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The real world

The scientific world
Models the real world in a controllable, 

manipulatable, observable way 
that is best suited for research goal

Chaotic, varying contexts (including 
random ones), huge numbers, …

E.g.: population
(people visiting or living in Tokyo)

E.g.: sample of people observed, tracked and 
analyzed in a particular time frame at a particular 

place under particular conditions

Interpret, 
explain, 
predict, 
…

Simulate, 
model, 

describe, 
…
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Exploration

Scientific research (HCI focus)

Validation Explanation

Finding questions Answering them Finding why and how

• Ethnography, 
literature

• Observations
• End-user interviews
• (Big) data analysis
• Ideas, creative 

thinking
• …

• Experiments
• Large scale survey
• Quantitative data
• …

• Qualitative data
• Theoretical models
• Mechanisms
• ...

How can we interpret 
our observations and data and 

draw conclusions (and are those 
reliable and generalizable)?

Statistics (i.e., the mathematics of data and how to interpret it) can help with this.

What is the best model, 
measure, etc. to simulate 

the real world?
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Important questions:

What does the data say?

What conclusions can we draw from it?

Descriptive statistics
Describe and graphically present 
interesting and relevant aspects 
of the data set.

Deduce properties of probability distributions to predict 
future data samples based on those seen in the past.

Predictive / inferential / inductive statistics

E.g., average/mean, variance, 
median, distribution, …

E.g., hypothesis and significance testing, …

samples

population
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Data comes in various ways (continuous/discrete, …) and scales. 
Common scale types for empirical research are: 

Nominal
Data indicating categories. No notion of ordering.
Examples: technique (A/B), gender (male/female), handedness (left/right/both)

Ordinal
Data that can be ordered. Yet, differences between any two values may not be 
equal (relative distances cannot be compared).
Examples: grades, software complexity

Interval
Data that can be ordered and differences between two values are the same 
(relative distances are meaningful), but there is no absolute zero. Note: this allows 
us to have meaningful negative values.
Examples: temperatures in C or F (0 C and 0 F exist, but are artificially defined)

Ratio
Data that can be ordered, differences between two values are the same 
(relative distances are meaningful), there is an absolute zero. Note: this means 
that meaningful negative values do not exist (in statistics)
Examples: length, weight, height, time, speed, error rate



Data distributions
Knowing how data is distributed is the first step towards understanding 

how a variable is likely to predict another variable.

This distribution can serve as a model of the data.

We can accept or reject this model after collecting 
empirical evidence (via experimental data).

Models allow us to organize our data in a meaningful way.

Uniform Distribution

Source: 6 Common Probability 
Distributions every data science 
professional should know

https://www.analyticsvidhya.com/blog
/2017/09/6-probability-distributions-
data-science/

https://www.analyticsvidhya.com/blog/2017/09/6-probability-distributions-data-science/
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# of  “heads” outcome

Binomial Distribution Normal Distribution

μ = true mean of the distribution
σ2 = variance of the observations
x = value of the observation(s)

N = number of flips
x = number of desired outcome
Π = probability of the desired 

outcome (0.5=chance)

The discrete probability distribution of the 
number of successes (x) in a sequence of 
N independent yes/no experiments, each 
of which yields success with probability p.
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Measures of central tendency

Average / mean
Data points x1, x2, …, xn

mean

Middle value of a data set; following that 
the number of samples that are higher than 
the median is the same as the number
of samples that are lower than the median. 
(for even data sets numbers, usually the 
average of the two middle values is taken)

Denotes the percentile where p% of samples 
lie below this value. (Note: median = x50)

The most commonly occurring sample. 
Calculated by counting the number of 
samples for each unique value and 
selecting the value with the highest 
count. (If an odd number of samples 
have the same occurrence count, the 
mode may be selected as the middle 
value of the most common samples)

Calculated as the n:th root of the 
product of all samples as follows:

Indicate a ‘middle’ of a data set. May be interpreted as an estimation of the expectation 
of the stochastic variable from which the data points in the data set are sampled.

Mode

Median

Percentile xp

Geometric mean
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Be careful with such data

Simpson’s Paradox
You run a course with some full-time (FT) and some part-time (PT) students
According to your calculations:
• Average FT student marks went up compared to last year
• Average PT student marks also went up compared to last year
Yet, the university complains your marks are going down. Who is right?

