Measures and metrics

Scientific Perspectives on GMT 2019/2020

Marc van Kreveld

A number of related concepts

- Measure
 - Math
 - Other
- Metric
 - Math
 - Other
- Indicator: same as measure/metric, other
- Measurement

Desperate times call for desperate measures

- English proverb (Hippocrates?)

Measures in mathematics

- Functions from "subsets" to the reals
- A *measure* obeys the properties:
 - 1. Non-negativeness: for any subset X, $f(X) \ge 0$
 - 2. Null empty set: For the empty set, $f(\emptyset) = 0$
 - Additivity: for two disjoint subsets X and Y, f(X U Y) = f(X) + f(Y)

Measures in mathematics

- Example 1: Space is the real line, subsets are disjoint unions of intervals, measure is (total) length
- Example 2: Space is all integers, subsets are finite subsets of integers, measure is number of integers in a subset
- Example 3: Space is outcomes of an experiment (die rolling), measure is probability of the outcome(s)

Measures in the rest of science

- Functions from "something" to the nonnegative reals
- Capture an intuitive aspect: size, quality, difficulty, distance, similarity, usefulness, robustness, ... into something well-defined
- Precision and recall in information retrieval
- Support and confidence in association rule mining
- In the world at large: body mass index, ecological footprint, ...

relevant elements

selected elements

How many selected items are relevant?

How many relevant items are selected?

Measures in the rest of science

- Albeit well-defined, the real connection of the (abstract) function to the intuitive concept is not guaranteed → Needs to be justified or tested
- Example 1: similarity measure for two shapes

Measures in the rest of science

- Albeit well-defined, the real connection of the (abstract) function to the intuitive concept is not guaranteed → Needs to be justified or tested
- Example 2: difficulty rating of a level in a puzzle game

Distance functions, or metrics

- Distance: how far things are apart
- A metric or distance function takes two arguments and returns a nonnegative real
- Distances on a set X; for any x, y, z in X,
 a metric is a function d(x,y) → R (the reals) where:
 - 1. $d(x,y) \ge 0$
 - 2. d(x,y) = 0 if and only if x = y
 - 3. d(x,y) = d(y,x)
 - $4. \quad d(x,z) \le d(x,y) + d(y,z)$

non-negative

coincidence

symmetry

triangle inequality

Examples of metrics on points

- Euclidean distance on the line, in the plane or in a higher-dimensional space, L₂ distance
 Note: Squared Euclidean distance is not a metric
- City block, Manhattan, or L₁ distance (are the same)
- L_∞ distance (max of differences in the coordinates)

Distances between points in an attribute space?

- Suppose points in 3D represent people with their age, weight, and length
- Any metric that uses these components is influenced by normalization or scaling of an axis
- Any metric makes a choice on how many years correspond to one kilo or one centimeter, and therefore weighs the relevance of the

1 year

age

1 kilo

y-axis weight

components

Distances between points in an attribute space?

- For a specific point set in an attribute space, one can normalize its axes by making the unit the standard deviation of its values
- ... but then, two different point sets in spaces with the same attributes use different distances

Example of metric on polygons

- Area of symmetric difference Asym, is it a metric?
- Three properties (nonnegative, coincidence, symmetry) clear, to be verified: triangle inequality.
 It reads:

Given three polygons P, Q, R, we always have $Asym(P,Q) \leq Asym(P,R) + Asym(R,Q)$

Example of metric on polygons

- Given three polygons P, Q, R, we always have Asym(P,Q) ≤ Asym(P,R) + Asym (R,Q)
- For any polygon R, we consider the parts counted in Asym(P,Q):
 - In P, not in Q, and in R: also counted in Asym(R,Q)
 - In P, not in Q, and not in R: also counted in Asym(P,R)
 - Not in P, in Q, and in R: also counted in Asym(P,R)
 - Not in P, in Q, and not in R: also counted in Asym(R,Q)
 - In both or neither P, Q: not counted in Asym(P,Q)

Interesting aspects for measures in geometric situations

"Measures" in the loose sense:

- Size (descriptive measure for many things)
- Elongatedness (descriptive measure for a polygon)
- Spread (descriptive measure for a point set)
- Goodness of fit (for e.g. a shape and a point set)
- Similarity / distance (for two things of the same type)

• ...

Aggregation in measures

- When defining the distance between two point sets, we may want to combine several point-to-point distances into one distance measure
- This can be called aggregation of distances

Aggregation in measures

- Bottleneck: aggregation is done by taking a minimum or maximum over values Examples: Hausdorff, Fréchet
- Sum: aggregation is done by taking the sum over values
 Examples: DTW, EMD, area of symmetric difference
- **Sum-of-squares**: aggregation is done by taking the sum-of-squares over values Example: Error of regression line model

Aggregation in measures

- Bottleneck: very sensitive to outliers
- Sum: mildly sensitive to outliers
- Sum-of-squares: moderately sensitive to outliers

Well-known geometric metrics/measures

- Hausdorff distance (any set; asymmetric, symmetric)
- Area of symmetric difference (for polygons)
- Fréchet distance (for curves)
- Dynamic Time Warping (for time series, or for curves)
- Earth Mover's Distance

 Defined for any two subsets of the plane (two point sets, two curves, two polygons, a curve and a polygon, ...)

