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Modeling social-ecological interactions between humans and ecosystems to analyze

their implications for sustainable management of social-ecological systems (SES) has

multiple challenges. When integrating social and ecological dynamics, which are often

studied separately, one has to deal with different modeling paradigms, levels of analysis,

temporal and spatial scales, and data availabilities in the social and ecological domains. A

major challenge, for instance, is linking the emergent patterns from individual micro-level

human decisions to system level processes such as reinforcing feedbacks determining

the state of the ecosystem. We propose building a hybrid model that combines a

system dynamics with an agent-based approach to address some of these challenges. In

particular, we present a procedure for model development and analysis that successively

builds up complexity and understanding of model dynamics, particular with respect

to feedbacks between the social and ecological system components. The proposed

steps allow for a systematic increase of the coupling between the submodels and

building confidence in the model before deploying it to study the coupled dynamics.

The procedure consists of steps for (i) specifying the characteristics of the link between

the social and ecological systems, (ii) validating the decoupled submodels, (iii) doing

sensitivity analysis of the decoupled submodels with respect to the drivers from the

respective other subsystem and, finally (iv) analyzing the coupled model. We illustrate

the procedure and discuss opportunities and limitations of hybrid models against the

background of an archetypical SES case study, namely the restoration of a turbid

lake. Our approach exemplifies how a hybrid model is used to unpack SES complexity

and analyze interactions between ecological dynamics and micro-level human actions.

We discuss the benefits and challenges of combining a system dynamics models as

an aggregated view with an agent-based model as a disaggregated view to improve

social-ecological system understanding.

Keywords: social-ecological system, human decision making, lake restoration, agent-based modeling, system

dynamics
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Introduction

Humans depend on many services provided by ecosystems such
as food and clean water, nutrient retention, protection from
flooding or recreational opportunities (MEA, 2005). At the same
time human activities such as resource exploitation, construction
or industrial production have altered ecosystems at and across all
scales (e.g., Steffen et al., 2015). Approaches for understanding
and sustainably managing ecosystems need to take these two
way interactions between people and ecosystems into account
(Berkes and Folke, 1998). Modeling, which is a widely used
tool for ecosystem and natural resource management, thus
has to go beyond studying humans as a simple driver of
ecosystem dynamics or natural resources as a simple input
to a production process by explicitly considering feedbacks
between the ecological and social domains (Schlüter et al.,
2012). Integrating human individual and collective behavior
with complex ecological dynamics, however, comes with many
challenges. These include amongst others the need to connect
processes at different levels of aggregation used to represent
the social and ecological systems, the different temporal and
spatial scales, differences in data availability, as well as different
modeling paradigms associated with different fields or levels
of analysis. In this paper we present an example of a hybrid
modeling approach that combines system dynamics with agent-
basedmodeling to address some of these challenges.We present a
procedure for the development and analysis of the hybrid model
and discuss opportunities and limitations against the background
of an archetypical social-ecological systems (SES) case study,
namely the restoration of a turbid lake to a more desirable clear
water state.

Most commonly, lake management is investigated as an
external intervention in the biophysical properties of a lake
(Carpenter, 2005; Pers, 2005; Kara et al., 2011), rather than
as the result of the interplay between ecological dynamics
and social processes. Important social processes are decision
making about ecosystem management measures and human
activities that affect future states of the ecosystem. To understand
the multiple drivers for lake restoration, it is necessary to
analyze the lake management system as a coupled SES, where
humans are embedded in the ecosystems they affect and
depend on (Folke et al., 2005). One approach to take these
interdependencies into account is to identify key social-ecological
interactions that determine human responses and ecosystem
change (Ostrom, 1990). Taking this perspective, we account in
this study explicitly for responses of managers that monitor
the lake state and regulate human interactions with the lake
as well as decision making by actors whose behavior directly
affects ecological dynamics of the lake. In doing so we face
the challenge of linking emergent patterns from individual,
micro-level decisions of humans to system level ecological
processes such as nonlinear, reinforcing feedbacks determining
the lake state in order to model individual and collective
human responses to ecological change and vice versa ecological
change resulting from human action. Different approaches
have commonly been used to model these different social and
ecological processes.

The ecological dynamics of shallow lakes, particularly so called
regime shifts that shift a lake from a clear to a turbid state, are
commonly investigated as dynamical systems using analytical
minimal models (Scheffer, 1989, 1990; Biggs et al., 2009) or
simulation models (Carpenter et al., 1999; Mooij et al., 2009).
Regime shifts are abrupt shifts in the state of a lake that persist
over time. They are often caused by an external driver such as
nutrient increases (eutrophication) that is amplified by ecological
feedbacks (Scheffer, 1990). Dynamical systems can undergo a fold
bifurcation which can be detected using bifurcation analyses to
identify the range of driver values over which bistable behavior
can be expected. Some systems show hysteretic behavior, which
is when different stable states can be reached depending on the
initial state. Existing minimal models of regime shifts in lakes
show such hysteresis (Scheffer, 1990). The phenomenon can be
explained by feedback loops that keep the lake system in either
the clear or the turbid state. The moment that the driver crosses
a threshold, the dominant reinforcing feedback switches and
pushes the system into a different state. While these models are
good at analyzing general system characteristics and important
ecological feedbacks (e.g., Biggs et al., 2009) or aggregated effects
from human decisions in land-use (e.g., Haase et al., 2012), they
do not take into account potential human adaptive responses to
changing ecological dynamics which may affect the regime shift
or its reversal, e.g., through active restoration. They thus do not
allow investigating particular social-ecological interactions such
as the development of regulations as a macro-level response to
ecological degradation or the lack thereof that may affect the
dynamics of the whole social-ecological system.

The social processes related to the use and management of
ecosystem services such as monitoring, regulating, and enforcing
new rules or adopting new technologies have not yet been
modeled much in the context of SES. Traditional ecological
models rarely take into account human decision-making (but
see as an exception Janssen, 2001; Carpenter and Brock, 2004),
despite its importance for management outcomes. Agent-based
models (ABM) as they have been used in social simulation
(Balke and Gilbert, 2014) as well as in land use (Janssen et al.,
2000; Le et al., 2008) or marine sciences explicitly describe
human decision making and range on a continuum from
rather simple interactions among agents to deliberative/cognitive
representations (see for reviews Bousquet and Le Page, 2004;
Hare and Deadman, 2004). In ABM’s, processes of decision
making involving multiple factors are often implemented
using sets of conditional rules, but optimization routines that
determine the optimal choice under given constraints are also
common. Fewer ABM’s address multiple, organizational levels of
human interactions and howmacro-level social behavior emerges
from micro-level interaction.