Important: When reporting averages, always 
state precisely over what the average is taken! 
(People often forget that in diagrams and on 
slides, for example)

Simpson's paradox, or the Yule–Simpson effect, is a 
phenomenon in probability and statistics, in which a 
trend appears in several different groups of data but 
disappears or reverses when these groups are 
combined. It is sometimes given the descriptive title 
reversal paradox or amalgamation paradox.

You might both be correct!

Both FT and PT marks increased, 
so you are right!

But the number of PTs also increased 
strongly (yet their increase in grades is 
not that strong). Thus, the average of 
both groups actually decreases!
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Be careful with such data

Also, don’t just look at the average 
when interpreting your data.
E.g. here, the overall system A has 
a lower error rate than system B, 
but system B is better for experts.

Remember: this is only a measure of central tendency
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Measures of dispersion

Counts the frequency of each data value. 
The relative frequency is calculated by dividing the 
frequency of each value by the total number of samples.

Convey information of the dispersion of the data set by measuring the level of variation 
from the central tendency to see how spread or concentrated the data is.

Frequency, relative frequency

Coefficient of variation

Variation intervalRange

Standard deviation

Variance
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Measures of dependency

Linear regression
… (and many others)

When the data set consists of related samples in pairs (xi; yi) from two stochastic variables, 
X and Y, it is often interesting to examine the dependency between these variables.

If X and Y are related 
through a linear function 

y = a + bx, we can estimate 
this function by applying 

linear regression. 
Regression means fitting 

the data points to a curve 
(in the linear case: a line).

Multivariate analysis, e.g.:
• Multiple regression
• Principle component 

analysis (PCA)
• Cluster analysis
• Discriminant analysis

Be careful! All these have 
approximately the same linear 

regression line (as well as nearly 
identical means, standard 

deviations, and correlations) 
but are graphically very different. 

This illustrates the pitfalls 
of relying solely on a fitted model 

to understand the relationship 
between variables.

https://en.wikipedia.org/wiki/Linear_regression
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Measures of dependency

Linear regression
… (and many others)

When the data set consists of related samples in pairs (xi; yi) from two stochastic variables, 
X and Y, it is often interesting to examine the dependency between these variables.

Multivariate analysis, e.g.:
• Multiple regression
• Principle component 

analysis (PCA)
• Cluster analysis
• Discriminant analysis

PCA of a multivariate Gaussian distribution centered at (1,3) with a 
standard deviation of 3 in roughly the (0.866, 0.5) direction and of 1 in 

the orthogonal direction. The vectors shown are the eigenvectors of 
the covariance matrix scaled by the square root of the corresponding 

eigenvalue, and shifted so their tails are at the mean.

https://en.wikipedia.org/wiki/Principal_component_analysis
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Graphical visualization
When describing a data set, quantitative measures of central tendency, dispersion, and 
dependency, can be combined with graphical visualization techniques.
Graphs are very illustrative and give a good overview of the data set.

Scatter plot

Histogram Cumulative histogram

Box plot
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Also:

Checking your data is normal
• Draw a Histogram
• Compute the mean and 

standard deviation
• Superimpose the expected 

normal curve over the histogram

http://www.statsoft.com/
textbook/stathome.html

Generally, be careful with visuals, e.g., with the scale: smaller scaled can highlight 
smaller differences better, but might also exaggerate minor irrelevant variations.

Always chose the most appropriate 
visualization type based on data and 
aspect that you want to study or illustrate.

Visualizations are good to identify trends and oddities, 
that can (and most often should) then be studied more objectively.

Three sets of 
percentages, plotted as 

both pie charts and 
bar charts. Comparing 
the data on bar charts 

is generally easier.

Statisticians generally regard pie charts as a poor 
method of displaying information, and they are 
uncommon in scientific literature. One reason is 
that it is more difficult for comparisons to be 
made between the size of items in a chart when 
area is used instead of length and when different 
items are shown as different shapes.

(From Wikipedia, “Pie charts”)

Hint: for bar charts, always think about sorting (rule of thumb: 
generally any order is better than random order, e.g., subjects)

http://www.statsoft.com/textbook/stathome.html
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The real world

The scientific world
Models the real world in a controllable, 

manipulatable, observable way 
that is best suited for research goal

Chaotic, varying contexts (including 
random ones), huge numbers, …

E.g.: population
(people visiting or living in Tokyo)

E.g.: sample of people observed, tracked and 
analyzed in a particular time frame at a particular 

place under particular conditions

Interpret, 
explain, 
predict, 
…

Simulate, 
model, 

describe, 
…

Draw 
conclusions, 
make 
predictions
(e.g., about 
population)

Get data 
(e.g., from 

population)
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Drawing conclusions from your data and making predictions 

How do we know that our results are representative and not just by chance?