- Defined for any two subsets of the plane (two point sets, two curves, two polygons, a curve and a polygon, ...)
- Bottleneck metric
- Asymmetric version: $A \rightarrow B$ (or $B \rightarrow A$); not a metric
- Symmetric version: Max of the asymmetric versions:

Max (max min dist(
$$a$$
, b) , max min dist(b , a)) $a \in A$ $b \in B$ $a \in A$

$$A \rightarrow B$$
 $B \rightarrow A$

 Which is larger: the Hausdorff distance A → B or B → A?

 Which is larger: the Hausdorff distance A → B or B → A?

Properties Hausdorff distance

Where can largest distance from A to B occur?

In this case, the minimum distance must be attained from that point on A to two places on B

Computation area of symmetric difference

- Perform map overlay (Boolean operation) on the two polygons
- Compute area of symmetric difference of the polygons and add up

Computation area of symmetric difference

 Perform map overlay (Boolean operation) on the two polygons

Compute area of symmetric difference of the

polygons and add up

Worst case:O(nm log (nm)) time

Typical case:
 O((n+m) log (n+m)) time

- For two oriented curves in 2D or 3D
- Extensions to surfaces exist (but are not treated)
- Intuitively: a man walks on one curve with possibly varying speed, but only forward, and a dog does the same on the other curve. The Fréchet distance is the minimum leash length needed to allow this (man-dog distance,

leash distance)

- Definition:
 - let α : [0,1] be a parametrization of curve A and
 - let β : [0,1] be a parametrization of curve B where
 - $\alpha(0)$ = the start of A
 - $\alpha(1)$ = the end of A
 - $\beta(0)$ = the start of B
 - $\beta(1)$ = the end of B
- α is a continuous bijection between [0,1] and A, and β is a continuous bijection between [0,1] and B

• Definition:

```
inf (max dist(\alpha(t), \beta(t))) \alpha, \beta \quad t \in [0,1]
```

- Choosing α , β is choosing the relative "speeds"
- Bottleneck distance due to the max over t
- The Fréchet distance is never smaller than the Hausdorff distance; often they are the same

 When are the Fréchet distance and Hausdorff distance clearly different?

Computation using the free-space diagram

free-space diagram to decide whether the Fréchet distance is at most ε

In-class exercise

- Suppose we want to compare shapes like the ones shown. Which measure appears better:
 - Hausdorff distance
 - Frechet distance (on the boundaries)
 - Area of symmetric difference
- When does which one not work well?
- Think and discuss with your neighbors

Discrete Fréchet distance

- The *discrete* Fréchet distance is like the Fréchet distance, but only measured between vertices
- Vertices must be visited in the right order, but a vertex can be used more than once
- The discrete Fréchet distance can be larger or smaller than the normal Fréchet distance
- The discrete Fréchet distance can be computed in O(nm) time by standard dynamic programming

Dynamic Time Warping

- Popular distance measure in time series analysis
- Uses summed distances, not a bottleneck distance
- Uses only distances between vertices

DTW(A[i..n], B[j..n]) = min

- dist(A[i],B[j]) + DTW(A[i+1..n], B[j+1..m])
- dist(A[i],B[j]) + DTW(A[i..n], B[j+1..m])
- dist(A[i],B[j]) + DTW(A[i+1..n], B[j..m])

Dynamic Time Warping

 Computable in O(nm) time by dynamic programming

Matrix M with dist(A[i], B[j]) in entry M[i,j]

The DTW distance is the cost of the cheapest path

Dynamic Time Warping

 DTW distance is not a metric: it does not satisfy the triangle inequality

- Metric for distance between two weighted point sets with the same total weight
- Captures the minimum amount of energy needed to transport the weight from the one set to the other, where: energy = weight x distance

- Metric for distance between two weighted point sets with the same total weight
- Captures the minimum amount of energy needed to transport the weight from the one set to the other, where: energy = weight x distance

- Metric for distance between two weighted point sets with the same total weight
- Captures the minimum amount of energy needed to transport the weight from the one set to the other, where: energy = weight x distance

- Also known as the Wasserstein distance/metric
- Computable in $O(n^3)$ time when there are n points, using a solution to the assignment problem (Hungarian algorithm)

Outliers and measures

 Outliers can influence bottleneck measures significantly, but also sum-of-squares measures and (less so) sum measures