In summary, building models for coupled social-ecological
systems involve several challenges which comprise the explicit
representation of feedbacks on multiple levels of aggregation
and links between conceptually different subsystem models
operating on different scales. One approach, that looks promising
to us to address those challenges, is to develop and analyze
a hybrid model in a stepwise approach to take advantage of
different modeling paradigms. In this paper, we reflect on these
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particular steps and illustrate a potentially generic approach
for social-ecological model analysis with the example case of
lake restoration. The purpose of the stepwise procedure and
the reflection upon the model development is to allow for
(i) making explicit design choices related to the selection of
the modeling approach for each subsystem, and (ii) rigorous
testing of submodels using specific tools of each approach. The
single steps also help to successively build up complexity of the
model and its analysis for (i) systematically investigating the
effect of feedbacks between the social and ecological systems,
(ii) exploring the coupled model to build understanding for full
model analysis. For the hybrid model, we propose combining
system dynamics with agent-based modeling to link micro-
level human action with system-level ecological dynamics. Such
an integrated hybrid model allows studying social-ecological
interactions over time to understand their implications for the
future development of the coupled SES and its management.

In this paper, we briefly review the two modeling approaches
and suggest ways to combine them in practice. After introducing
the case study, we present a stepwise approach to systematically
develop and test a hybrid model. We illustrate our approach
with a social-ecological model on the restoration of a turbid
lake. The model has been developed to study the interactions
between lake managers, private house owners, and a turbid lake
to estimate the potential of improved sewage water treatment
for lake restoration, where the aim is to better understand the
critical time lags between social and ecological responses during
the restoration process. We finally discuss the benefits as well
as the conceptual and methodological challenges of combining
an aggregated, system level with a disaggregated, agent-based
modeling perspective.

Characteristics of Agent-Based and
System Dynamics Models and Ways to
Combine Them

This section provides a brief overview of characteristics of
agent-based and system dynamics models that were particularly
acknowledged in the past (Table 1). The purpose is to
identify both advantages and challenges of those approaches.
The presented model paradigms are iconic in the way that
they are often presented as exclusive alternatives to analyze
complex systems either from a top-down/aggregate or bottom-
up/disaggregate perspective (Vincenot et al., 2011; Swinerd and
McNaught, 2012). Finally, we discuss examples how they have
been or could potentially be combined in a hybrid model.

The choice of a modeling paradigm is primarily determined
by the research question and objectives. Agent-based modeling
is a common approach to study complex adaptive systems, i.e.,
systems that are characterized by self-organization, emergence
and adaptation (Levin, 1998). ABM approaches generally focus
on micro-level interactions that may explain emergent patterns
such as transient dynamics on a system level. By this, one can
identify which mechanisms are important, taking into account
heterogeneity of entities, spatial and temporal heterogeneity of
processes, and stochasticity. The output can be time series of

system-level output variables, spatial patterns or the statistical
analysis of system patterns that can be validated against empirical
data. Rather than reproducing micro-level processes realistically,
the aim in agent-based modeling is usually to simulate the
minimum of necessary functions that are able to reproduce a
certain system level behavior or pattern as an emergent outcome.

While agent-based models are used to describe disaggregated
parts of a system, system dynamics models represent the
aggregated system in the form of stocks and flows. Here, the
main focus lies on describing system-level behavior such as
exponential growth through system -level structures such as
feedbacks and non-linearities rather than letting the behavior
emerge from micro-level interactions. Dynamics on the system-
level are often represented by a set of differential equations and
analyzed with the tools of dynamical systems theory. Here the
aim is to describe the fixed points/stable states of the system
(stability analysis) and identify how system structure drives
system behavior (e.g., bifurcation analysis). System dynamics as
a particular approach within dynamical systems applies causal-
loop diagrams as a graphical approach to represent the main
system-level interactions. This is usually done to investigate the
nature of feedbacks (balancing, reinforcing) and estimate the
overall dynamics of the system for example with stakeholders
for policy analyses in environmental problem settings (van den
Belt, 2004). It becomes necessary to implement the equations for
the causal-loop diagram, however, to examine which feedbacks
in the system are dominant and drive the development over
time. Outputs are often stable states of the system, bifurcation
diagrams or time-series describing system level behavior. Such
simple equation-based models, so called minimal models, can
still be studied analytically to identify system properties such as
stability.

For more complex analyses of both, system dynamics and
agent-based models, simulations with varied parameters and
multiple repetitions (in case of stochastic models) are evaluated
to generate average system-level outcomes. These outcomes can
be used to formulate new or more specific hypotheses that can be
tested for instance with other model simulations.

If a research question targets specifically the link between
two parts of the system under study, it may be useful to
define subsystem models and their interactions separately.
Linking different subsystem models requires, firstly, specifying
the particular variables, the aggregation level, and time scales
that define the interface between subsystems.While themodeling
paradigm suggests that agent-based models are rather suitable
for representing the micro-level and system dynamics the system
level processes, it does not mean that this order determines
the way that they are connected (Swinerd and McNaught,
2012). There exist multiple ways to combine different types of
simulation models ranging from subsequently coupled (such as
in Gaube et al., 2009) to dynamically coupled (Shanthikumar and
Sargent, 1983; Swinerd and McNaught, 2012). Often, a system
dynamics representation is chosen to simulate internal processes
of an entity while the interaction among entities is mapped
via an agent-based approach (Bradhurst et al., 2015). In other
cases, processes on the system level affect individual entities top-
down (downward-causation) and in turn interacting individuals
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TABLE 1 | Characteristics of agent-based and system dynamics models, and how they can be combined within a fully integrated hybrid model.

Agent-based model System dynamics model Hybrid model (proposed)

Characteristic question How do emergent system-level patterns

develop from micro-level interaction (e.g.,

spatially, between individuals)?