Example: 
3 different 
experiments

• Almost identical 
averages

• But different 
variability 

Descriptive statistics only describe your data. Inferential statistics aim at 
interpreting them and verifying their applicability to similar scenarios.

Inferential statistics
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It appears that only the data 
from the last case represents 
a general result that does not 
just illustrate the analyzed 
sample data, but should 
apply to other samples from 
the same population as well.

Statistical hypothesis testing (aka Null Hypothesis Significance Testing, NHST) 
is a statistical method to verify such an intuitive assumption. It verifies 
whether the factor we are talking about has the effect on our observation.
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Hypothesis testing – Basic principle

Perhaps there are two populations: 
μs – μm =d

μs μm (they could be  
(very) close together)

μs μm (they could  
be far apart)

Perhaps there is one population: 
μs – μm = 0

μs,μm

Assume an experiment where we navigate in VR and want to measure 
the impact of stereo (3D) versus mono vision on navigation time.

Assume we have two populations for time to navigate 
based on measures from two experiments, one with stereo, one with mono vision:

µs: stereo time and µm: mono time

This would mean vision has an 
impact on navigation time. This would mean it hasn’t.
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Null hypothesis H0

Assumes that there are no real underlying trends or patterns 
in the experiment setting.
Generally, we want to show that there is a difference, thus reject this hypothesis

Alternative hypothesis H1

The hypothesis in favor of which the null hypothesis is rejected.
Thus, when we reject H0, we can assume that H1 is true.
(Note: sometimes Ha is used instead of H0.)

Statistical tests exist to verify, if a null hypothesis can be rejected.

Which test to chose depends on the type of data and its distribution.

But they all follow the same basic principle. 
(Thus, if you pick the right one, you can use it as a black box.)

Hypothesis testing: terminology



Hypothesis testing: basic procedure
1. Develop testable hypothesis H1: µs – µm = d

(E.g., subjects faster under stereo viewing)

2. Develop null hypothesis H0: µs – µm = 0
Logical opposite of testable hypothesis

3. Construct sampling distribution assuming H0 is true.

4. Run an experiment and collect samples; yielding sampling statistic X.
(E.g., measure subjects under stereo and mono conditions)

5. Referring to sampling distribution, 
calculate conditional probability of seeing X given H0: p( X | H0 ).
• If probability is low (p ≤ 0.05), we are unlikely to see X when H0 is true. 

We reject H0 and embrace H1.
• If probability is not low (p > 0.05), we are likely to see X when H0 is true. 

We do not reject H0.



Example 1: VE Navigation with Stereo Viewing [Swan et al. 2003]

1. Hypothesis H1: µs – µm = d
Subjects faster under stereo viewing.

2. Null hypothesis H0: µs – µm = 0
Subjects same speed whether stereo 
or mono viewing.

3. Constructed sampling distribution 
assuming H0 is true.

4. Ran an experiment and collected samples:
32 participants, collected 128 samples
Xs = 36.431 sec; Xm = 34.449 sec; Xs – Xm = 1.983 sec

5. Calculated conditional probability of seeing 1.983 sec
given H0: p(1.983 sec | H0 ) = 0.445.
p = 0.445 not low, we are likely to see 1.983 sec when H0 is true.
We do not reject H0.

This experiment did not tell us that subjects were faster under stereo viewing.



Example 2: Effect of Intensity on AR Occluded 
Layer Perception [Living Swan et al. 2003]

1.Hypothesis H1: µc – µd = d
Tested constant and decreasing intensity.
Subjects faster under decreasing intensity.

2.Null hypothesis H0: µc – µd = 0
Subjects same speed whether constant or
decreasing intensity.

3.Constructed sampling distribution 
assuming H0 is true.

4.Ran an experiment & collected samples:
8 participants, collected 1728 samples
Xc = 2592.4 msec; Xd = 2339.9 msec; Xc – Xd = 252.5msec

5.Calculated conditional probability 
of seeing 252.5 msec given H0: p( 252.5 msec | H0 ) = 0.008.
p = 0.008 is low (p ≤ 0.01); we are unlikely to see 252.5 msec when H0 is true.
We reject H0 and embrace H1.

