicity: T(a, b) ≤ T(c, d) if a ≤ c and b ≤ d
• Associativity: T(a, T(b, c)) = T(T(a, b), c)
• The number 1 acts as identity element: T(a, 1) = a 

Product t-norm 
T(a, b) = ab



t-conorms

• Similar to t-norms but 0 is the identity: T(a, 0) = a

• Example: Einstein sum T(a, b) = (a + b) / (1 + ab) 



Summary

• Measures and metrics are useful to have things to 
optimize and things to compare quantitatively

• There are many established measures and metrics
• Sometimes one has to define one’s own measure 

or metric for specific situations
• Computation of measures requires geometric 

algorithms
• Combining measures can be done using the 

concept of t-norms and t-conorms
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