- How do stocks change or stabilize? (given

that rates are constant)

- Which process/feedback is dominating?

- How do changing process rates

(impacted by decisions) affect

dynamics?

- How do changing stocks affect

agent states/the distribution of traits?

Purposes

In general for all:

improve system

understanding rather

than prediction or

forecasting

(Kelly(Letcher) et al.,

2013).

- To identify mechanisms (specific interactions)

that are responsible for emerging system-level

patterns (disaggregated).

- Generate hypotheses, exploration of

micro-level behavior (Epstein, 2008)

Investigate system-level dynamics

(aggregated), stability properties of the system,

loop dominance, explaining temporal

dynamics, projection into the future

Investigating different micro- or

system level mechanisms that drive

certain dynamics. Generate

hypotheses of systems state-change

(when does dominance of feedbacks

change?) or structural development

over time (when does an average trait

of agents change?)

Focus Micro-level interactions between entities,

network structure (heterogeneous

characteristics of individuals/actors, temporal

discrete behavior), transient dynamics

Processes driving accumulation in stocks at

(sub-)system level, stable-states, feedbacks

(balancing, amplifying), non-linearities

Process of restructuring in a system

which can focus either on a structure

affecting the processes, or processes

affecting the structure

Tests for model

calibration

Statistical pattern matching—can the model

grow patterns that are found in reality?

Stability analysis—under which parameter

setting can fixed points/equilibria occur? How

stable are they?

Separate sub-system tests (paradigm

specific) and qualitative check for the

coupled version

Suitable and traditional

analysis tools, typical

experiments

Only through simulations, often with multiple

repetitions because of stochastic elements:

plotting group/system level characteristics over

time (average), evaluating a limited parameter

range, describing transient dynamics

Simple models through analytical tools (basins

of attraction, bifurcation analysis, overall

stability), and more complex through

simulations (state space plots from simulations,

evaluating stable-states, equilibria)

Through simulations with a focus on

either

1. Change in structure/parameters:

how does it affect the dynamics?

2. Change in dynamics: how does it

affect the structure?

Type of outcome Emerging spatial/agent patterns, scenario

comparison between structurally different

model versions, system properties such as the

average state of a population

Aggregated system properties in terms of

stability, loop dominance

Time series of emerging

state-transitions

have emergent properties that play out on the system level (e.g.,
Haase et al., 2012). We present a hybrid model herein (Section A
Stepwise Approach toDevelop, Test andAnalyse aHybrid Social-
ecological Model) where the two subsystems can be presented
side-by-side with a dynamic feedback between them.

Case Introduction: Lakes Analyzed as
Social-Ecological System

Regime shifts in shallow lakes from the clear to the turbid
state are typically driven by an increase of nutrient inputs into
the lake from streams, channels and groundwater. The affluent
availability of nutrients, in particular phosphorus, enhances the
growth of planktonic algae, which reduces light penetration
and thus causes submerged plants to disappear that dominate
in clear waters. The density of algae also depends on the
presence of its predator zooplankton and their predator whitefish
such as bream (Abramis brama L.). A typical turbid lake
is characterized by high densities of planktonic algae, low
zooplankton biomass and diversity, high abundance of whitefish,

a low density of piscivorous fish (such as pike—Esox Lucius
L.), and reduced amounts of macrophytes (Ekvall et al., 2014).
Conversely, a clear lake contains limited algae, a rich and diverse
zooplankton community, few whitefish, a higher density of pike
and macrophytes. A range of minimal models exist that are able
to reproduce lake regime shifts that originate in different parts
of a lake’s foodweb (Scheffer, 1990). While the causes for those
regime shifts are often diffuse, accumulated over long time, the
consequences appear relatively abrupt, are clearly visible and
affect multiple ecosystem services (Biggs et al., 2012b).

For the case of lakes, multiple actors potentially contribute to
eutrophication, namely farmers using fertilizer for agriculture,
municipal sewage treatment plants, and private house owners
who are not connected to municipal sewage treatment. Through
the water framework directive in the EU, particular rules for
fertilizer use in agriculture and sufficient purification procedures
for sewage water were formulated which reduced inflow from
agriculture and commercial sewage treatment plants. However,
single house owners were not much addressed before as their
contribution to nutrients in water catchments was not seen as
significant as today. Recent evidence, however, shows that in
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some regions such as the Baltic Sea untreated sewage water
from private households (mainly holiday homes) can be a major
polluting source (Kininmonth et al., 2015). The decision is made
by individual house owners about whether to upgrade their
private sewage system to withhold more of the nutrients. This
decision can be influenced by cost-benefit considerations, the
presence of sanctions such as fines, or social considerations,
such as social norms or social pressure within a social network.
Individual house owners, for example, are obliged to invest into a
private, legal sewage treatment system, but the benefits therefrom
are communally shared, probably lag in time and are difficult
to see which incites to delay the private investment. The way
how house owners are informed and connected among them
plays a crucial role in the catchment-wide adoption of sewage
treatment upgrades (Wallin, 2012). To drive a desired regime
shift in the lake from the turbid to the clear state, multiple
stakeholders (municipalities, farmers and responsible persons
for sewage water treatment) are required to take effective and
coordinated action.

A Stepwise Approach to Develop, Test and
Analyse a Hybrid Social-ecological Model

Here, we present our general stepwise approach of developing
and analyzing a hybrid model representing a SES (Figure 1).
Developing one of the submodels might involve a model
development cycle in itself (Schmolke et al., 2010) but here we
focus solely on considerations for coupling existing submodels
that build on different paradigms or operating on different
aggregation levels. The same accounts for results of analyses of
the decoupled subsystems which for the purpose of this coupled
model are elements of the model building process. We consider
the outcomes from the coupled model that answer our research
question about the impact of social time lags for lake restoration
our model results.

The first step starts on the conceptual level with the aim to
identify the main social-ecological interactions in the target SES
that need to be defined for the hybrid model. This includes
a specification of the links between the ecological and social
systems, as well as the submodels representing each of the
subsystems, their aggregation level, temporal, and spatial scales.
From those specifications, one can also derive which modeling
paradigm is suitable to represent each submodel.