Outliers and measures

- Solutions include:
 - Removing outliers in preprocessing
 - Redefining the measure to not include a small subset of the data
 - Using a different aggregation, like sum-of-square-roots, when sum is considered too sensitive to outliers

- A balance between simplicity and relevance
- Simplicity:
 - Intuitively easy to understand
 - Easy to define properly, mathematically
 - Easy and efficient to compute
- Relevance:
 - Captures the intuitive notion well no more and no less
 - Can discriminate differences well

• Example 1: Given a set of red points *R* and a set of blue points *B*, design a measure (score) that captures for any curve *C*, that *C* is close to *R* and not close to *B*

 Possibility 1: Percentage of the length of C that is closer to R than to B, based on closest point

- Possibility 1: Percentage of the length of C that is closer to R than to B, based on closest point
 - Does not capture closeness itself; a curve twice as far may still get a score of 100

- Possibility 1: Percentage of the length of C that is closer to R than to B, based on closest point
 - Does not capture closeness itself; a curve twice as far may still get a score of 100
 - Not "robust": a small movement of the curve can change its score from 0 to 100
 - When there are no blue points, any curve gets score 100 (so it does not capture that C is close to R)

 Possibility 2: Average (over the curve length) of the distance to the nearest blue point – distance to the nearest red point

 Possibility 2: Average (over the curve length) of the distance to the nearest blue point – distance to the nearest red point

- Possibility 2: Average (over the curve length) of the distance to the nearest blue point – distance to the nearest red point
 - Robust
 - Not scale-invariant
 - Does not capture closeness to R, only relative to B
 - Does not work when there are no blue points

nearly same score

- Example 2: Given a set of red points *R* and a set of blue points *B*, design a distance measure for them
- Immediate question: Are R and B samples from a region, and we are really interested in how much these regions are alike, or are R and B really point data (e.g. locations of burglaries and car break-ins)?

In the first case these point sets are very similar, in the second case they are not

- In the first case: reconstruct the regions (e.g. by alpha-shapes) and use area of symmetric difference
- Alternatively, use the Hausdorff distance
- In the second case: equalize the total weights in the two sets by making the points in the smaller set heavier than 1, and use the Earth Mover's Distance

Suppose we have a measure in [0,1] for elongatedness of a shape and another one for frilliness, called *E* and *F*

Suppose we have a measure in [0,1] for elongatedness of a shape and another one for frilliness, called E and F

How can we combine these into a score for both elongatedness and frilliness?

• Weighted linear combination: $\alpha E + (1-\alpha) F$ with $\alpha \in [0,1]$

Suppose we have a measure in [0,1] for elongatedness of a shape and another one for frilliness, called E and F

- Weighted linear combination: $\alpha E + (1-\alpha) F$ with $\alpha \in [0,1]$
- Multiplication: E F

Suppose we have a measure in [0,1] for elongatedness of a shape and another one for frilliness, called E and F

- Weighted linear combination: $\alpha E + (1-\alpha) F$ with $\alpha \in [0,1]$
- Multiplication: E F
- Weighted version: $E^{\alpha} F^{1-\alpha}$ with $\alpha \in [0,1]$

Suppose we have a measure in [0,1] for elongatedness of a shape and another one for frilliness, called E and F

elongated	frilly	combined WLC $\alpha = 0.5$	combined Mult. $\alpha = 0.5$
0	0	0	0
1	1	1	1
0	1	0.5	0
0.5	0.5	0.5	0.5
0.5	1	0.75	0.707
0.75	0.75	0.75	0.75

t-norms

- A t-norm is a function T: [0, 1] × [0, 1] → [0, 1]
 which satisfies the following properties:
 - Commutativity: T(a, b) = T(b, a)
 - Monotonicity: $T(a, b) \le T(c, d)$ if $a \le c$ and $b \le d$
 - Associativity: T(a, T(b, c)) = T(T(a, b), c)
 - The number 1 acts as identity element: T(a, 1) = a

Minimum t-norm T(a, b) = min(a, b)

t-norms

- A t-norm is a function T: [0, 1] × [0, 1] → [0, 1]
 which satisfies the following properties:
 - Commutativity: T(a, b) = T(b, a)
 - Monotonicity: $T(a, b) \le T(c, d)$ if $a \le c$ and $b \le d$
 - Associativity: T(a, T(b, c)) = T(T(a, b), c)
 - The number 1 acts as identity element: T(a, 1) = a

Product t-norm T(a, b) = ab

t-conorms

- Similar to t-norms but 0 is the identity: T(a, 0) = a
- Example: Einstein sum T(a, b) = (a + b) / (1 + ab)

Summary

- Measures and metrics are useful to have things to optimize and things to compare quantitatively
- There are many established measures and metrics
- Sometimes one has to define one's own measure or metric for specific situations
- Computation of measures requires geometric algorithms
- Combining measures can be done using the concept of t-norms and t-conorms