This experiment suggests that subjects are faster under decreasing intensity.



Some Considerations…

• The conditional probability p( X|H0 )
• Much of statistics involves how to calculate this  probability; 

source of most of statistic’s complexity

• Logic of hypothesis testing the same regardless of how
p( X|H0 ) is calculated

• If you can calculate p( X|H0 ), you can test a hypothesis

• The null hypothesis H0

• H0 usually in form f(µ1, µ2,…) = 0

Gives hypothesis testing a double-negative logic:  
assume H0 as the opposite of H1, then rejectH0

Philosophy is that we can never prove f = 0, 
because 0 is point value in domain of real numbers

• H1 usually in form f(µ1, µ2,…) ≠ 0

We don’t know what value it will take, but main interest is that it is not 0



When We Reject H0

Calculate α = p( X | H0 ), when do we reject H0?

• In science generally, α = 0.05
• But, just a social convention

What can we say when we reject H0 at α = 0.008?

• “If H0 is true, there is only an 0.008 probability of getting  our results, and this is unlikely.”
Correct!

• “There is only a 0.008 probability that our result is in error.”
Wrong, this statement refers to p( H0 ), but that’s not what we calculated.

• “There is only a 0.008 probability that H0 could have been true in this experiment.”
Wrong, this statement refers to p( H0 | X ), but that’s not what we calculated.

[Cohen 1994]

Important:
• If the null hypothesis is rejected, it can be stated 

that the hypothesis is false with a given significance (α).
• If it is not rejected, nothing can be said about the outcome.



What can we say when we don’t reject H0 at α = 0.445?
• “We have proved that H0 is true.”

“Our experiment indicates that H0 is true.”
Both wrong! Hypothesis testing cannot prove H0: f(µ1, µ2,…) = 0.

Statisticians do not agree on what failing to reject H0 means.
• Conservative viewpoint (Fisher):

We must suspend judgment, and cannot say anything about  the truth of H0.
• Alternative viewpoint (Neyman & Pearson):

We can accept H0 if we have sufficient experimental power,  
and therefore a low probability of type II error.

[Howell 2002, p 99]

When We Don’t Reject H0



Probabilistic Reasoning

If hypothesis testing was absolute:

• If H0 is true, then X cannot occur…
however, X has occurred … therefore H0 is false.

• e.g.: If a person is a Martian, then they are not a member of Congress (true)…
this person is a member of  Congress … therefore they are not a Martian. 
(correct result)

• e.g.: If a person is an American, then they are not a  member of Congress (false)…
this person is a member of  Congress … therefore they are not an American.  
(incorrect result, but correct logical reasoning)

p q p → q ¬q → ¬p
T
T

T
F

T
F

T
F

p → q
¬q

F
F

T
F

T
T

T
T

→ ¬p

modus  
tollens

[Cohen 1994]



Probabilistic Reasoning

However, hypothesis testing is probabilistic:

• If H0 is true, then X is highly unlikely…
however, X has occurred… therefore H0 is highly unlikely.

• e.g.: If a person is an American, 
then they are probably not a member of Congress (true, right?)…
This person is a  member of Congress…
therefore they are probably not an American.
(incorrect result, but correct hypothesis testing reasoning)

p q p → q ¬q → ¬p
T
T

T
F

T
F

T
F

p → q
¬q

F
F

T
F

T
T

T
T

→ ¬p

modus  
tollens

[Cohen 1994]
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Testing for statistical significance
In statistical hypothesis testing, a result has statistical significance when it is 
very unlikely to have occurred given the null hypothesis. More precisely, a 
study's defined significance level, α, is the probability of the study rejecting 
the null hypothesis, given that it were true; and the p-value of a result, p, is 
the probability of obtaining a result at least as extreme, given that the null 
hypothesis were true. The result is statistically significant, by the standards of 
the study, when p < α. The significance level for a study is chosen before 
data collection, and typically set to 5% or much lower, depending on the 
field of study.

Wikipedia (“statistical significance”)

For the statistical tests:
• p-value (we calculate this) - probability that a relationship observed in the 

sample happened by chance
• Alpha level (selected a priori) - a threshold for p at which we will accept that 

a relationship did not happen by chance (typically 0.1 or 0.05)
• If p < α,	we say the result was significant
• This allows us to fix the probability of a type I error in advance
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Student’s t test
For testing whether two samples really are different

• Given: two experimental treatments, one dependent variable
• Assumes that:

• the variables are normally distributed in each treatment
• the variances for the treatments are similar
• the sample sizes for the treatments do not differ hugely

• Basis: difference between the means of samples from two normal  
distributions is itself normally distributed.