The second and third steps are performed for each submodel
separately and involve tests to verify or validate the submodel by
itself and with respect to the other model it will be coupled with.
Step two can involve a newly developed or an existing model that
is now adapted and analyzed for the purpose of the hybrid model.
Adapting an existing model might involve a transfer of the model
to a different modeling environment and tests of characteristic
submodel behavior. For step three, we propose a sensitivity
analysis for expected parameter changes that might become
relevant when coupling the two models. So, each submodel is
tested for its behavior driven by the output expected from the
other respective submodel (but without a feedback to the other
model). This provides a better understanding of one-directional
influences before the feedback between submodels is fully
integrated. The final step four goes back to the fully integrated
social-ecological view and explores the behavior of the coupled
model implementation. Prior submodel analyses can be very
helpful to interpret results from the fully implemented feedback.

To illustrate the proposed steps, the remaining parts of this
section present the actual description and analysis of our hybrid
model on lake restoration. Thus firstly, we provide an overview
on the model structure including the links between the social
and ecological systems, assumptions, scales, and the included
processes (Step 1). Secondly, we focus on the ecological submodel
and reproduce an existing minimal lake regime shift model using
the tool Matlab Grind to identify stable state values for the fish
populations and the critical nutrient levels (Step 2b). These are

FIGURE 1 | Main steps for developing and analyzing a hybrid model for a SES.
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used to test the reimplementation in NetLogo, an environment
that is capable and comfortable for developing agent-based and
system dynamics models. Note that in our case for the social
submodel this step (2a) is less relevant because we build on a
model that has already been developed in a SES context (Tavoni
et al., 2012). The social submodel testing therefore takes place
mainly in step 3a. Thirdly, we test the behavior of both submodels
with respect to changing drivers from the other respective
submodel (Step 3a and b) and finally, we explore the coupled
model (Step 4).

A Hybrid Model to Examine Lake Restoration:
Limnoses (Step 1)
The purpose of our hybrid model (“LimnoSES,” stands for
“limnological social-ecological system”) is to investigate human
responses to a turbid lake that might promote or delay a desired
regime shift back to the clear state. The shift from a clear
to a turbid state has been frequently described and analyzed
(Scheffer, 1990; Carpenter and Brock, 2004; Mooij et al., 2009)
but the decisions and social processes that are necessary for lake
restoration have been much less investigated. We aim to get a
better system understanding about the relevant social-ecological
interactions and therefore develop submodels for the social and
ecological subsystem respectively.

The social-ecological system of lake management as modeled
in LimnoSES consists of a lake subsystem and a social subsystem
that are connected through two social-ecological interactions
Figure 1Main steps for developing and analyzing a hybrid model
for a SES.

Figure 2 One interaction is the monitoring activity where the
responsible authority oversees regular measures of indicators of

the state of the lake. They report annually data on water quality,
nutrients, composition and density of planktonic algae, amount
of fish and submerged plants (macrophytes). For the purpose
of this model, we chose the density of pike as a system-level
indicator of the lake’s state because it is also a commercially
interesting fish species. As only the aggregated number of
fish rather than individual pike characteristics play a role in
determining the lake state, this gives a first indication for the
suitability of a system dynamics perspective for the ecological
submodel.

The second interaction is the pollution of the lake caused by
insufficient treatment of sewage water from private house owners
in the catchment. We assume that the increase of nutrients in the
lake in the past was mainly caused by fertilizer use in agriculture
and historically insufficient municipal sewage treatment. But
since the use of fertilizer has been regulated and municipal
sewage treatment has been technically upgraded, private house
owners and their aggregated impact have now a significant
influence on lake nutrient levels. They are thus important actors
to decrease today’s nutrient input to the lake by upgrading their
onsite-sewage systems (OSS) (Wallin et al., 2013b). Before the
aggregated impact from private sewage treatment affects the lake,
house owners decide individually whether or not to upgrade their
private system and their decision is for instance influenced by the
current legislation. These two levels of individual and collective
social processes indicate that an agent-based perspective is
suitable for the social submodel.

Starting from the focal social-ecological interactions, we
determined which entities and processes need to be represented
in the ecological and the social submodels in order to model
the restoration process. The ecological submodel, for which

FIGURE 2 | Conceptual graph of our hybrid model with the social system represented by a flow chart and the lake system by a causal-loop diagram.

The subsystems are connected via the monitoring of the municipality and the nutrient release from private house owners with insufficient onsite-sewage systems

(OSS). The colored processes for the social actors show optional, additional responses that are explored and compared in our model analysis.
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we choose the minimal model by Scheffer (1989), represents
two fish populations, namely pike (piscivore fish) and bream
(whitefish) which interact as predator and prey respectively. The
fish populations are also influenced by the amount of nutrients
and macrophytes in the lake. The minimal model operates on a
daily time scale and shows bistable behavior for the fish densities
in response to present nutrient amounts.

The causal-loop diagram for this minimal lake model
(Figure 2, right) consists of two feedback loops. A balancing
loop describes the predator-prey relationship between pike
and bream which enables these two populations to equilibrate
around a stable state. The reinforcing loop that connects pike
and bream via the amount of macrophytes can on the other
hand force the two fish populations away from the stable state
they were previously in. These two feedback loops are the
main structural elements that enable bistable behavior of the
lake system and therewith regime shifts between two stable
states.

The social submodel represents the regulation of private
sewage treatment that is triggered by the municipality when a
worsening state of the lake is monitored (Figure 2, left). We
assumed a simple regulation response on an annual time scale
where the municipality acts upon drops of the nutrient level
below an assumed threshold and informs the private house
owners in the following year about the need to upgrade their
on-site sewage system (OSS). Agents represent individual house
owners (n = 100) that together release nutrients to the lake while
using their old OSS. After house owners have been informed
about the need to upgrade their OSS, they individually decide
whether they make the investment for the OSS upgrade. The
outcome of this decision depends in reality on a multitude of
economic and social factors (such as capital, social norms and
more; Wallin, 2012) that we combine for the purpose of this
study within one individual probability named “willingness-to-
upgrade.”

