Quality Ratios of Measures for Graph Drawing Styles

Michael Hoffmann - Zurich Marc van Kreveld - Utrecht Vincent Kusters - Zurich Günter Rote - Berlin

Don't like:

- edge-edge crossings
- small angles between incident edges
- both long and short edges
- edges close to non-incident vertices

- **crossing number**: number of edge crossings
- angular resolution: smallest angle between incident edges
- edge-length ratio: ratio of longest to shortest edge length
- **area requirement**: grid size needed
- feature resolution : ratio of longest edge to shortest vertex-edge distance

angular resolution 20°

edge-length ratio 3

angular resolution

edge-length ratio

area requirement

angular resolution 45°

- edge-length ratio $\sqrt{2}$
- area requirement 9

angular resolution 60°

edge-length ratio 1

area requirement 9

quality measure of a drawing of a graph

not the same thing as

quality measure of a graph

Drawing Styles

fixed embedding planar straight line free embedding planar **circular** arc

free embedding planar straight line

free embedding straight line (crossing)

Drawing Styles

free embedding straight line (crossing) **free** embedding planar straight line

fixed embedding planar straight

line

free embedding planar **circular** arc

Quality Ratios

why?

"How much worse might a **fixed** embedding planar straight line drawing be than a **free** embedding planar straight line drawing in terms of angular resolution?"

"How much better can a **circular** arc drawing of a graph be than a **free** planar straight line drawing in terms of area requirement?"

QR(circular, free) = sup

planar graph *G* angular resolution of circular plane drawing of G

angular resolution of free straight plane drawing of *G*

QR(free, fixed) = Sup planar graph G area requirement of free plane drawing of *G*

area requirement of fixed plane drawing of *G*

example

Angular resolution; circular versus free plane drawings

$QR \ge 120/30 = 4$

free : fixed circ. : free crossing : free

angular resolution

≥4.8

area requirement

edge-length ratio

feature resolution

	free : fixed	circ. : free	crossing : free
angular resolution	≥12	≥4.8	∞
area requirement	∞	∞	∞
edge-length ratio	∞	∞	∞
feature resolution	∞	\geq 3 $\sqrt{3}$ / π	≥ 2.509

free : fixed circ. : free crossing : free

angular resolution

area requirement

edge-length ratio

feature resolution

	free : fixed	circ. : free	crossing : free
angular resolution	1	1	1
area requirement	≥ 16/15	≥ 1.5	≥ 22/21
edge-length ratio	1	1	1
feature resolution	\geq 1+ ϵ	?	?

free : fixed

angular resolution

QR(free, fixed) = sup

planar graph *G* angular resolution of free plane drawing of G

angular resolution of fixed plane drawing of *G*

$$\geq \sup_{k} \frac{360 / (k+3)}{30 / (k+1)} = 12$$

crossing : free

$QR \geq 1.5$

Formann et al. '93: Every planar graph can be drawn with angular resolution $\Omega(1/d)$; the drawing may be non-planar

Garg & Tamassia '94: There exists a family of planar graphs with max degree d for which any plane straight-line drawing has angular resolution $O(\sqrt{(\log d) / d^3})$

→ The quality ratio of crossing versus free drawings for angular resolution grows with at least ~ $(1/d) / \sqrt{((\log d) / d^3)}$, so it goes to ∞ as d goes to ∞

circular : free

edge-length

ratio

Either the nested triangles get significantly smaller and smaller, giving unbounded edge-length ratio, ...

or the edges between the triangles must be short, also giving an unbounded edge-length ratio

edge-length ratio

circular : free

Nested circles can have radii that are arbitrarily close, and the edge-length ratio remains ~3

→ The quality ratio is unbounded

Conclusions Quality Ratios of Measures for Graph Drawing Styles

- A method to compare drawing styles of graphs: quality ratios
- Various results for four quality measures and four drawing styles
- 10 of the 24 table entries are open problems