• The t-test checks whether the treatments are significantly different

Procedure
• H0: “There is no difference in the population means 

from which the samples are drawn”
• Choose a significance level (e.g. 0.05)

• Calculate t as where

• Look up the value for t, with degrees of freedomdf = (nA+ nB) – 2
• If calculated value of t is greater than the lookup value, reject H0
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Analysis of Variance (ANOVA)
Generalization of t-test for >2 treatments

• Given: n experimental treatments, one dependent variable
• Assumes that …: 

• the variables are normally distributed in each treatment
• the variances for the treatments are similar
• the sample sizes for the treatments do not differ hugely
(It’s okay to deviate slightly from these assumptions for larger samples sizes)

• Works by analyzing how much of the total variance is due to differences  within 
groups, and how much is due to differences across groups.

Procedure:
• H0: “There is no difference in the population means across all treatments”
• Compute the F-statistic:

• F = (found variation of the group averages) /
(expected variation of the group averages) 

(Note: don’t do this by hand!)
• If H0 is true, we would expect F=1
• Note: ANOVA tells you whether there is a significant difference, 

but does  not tell you which treatment(s) are different (use post-hoc tests for this).
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General comments

• There are various different tests for statistical significance.
• Which one to chose depends on your experiment. In particular:

• What data you have (e.g., discrete / continuous, …)
• How the data is distributed (e.g., normal distribution, …)
• How many independent variables and levels you have
• …

• They all follow the same procedure though, i.e., 
calculating the probability to observe your sample X 
under the assumption that the null hypothesis H0 is true, i.e., p( X | H0 ).

• Statistics tools (SPSS, R, Excel, …) are commonly used to do these tests.
• The difficult part is choosing the right test, data, alpha level, etc.

• It is also important to report test results accurately
• What values to report depends on the test, e.g.

• t-tests require to report a t-value and the p-value
• ANOVA requires to report an F-value and the p-value

So many tests. So many options. Which one must I choose???



37

Independent 
variable

Dependent 
variable

Parametric
Two valued Normal Student’s t-test on difference of means
Discrete Normal ANOVA (Analysis Of VAriance)
Continuous Normal Linear (or non-linear) regression factor 

analysis
Non-parametric
Two valued Continuous Wilcoxon (or Mann-Whitney) rank-sum test
Discrete Continuous Rank-sum version of ANOVA
Continuous Continuous Spearman’s rank correlation
Contingency tests
Two valued Discrete No special test, see next entry
Discrete Discrete Contingency table and chi-square test
Continuous Discrete (Rare) Group independent  variable and then 

as above

So many tests. So many options. Which one must I choose???
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The terms like paired, ordinal, factors, levels, etc. can be quite confusing at first, 
but once you understand what they mean, it becomes a pretty straightforward approach 
of classifying your experimental design and then picking the right test.

Helpful resources for picking the right tests:
http://yatani.jp/teaching/doku.php?id=hcistats:start
See esp. the table under "What statistical test should I use?”
Another very helpful site: 
https://www.graphpad.com/support/faqid/1790/

• The most difficult task is picking the right test.
• For the actual test, usually tools like SPSS or R are used 

(simple test can be done with Excel, too).

• You need a good understanding of the basics to: 
a) pick the right test, 
b) get the parameters right when using the tools, and 
c) report the results correctly.

So many tests. So many options. Which one must I choose???

http://yatani.jp/teaching/doku.php?id=hcistats:start
https://www.graphpad.com/support/faqid/1790/
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Normality
If a test assumes that the data is normally distributed, a Chi-2 test
can be made to assess to which degree the assumption is fulfilled. 

Independence
If the test assumes that the data is a sample from several independent 
stochastic variables, it is necessary to check that there is no correlation 
between the sample sets. This may be checked with scatter plots and by 
calculating correlation coefficients.

Residuals
In many statistical models, there is a term that represents the residuals 
(statistical error). It is often assumed that the residuals are normally distributed. 
A common way to check this property is to plot the residuals in a scatter plot 
and see that there is no specific trends in the data (the distribution looks 
random).