The problem of OSS upgrading of individuals in the
community for the benefit of all represents a social dilemma
where individual and collective benefits are not aligned and the
incentive to free-ride and not contribute to the public good
of a clean lake is high. There is a rich literature and many
models exploring possible mechanisms that enable cooperation
for achieving the socially optimal outcome. The development of
the social submodel has been inspired by the model of Tavoni
et al. (2012) which investigates the role of social disapproval for
successful cooperation. We explore two different mechanisms of
how this willingness to upgrade could be influenced based on
evidence from a recent survey among Swedish house owners
(Wallin et al., 2013b). When confronting house owners with the
request to upgrade their sewage system, they find themselves in a
high-cost low-benefit situation. As a consequence, house owners
tend to avoid timely upgrade of their OSS and the question is
how their decision to upgrade can be supported. In some cases,
inspectors were sent out by municipalities to check the current
installation and support upgrading by reminding house owners
about their legal obligation (“central enforcement”). But in many
municipalities, inspectors could not be afforded and successful
OSS upgrade was found to depend on horizontal information

exchange among house owners and their trust in the governance
system (“social engagement”).

The general schedule of how the two submodels are
implemented, linked and processed is as follows. Each model
year starts with the calculation of the aggregated release of
nutrients by the house owners. The amount of nutrients is
used to drive the daily dynamics of the fish and macrophyte
densities. Once a year, the nutrient level in the lake is
monitored by the municipality. If the threshold is crossed, the
municipality initiates a process of legislation and informs all
house owners in the following year about a new regulation that
requires the upgrade of their OSSs. Depending on the house
owners’ willingness-to-upgrade, they upgrade their OSS and
therewith eventually stop releasing nutrients into the lake. Two
alternative mechanisms are assumed that potentially increase the
house owners willingness-to-upgrade, one is through horizontal
enforcement (“social engagement”:“tell neighbors” in Figure 2)
among house owners and the other through vertical enforcement
from the municipality (“central enforcement”: “enforcement” in
Figure 2). More details on the model description can be found in
the SupplementaryMaterial where we used the protocol ODD+D
that was specifically designed to describe human decisions in
agent-based models (Müller et al., 2013).

Our hybrid model simulation fully couples the agent-based
and system dynamics submodel with a sustained feedback on
the system level in both directions which can be called an
integrated hybrid simulation (Swinerd and McNaught, 2012
or class II-type after Shanthikumar and Sargent, 1983). Thus,
former external drivers of the submodel, such as the nutrient
flow, became integrated and result from the aggregated decisions
of individual house owners. LimnoSES was implemented in
NetLogo (Figure 3).

Validating Patterns from the Minimal Lake
Regime Shift Model (Step 2b)
The lake submodel consists mainly of two differential equations
that are able to reproduce shifts between a clear and a turbid state
indicated by the pike/bream-relationship (Scheffer, 1989). The
densities of the two modeled fish populations span a state space
for this ecological submodel. Typical patterns for regime shifts
are bistability in the state space and hysteresis, which should
be reproduced by the ecological submodel and are relevant for
the analysis of our hybrid lake model. The stability analyses
are usually performed on continuous model implementations.
Within our hybrid model, however, a discrete representation
is required because of discrete events in the social system. We
calculated the values for the stable states of the continuous lake
submodel at different nutrient levels in order to use them later to
verify the discrete implementation.

We implemented the given equations and parameter settings
inMatlab Grind1 to visualize the stable states within a state-space
diagram. Depending on the nutrient level, the zero-isocline of
bream has different positions and determines whether the lake
system has one or two stable states (Figure 4). For the bistable
case, one state shows a very high density of bream with a very low

1http://www.sparcs-center.org/grind.
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FIGURE 3 | Part of the graphical interface from our “LimnoSES” implementation in NetLogo showing in the main visualization panel house owner

agents on the left side and representative agents for the fish stocks on the right side. Buttons, sliders, information boxes and diagrams are used for testing

single scenarios before they were executed in a batch mode for the analyses.

density of pike which represents the undesired state where the
lake is turbid. The desired state instead has a lower bream density
and a relatively high pike density. This analysis also shows that
the desired state cannot be reached if the nutrient level is too high.
The stable state values for the clear water stat (high pike density)
and turbid stat (low pike density) are later used to initialize a lake
eutrophication or restoration scenario respectively.

Another convenient tool to investigate system-dynamics
models withinMatlabGrind is a bifurcation analysis to determine
the parameter range for driver values (here: nutrients) where
bistability can be expected. The values for the stable states
together with the parameter range for nutrients allow us to
formulate and test hypotheses about the expected behavior of
this model when it runs in a different implementation. So, for
instance, at a nutrient level of 1.5 (dimension-less), stable states
can be expected around a population density of 25.8 g ·m−2

for bream and 2.6 g ·m−2 for pike in the clear state and at
84 g ·m−2bream and 0.04 g ·m−2 pike in the turbid state. The
hysteretic behavior of fish densities in response to nutrients

ranges between 0.9 and 2.1. This means that, above this range,
the lake system ultimately runs into the turbid state, whereas
below this range, only the clear state is reached. Within the
bistable range of nutrients, it depends on the initial values of
pike and bream whether the lake runs into a clear or turbid
state.

We decided to implement the prototype of our hybrid model
in NetLogo since the main interest in this study is to test
different mechanisms of human decision-making in response
to the lakes state. This environment is primarily designed to
implement and test agent-based models but it has an interface
to implement system dynamics models as well. But since the
numeric representation of such models is always discrete, we had
to test the suitable step size, meaning the respective time scale,
at which bistability and regime shifts between those states can be
reproduced.

The following calibration tests were performed to ensure that
the NetLogo implementation reproduces the specified patterns
above for the ecological subsystem:

Frontiers in Environmental Science | www.frontiersin.org 8 October 2015 | Volume 3 | Article 66

http://www.frontiersin.org/Environmental_Science
http://www.frontiersin.org
http://www.frontiersin.org/Environmental_Science/archive


Martin and Schlüter Hybrid model of social-ecological interactions

FIGURE 4 | State-space diagram showing zero-isoclines for bream and

pike with different stable states depending on the nutrient level that

influences the position of the zero-isocline for bream. The zero-isocline

for pike is unaffected by the nutrient level. Reimplementation is based on the

model developed by Scheffer (1989).

- Can bistable behavior be reproduced?—Yes, increase or
decrease in nutrients respectively cause the fish stocks to run
into different states.

- What are suitable initial states for fish populations to stay in the
clear or turbid state? Does the time-scale (annual, daily) play
a role?—While the time scale is not relevant for continuous
models, it actually has an effect in time discrete simulations.
Although the original model operates with parameters on the
daily time scale, we checked whether it is possible to transform
it to an annual scale to simplify the link to the annually
operating social submodel. But, the annual scale for the system
dynamics was found to limit the initial conditions that are
suitable to lead to the clear state considerably. The daily scale
was chosen to be more suitable thereafter as the state space
for fish stocks was more equally divided between the clear and
turbid state.

Sd-submodel Test: How does the Lake State
Respond to a Dynamic Driver from the Social
System? (Step 3b)
Since the coupled model is intended for the investigation
of changing nutrient values affecting the lake state, we are
particularly interested in the transient dynamics. This is in
contrast to a common bifurcation analysis where simulations run
with constant parameters until a stable state is reached.We aim to
explore the transient dynamics in the ecological submodel caused
by in- or decreasing nutrient values because lake managers are
confronted with situations where transient dynamics may cause
different outcomes in terms of the lake state. We also want to
estimate in what way the response time of house owners to
upgrade their sewage system may affect nutrient change and
therewith the lake state.

For the following experiment, we run scenarios of nutrient
increases at three different rates and respective time spans (10,
20, and 40 years) so that they end at the same nutrient level.
We selected three suitable nutrient end levels which were right
below, in the middle and above the hysteresis range (Figure 5,
left) For this experimental setup, we expected that simulations

with the highest nutrient level result in the turbid state and
simulations running to the lowest nutrient level at the clear state.
But it was unclear how the outcome will be when the medium
nutrient level is targeted. The result confirms that under a low
and high nutrient regime, the lake reaches a clear and turbid state,
respectively, independent from the rate of nutrient changes over
time. The lake reaches a clear state once the nutrient level is below
the hysteresis range, as indicated by bream and pike densities
in the state space (relatively high pike and low bream densities,
Figure 5, right). Further, the lake reaches a turbid state once the
nutrient level goes beyond the hysteresis range independent of
the rate of nutrient change. In contrast to these extreme scenarios,
the medium nutrient level scenario shows that the end state of
pike and bream densities can also depend on the previous rate of
nutrient increments. The highest rate caused the fish populations
to end in the turbid state, while lower rates enabled leveling off
into the clear state.

The rate dependent behavior in transient simulations extends
previous equilibrium analyses that solely examined stable states.
The rate dependent shift to another basin of attraction was
called r-tipping before (Ashwin et al., 2012) but it is much
less recognized than bifurcation or driver related tipping points.
Interestingly, we could not find this rate dependent behavior in
an experiment where nutrients were reduced in the same way as
they were increased in this experiment, which would simulate the
restoration process at different rates.

ABM-submodel Test: How House Owners
Respond to a Lake Becoming Turbid? (Step 3a)
Since we had no particular pattern to test our social submodel
against, we explored the general effect from three potential
response scenarios of house owners that need to upgrade their
sewage system. To this end, all house owner agents were
initialized homogeneously with a value for their willingness-
to-upgrade. We compared scenarios of homogeneous house
owners without interaction among them as a baseline with two
scenarios that describe social interactions with which the initial
willingness-to-upgrade can be increased over the simulation
time. For the baseline scenario, the rate is static with which house
owners upgrade their OSS. In the “central enforcement” scenario
it is assumed that, after a fixed time lag following the municipal
legislation for upgrading OSS, inspectors visit individual house
owners which promotes the individual willingness-to-upgrade.
In the “social engagement” scenario, we assume that direct
knowledge exchange with neighbors and the house owners sense
of responsibility to follow the law improves the willingness-to-
upgrade (Wallin et al., 2013a). So, house owners are more likely
to follow the example of their neighbors who already upgraded
their OSS. From this assumption follows that at low values for
the willingness-to-upgrade, upgrading activities will take off quite
slowly before they accelerate and reach every house owner. But
at higher values for the willingness-to-upgrade, a much faster
upgrade by all house owners can be expected. In contrast to this
scenario, the “central enforcement” scenario explores how after
a fixed time lag (assumed as a buffer time before a municipality
finds time and resources to check the implementation of the new
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FIGURE 5 | Left: Nutrient time series as driver for scenarios, at three rates (speed: slow, medium, high), and three different destination levels (end:

low, medium, high), showing results from nine simulations in total. Right: The resulting fish populations in the state space. At the lowest nutrient levels, the

resulting fish state is independent of the rate of change. But in the intermediate nutrient level, fish populations driven by the fastest increase (red) experience pike

reduction while at slower rates pike increases can be observed. At the highest nutrient level, all fish simulations result in the low-pike-state.

law) all house owners are inspected which is assumed to increase
their willingness-to-upgrade.

In Figure 6 we present the average time lag between the
year that house owners were informed about new sewage water
regulations and the year that they actually upgraded their sewage
system. We aggregated the individual responses and show only
the average time lag for the total population in each scenario.
Along the x-axis with increasing values for the willingness-to-
upgrade, the time-lag for OSS upgrade decreases exponentially
in all three scenarios as expected. But further, the scenario
comparison revealed that the “central enforcement” worked best,
in terms of a short time lag, for a house owner population with
an extremely low willingness-to-upgrade in the beginning. But as
soon as this initial willingness was higher, “social engagement”
performed better in terms of lowering the average time lag to
upgrade.

Coupled Model Analysis: How Does Ecological
Restoration Time Relate to Social Response
Lags? (Step 4)
To analyze the coupled simulation model, we explored how
the ecological and the social system respond to each other in
terms of time lags that emerge from their respective dynamics.
The purpose of this experiment is to relate the time necessary
for ecological restoration (in terms of sufficiently high pike
densities) to the preceding time lag in human responses to critical
nutrient levels (through legislation and upgrades of private
sewage treatment). For the ecological time lag, we calculated the
time interval between the year when pike first drops below the
expected threshold and when pike returns to levels above this
threshold. As in the previous experiment, the social time lag is
calculated as the interval between the detection of a surpassed
nutrient threshold and the time step when the house owners,
in average, upgraded their OSS. From previous experiments

with the decoupled models, we expect that for low values of
willingness-to-upgrade, the social time lag is lowest for the
“central enforcement” scenario. In contrast, higher willingness-
to-upgrade values are expected to be more effective in the “social
engagement” scenario to result in short social time lags. We
further hypothesize that ecological time lags increase nonlinearly
with increments in social response lags due to the reinforcing
feedbacks identified in the lake system.