Every statistical model is relying on specific assumption regarding, 
e.g., distribution, independence and scales. For example:



Interpreting α,  β,  and Power

If H1 is true:
β is probability we make a type II error
(false negative): a result was there, but we missed it
Power is a more common term than β

Decision
Reject H0 Don’t reject H0

True state of
the world

H0 false
A (correct) result!
p = 1 – β = power

Type II error
p = β

H0 true
Type I error

p = α
Argue H0?
p = 1 – α

α

H0 H1

β
μ0 μ1

power =  
1 – β

Power, effect size, p-value

α

H0 H1

β
μ0 μ1

If H0 is true:
α is probability we make a
type I error (false positive): we think 
we have a  result, but we are wrong
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Increase number of samples
(e.g., more subjects)
• The standard approach … 

but square root often means 
very large increases

Reduce noise in your data
• Better control conditions 

(physics approach)
• Measure other factors and fit 

(e.g. age, experience)

Increase effect size
• Manipulate sensitivity 

(e.g. photo back of crowd!)

H0 H1

β α
μ0 μ1

power

H0 H1

α
μ0 μ1

β

power

In general, we want our results to have high power. 
General strategies to increase power (i.e., get stronger results) are:



Increasing Power by Increasing α

Illustrates α / power  tradeoff

• Increasing α:
– Increases power
– Decreases type II error
– Increases type I error

• Decreasing α:
– Decreases power
– Increases type II error
– Decreases type I error

α
10

H0 H1

β
μ μ

power

β α

power

μ0 μ1

H0 H1

Þ We are technically ”trading” the decrease of the likelihood of one type of 
error for the increase of the one for another type of error.

Þ Be careful with statements such as: ”results are close to significance level”



Increasing Power by  Collecting More Data

• Increasing sample size (N):
– Decreases variance
– Increases power
– Decreases type II error
–α and type I error stay the same

There are techniques that give the 
value of N required  for a certain 
power level.

Here, effect size remains the same, 
but variance drops by half.

H0 H1

β α
μ0 μ1

power

H0 H1

α
μ0 μ1

β

power



But be careful with this …



Increasing Power by  Decreasing Noise

• Decreasing experimental noise:
– Decreases variance
– Increases power
– Decreases type II error
–α and type I error stay the  same

More careful experimental results 
give lower noise.

Again, effect size remains the same, 
but variance drops by half.

H0 H1

β α
μ0 μ1

power

H0 H1

α
μ0 μ1

β

power



Increasing Power by Measuring a Bigger Effect

• If the effect size is  large:
– Power increases
– Type II error decreases
–α and type I error stay the same

Unsurprisingly, large effects 
are easier to detect 
than small effects

μ0 μ1

H0

α

H0 H1

β

power

μ0 μ1

H0

α
μ1μ0

β

power

H1



Using Power

• Need α, effect size, and sample size for power:  
power = f( α, |μ0 – μ1|, N )

• Problem for VR / AR:
– Effect size |μ0 – μ1| hard to know in our field

• Population parameters estimated from prior studies
• But our field is so new, not many prior studies

– Can find effect sizes in more mature fields

• Post-hoc power analysis:
effect size = |X0 – X1|

– Then, calculate power for experiment
– But this makes statisticians grumble  

(e.g. [Howell 2002] [Cohen 1988])
– Same information as p value



Other Uses for Power

1. Number samples needed for certain power level:
N = f( power, α, |µ0 – µ1| or |X0 – X1| )

– Number extra samples needed for more powerful result
– Gives “rational basis” for deciding N
– Cohen [1988] recommends α = 0.05, power = 0.80

2. Effect size that will be detectable:
|µ0 – µ1| = f( N, power, α )

3. Significance level needed:
α = f( |µ0 – µ1| or |X0 – X1|, N, power )

(1) is the most common power usage

[Cohen 1988]



Arguing the Null Hypothesis

[Cohen 1988, p 16]

Cannot directly argue H0: µs – µm = 0.  
But we can argue that |µ0 – µ1| < d.

• Thus, we have bound our effect size by d.

• If d is small, effectively argued null hypothesis.

• Cohen recommends α = 0.05, power = 0.20

α
μ1μ0

β

power

H0 H1
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§ Descriptive statistics
Basics (mean, variance, …), graphical visualization

§ Inferential statistics
Hypothesis testing, significance tests.

§ Problems, issues, challenges
The replication crisis, p-hacking, biases

Þ To be continued next time …