Results shown in Table 2 confirm those hypotheses. The
mechanism of central enforcement seems to be effective
to shorten social responses to critical nutrient levels under
conditions of low willingness-to-upgrade among house owners.
Contrasting to that, the mechanism of social engagement is
more effective when the initial willingness-to-upgrade is slightly
higher. The relation between social and ecological time lags
reveals that under all scenarios increases in the social time
lag causes a multiple increase in the time lag for ecological
restoration.

Discussion of Challenges and Benefits
from Combining Agent-based and System
Dynamics Models

Analyzing complex social-ecological systems is often approached
with models that need to deal with multiple sources of
complexity: two-way interactions or feedbacks between the
social and ecological systems, processes on multiple scales, links
between different levels of aggregation, and emergent as well as
downward-causation processes. To tackle those challenges, we
proposed a stepwise approach to develop and analyze a hybrid
model that links micro-level human behavior and system level
ecological dynamics with the aim to systematically investigate
two-way social-ecological interactions. Using our hybrid model
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FIGURE 6 | Three scenarios showing the aggregated, average time that is necessary for private house owners to upgrade their sewage system over a

range of initial values for “willingness-to-upgrade.”

TABLE 2 | Calculated time lags from simulations under different scenarios.

Scenario Willingness-to- Social lag Ecological lag

upgrade [years] [years]

No Interaction 0.1 9.6 ± 0.9 34.6 ± 2.8

0.2 4.2 ± 0.4 9.7 ± 4.8

Social engagement 0.1 5.7 ± 0.4 21.4 ± 2.5

0.2 2.5 ± 0.3 3.9 ± 0.3

Central enforcement 0.1 4.9 ± 0.3 19.9 ± 2.1

0.2 3 ± 0.3 4.8 ± 1.9

Bold entries mark the minimal time lag compared to the alternative interaction scenarios

tested.

as an illustrative example, we focus here on the conceptual and
methodological challenges of combining an agent-based and a
system dynamics modeling approach to explore social-ecological
interactions and outline the advantages therefrom.

Agent-based and system dynamics models were often viewed
as antagonistic approaches to represent complex systems as they
operate at different levels of aggregation and capture different,
complementary aspects of the system under study (Parunak
et al., 1998). Recently, the common and synergistic features
were highlighted for coupled ecological models (Vincenot et al.,
2011) but implementations of different types of submodels in one
integrated model are rare and mainly in single domains (see for
examples Hudjetz et al., 2014; Bradhurst et al., 2015; Vincenot
et al., 2015). Here, we want to stress how beneficial it is to couple
agent-based and system dynamics models in a hybrid model to
investigate SES particularly for bridging between such distinct
domains as ecology and society.

A Stepwise Approach to Design and Analyze
Hybrid Models for SES
It was acknowledge before that ecosystem models need to
integrate more aspects of complexity (Gray and Wotherspoon,

2012) but we found that a general strategy to build coupled
models for SES that helps navigate the increasing conceptual
and analytical complexity was lacking so far. To not reinvent
the wheel, it is of great help to build on already existing and
fully analyzed models in specialized domains (Mooij et al., 2010),
choosing carefully among available approaches (Kelly(Letcher)
et al., 2013), and follow established procedures for document
their development and application (Schmolke et al., 2010; Müller
et al., 2013). Building on this valuable literature, we propose a
procedure to couple agent-based and system dynamics models
to explore SES. Dividing hybrid model development and analysis
tasks into distinctive steps as outlined in our procedure proved
useful to approach system complexity incrementally and we
reflect on this procedure with illustrations from developing a
model on lake restoration.

Conceptualizing Social-Ecological
Interactions and Specifying Submodels
(Steps 1 + 2)

To start the conceptualization and development of a coupled
model representing a SES, we consider the identification of
key social-ecological interactions that explain the phenomena
of interest, e.g., the restoration of shallow lakes, as a helpful
way to identify the main links between the social and
ecological subsystems. It further helps to specify the research
question and draw suitable system boundaries. In specific, we
focused on how authorities monitor the lake and respond to
the turbid state through regulating private installations for
sewage water treatment. Those social-ecological interactions
relate to specific aggregation levels (e.g., the community,
individual house owners, turbidity of the lake), temporal and
spatial scale (e.g., daily/annual), occur in response to certain
events or trigger other processes. Those considerations help
to draft first submodel characteristics, expected submodel
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patterns or behavior, and their boundaries to finally select
a suitable paradigm for the submodels. If the pattern of
interest is homogeneous, deterministic and aggregated over
space and entities, representation through an average, system-
level value for this characteristic might be sufficient. But in
case individual processes depend on historical or environmental
context, stochastic events and local interactions of heterogeneous
entities, they are better represented by an agent-based approach.
Translating an agent-based model version into a system
dynamics version and vice versa can help to identify the
sensitivity of outcomes toward the implemented modeling
paradigm (Wilson, 1998).We suggest that the choice of modeling
paradigm should be an informed decision taking the research
question, system characteristics, and the expected outcome
into account asking e.g., whether heterogeneity matters for
the research question. Rather than striving to represent every
process within a single paradigm, we argue here that in some
cases a greater system understanding can be achieved when
combining different types of submodels and using the traditional,
specialized analysis tools that are available for the respective
approaches.

In our case, ecological lake dynamics were modeled on the
systems level at a daily time scale and the social processes
were based on micro-level decisions and operated on an annual
time scale. Linking those contrasting submodels can be done in
multiple ways (Swinerd and McNaught, 2012): (i) the link can be
uni- or bidirectional, (ii) system level variables effect individuals
in the same way or differently, (iii) individuals affect system
variables individually or aggregated. For instance, fishing can
be done by individual fishers with specific strategies on a fish
population that is modeled on the aggregated system level. The
polluting activity in our case, however, is rather an aggregated,
collective impact from individual house owner decisions on the
lake’s system level. We identified three general model design
questions that can support the choice of how to specify and
link the required submodels: (i) are submodel processes best
described continuously or discrete? (ii) which different time
scales apply in the submodels to be coupled?, (iii) is the overall
model outcome expected to analyze transient or stable state
dynamics?

For step two in our procedure, we asked for submodel
verification to reproduce characteristic model behavior or
patterns within a given model paradigm and potentially a
validation against empirical data. Using existing, fully analyzed
models as submodels is desirable but great care is necessary for
transferring them into a new context and probably a different
implementation environment. Examples exist for how this can
be achieved for system dynamics and agent-basedmodels (Macal,
2010) but it seems to be rarely done for SES models so far.

Strategies for Calibrating, Testing, and
Analyzing Hybrid Models (Step 3 + 4)

For step three, we explored the behavior of each submodel with
respect to drivers expected as output from the other respective
submodel (but without a feedback to the other model).

For the lake model, we analyzed the stable states at different
rates of gradual nutrient increases (Figure 4). They led to
different stable states than those obtained from common
bifurcation analyses (Janse et al., 2008), which proved that not
only the absolute value of the driver but also its transient
dynamics can determine the lake state. This corresponds to
previous tipping point analyses with analytical models where
different mechanisms causing regime shifts were described
(Ashwin et al., 2012). Our example shows that the choice
between analyzing equilibria or transient dynamics can result
in qualitatively very different outcomes. This has implications
e.g., for models that aim to provide estimates of critical nutrient
loadings for lake managers (Janse et al., 2008) and supports
the argument that multiple modeling approaches are required
to create an integrative view on system dynamics (Mooij et al.,
2010).

Unfortunately it is often the case for SES models that data
and knowledge on the social subsystem structure and dynamics
are much more limiting than for the ecological subsystem. It
therefore becomes crucial to determine the robustness of model
results to model assumptions and parameterization. This should
include testing for structural uncertainties such as different
mechanisms for human decision making. Our analysis of the
“central enforcement” and “social engagement” scenarios showed
that the mechanisms of how rules on sewage treatment are
implemented determine the social response time to critical lakes
states. Empirical evidence on the actual duration of policy
making and adaptation of new rules is important to make
these model processes more realistic. Insights from theoretical
models that study prototypical social situations such as commons
dilemmas such as the one underlying human individual and
collective behavior in our lake restoration case can also be
valuable starting points to identify relevant social mechanisms.

During the hybrid model analysis in step 4, we encountered
two challenges that particularly relate to agent-based and system
dynamics implementations. One mechanism that is crucial to
understand for managing regime shifts is the switch of dominant
feedbacks in the system. This can hardly be analyzed in the
coupled model implementation that is based on simulation
outcome. Here we suggest an iterative procedure of comparing
experiments using traditional analysis tools for dynamical
systems (as we exemplified with stable state and bifurcation
analyses in step 2) with systematic time series analyses from
the coupled model (step 4). This allows a step-wise selection of
relevant parameter ranges and specifying further hypotheses.

Methodological Benefits from Building Hybrid
Models
Current challenges of developing models to improve
understanding of coupled SES involve the integration of existing
models without “reinventing the wheel” (Mooij et al., 2010)
and combining multiple levels of aggregation (Schlüter et al.,
2012). We have integrated a minimal model that was studied
extensively before (Scheffer, 1989) into a hybrid model which
clearly supported the interpretation of results from the coupled
model simulation. Particularly the assessment how feedback
loops take effect, which is the special focus in system dynamics
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models and may become hidden in coupled simulations, enabled
a better understanding of why time lags in the social system
can be amplified through ecological dynamics. We observed
in those scenarios that delays in the social response to the
turbid lake state can increase the time for potential restoration
of the clear lake in a non-linear way. While this exemplifies
the added value in generating system understanding from a
system-level perspective, we also found benefits from integrating
the micro-level for social processes. To improve the relevance
of models for supporting environmental decision-making and
increase trust in scenario simulations, it is crucial to link model
outcome to empirical patterns (Grimm et al., 2005). But since
empirical evidence for individual decisions on the adoption of
new sewage treatment technologies are still lacking, the response
time for lake restoration cannot simply be subsumed under one
parameter. The agent-based approach for the social submodel
revealed the sensitivity of the outcome, here the lake restoration
time, toward these micro-level decisions.

We further believe that the integration of existing models and
particularly the development of hybrid models strongly benefits
from their documentation with broadly applied protocols
(Müller et al., 2013, 2014). These comprehensive documentations
increase awareness about alternative model design options and
support reasoning about the underlying assumptions more
explicitly. This is particularly relevant if the process of developing
models becomes an interdisciplinary activity.

Suitability and Added Value of Hybrid Models to
Understand Social-ecological Systems
Models of social-ecological systems do not necessarily have
to be developed such that the ecological part is represented
by system dynamics and the social part by an agent-based
approach. However, such a separation suits well as an illustrative
example where the benefits of using a hybrid approach become
particularly visible.

Social-ecological systems research uses multiple perspectives
and multiple methods in order to understand the complexity
of these systems and develop integrative approaches (Ragin,
1987; Poteete et al., 2010; Biggs et al., 2012a). Specific modeling
approaches that emphasize either micro-level interactions that
lead to system level patterns or aggregated, system level processes
are commonly used. Of special interest are models that create

a better understanding of alternative stable states (Scheffer
et al., 2009) and transient dynamics in social-ecological systems
(Schlüter et al., 2012).

We propose that a hybrid modeling approach enables a
“multi-scopic” view on the system, integrating micro- and system
level processes and a broader set of analytical tools. Beyond that,
it encourages the modeler to reason and be more explicit about
the model assumptions and its suitability for the purpose of
the study. Developing and combining alternative representations
can lead to a more in depth and nuanced understanding of a
given phenomenon taking multiple possible explanations and
methods into account (Poteete et al., 2010). This, however,
requires a greater flexibility in the tool use by model developers.
Finally, through the integration of existing minimal, equation-
based models, with an agent-based approach, it is possible to link
theory to empirical patterns that are currently explored on social-
ecological research frontiers. With our presented procedure to
model interacting system- and micro-level processes, we hope to
motivate more hybrid models being developed and analyzed for
social-ecological research.
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