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Topics

e Why combining models? Is one

model not enough?
e How to combine models
e Issues when combining models
e Examples of combining models
e Combining approaches

e Example



Why?

o Scalability
e Use simple models for parts that are not essential
and only complex (agent) models for crucial parts
e Modularize very large models. E.g. use different
models for inner city traffic, highway traffic,...
e Focus of the simulation
e Use simple or aggregate models for peripheral
phenomena
e Combining expertise
e Urban development brings together many
disciplines with their own models
o Interdisciplinarity



How to combine models

e Vertical combination

National DS
model

Town
transport
model
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e Horizontal combination

Highway
models
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Some issues

e Time scale
e Aggregation levels
e Assumptions

e Dependencies (access to

parameters and timing)

e Purpose of the models



Example 1:
Socio ecological models for lake restoration
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Netlogo as main platform
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Lake quality
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FIGURE § | Left: Mutrient time series as driver for scenarios, at three rates (speed: slow, medium, high), and three different destination levels |end:
low, medium, high}, showing results from nine simulations in total. Right: The resuliing fish populations in the state space. At the lowest nudrient levels, the
resulting fish state is independant of the rate of change. But in the intermediate nutrient level, fish populations driven by the fastest increase (red) axperance pike
raduction whilke at slower rates pike increases can be observed. At the highest nutrient level, all fish simulations result in the low-pike-state.
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Relation between sewerage upgrade and lake quality

=
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FIGURE & | Three scenarios showing the aggregated, average time that is necessary for private house owners to upgrade their sewage system over a
range of initial values for “willingness-to-upgrade.”
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Example 2: Climate change
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Figure 1: Sector Map of HCAM (SD model layer based on Fiddaman 1997)
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Cognitive factors and social connections
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Figure 4: Mental model attributes (blue boxes) with external influences (white boxes)
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Interface

Admin | Model | Statistics

Hybrid Climate Assessment Model
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Example 3:
Feet and mouth disease in Australia
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Agent model includes SD model
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FIGURE 2 | Emch bherd instance has o customized SEIR ODE-based EBM. The AEM siochastically esabishes infection connection paths between herds

(Eradiurst et al., 2013

* =
i T >
Pann " b, L BRBM intertace

- compartent Faliosl)
e Rleral)

.

e il |
it i
o (EER )
Ry
el
i e
T "-'"HF\]
-
T~
T o
4 I Joyizal spreal
e - -

Jract spraad

Jndiect sproad

T S d
- -

saluyard spread

s
oy

— = I S-pE-of

n—flS5—ns

o |5
BE|H

afE—-pnf-vyl

5
lu

= yi-uk

proportion of the erd that ane susceptible
proportion of the herd that are expesed

proportion of the herd that are infections
proportion of the herd that ane recovered

where §

E

-
| e
nuimn "-\.l:tl-\.

average natural lifespan of the host, {p = birth e = notwral morality rate}
= effective contact rabe (contact rate X transmission probability)

He— B

|— =
I

= average duration of the latent period, (o = progression rate from exposed 10 infectious)

= jverage durition of the Hifections period, { ¥ = recovery tile)

]

FIGURE 1 | ODE systesm used by AADES o model within-herd spread of FMD.




Example 4: Urban shrinkage

Fig. 1. A concepiual milasonal model thar displays the causal mlasonshipe berseen the wanables of shrnksge (namely s drivers, prooesses and impaos ) whach e shosn n
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Features to be modeled
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Connection between models
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Output

Young single households, 1990

p (household type)

Retired cohabitation households, 1990
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Example 5: sustainable energy

Electricity networks are changing
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Consumption & generation patterns
Individual power usage is highly variable
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Optimizing decentral generation

e As consumers install power generation units, the
network cables may be overloaded.

e What is the maximum distributed generation within
network load constraints?

e Linear programming model
e Houses close to grid connection are favoured: fairness rules
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Additional connections

Department of
Information &
Computing
Sciences

ICS

e Optimal investment
decisions

e Integer linear
programming

e Search heuristics

Universiteit Utrecht




Why storage system helps

e Storing decentrally generated energy
e Prevent overloading

e Prevent voltage drops

e Power delivery in case of black-out

e Trading



How to use storage systems: Decomposition
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Scheduling in smart grids

*Street has available load capacity 2

Req. cap Request Deadline
time

3 hrs 2 18.00 8.00

2 hrs 1 19.00 00.30
2 hrs 1 19.00 00.30
3 hrs 2 19.30 23.00

Scenario 1
- First-come-first served
- No preemption



Req. cap Request Deadline
time

3 hrs 18.00 8.00

2 hrs 1 19.00 00.30

1 19.00 00.30
2 19.30 23.00

18.00 21.00 23.00



Scheduling in smart grids

*Street has available load capacity 2

Req. cap Request Deadline
time

3 hrs 2 18.00 8.00

¥ 2 hrs 1 19.00 00.30
l ' 2 hrs 1 19.00 00.30

" 3 hrs 2 19.30 23.00

Scenario 2
- FCFS not mandatory
- Preemption is allowed for charging e-vehicles



Req. cap Request Deadline
time

3 hrs 2 18.00 8.00

2 hrs 1 19.00 00.30
2 hrs 1 19.00 00.30
3 hrs 2 19.30 23.00

2

18.00 19.30 21.00 22.30 00.3



Energy is used by People

People take decisions based on
decisions of other people

Small changes in behavior of one
person can have big consequences

Statistics do not always work



Electricity network




Electricity network:

30% use solar panels




Decision to use solar panels is often based on whether
neighbours use solar panels

Due to clustering of energy production neighborhood
network has not enough capacity to cope




Possible remedy:
Install batteries to store electricity
Question:

Y\ - Q¢ Y F




Possible remedy

?

use energy to charge electric cars

How many loading po

ints? Where,




Solutions

e Many more solutions are possible:
e Increase network capacity
e Limit energy production

How will people react to these changes?
What are the consequences for the network?

We need models of people and their decisions in order
to answer these questions.



Example 6: Fishery management
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Combining approaches
e Qualitative and quantitative approaches
o Different types of "models”
Narratives, anecdotal, situated causal rules
VS.

Data, no causal rules

e How to combine these different approaches?



Example: Arabic revolution
e From the text of interviews to causal rules

e Some stay apart from protests by fear of
consequences or worry about family

e Some agents are initially motivated by conditions or
seeing an attack

e Others may join motivated by positive emotions of
(optimism, solidarity...)

e Emotion is most catching when sharing the same
physical space

e Emotion builds (and decays) over time

e Knowledge is cumulative

e When protesting people tend to gather in readily
identifiable locations



Agent heterogeneity

e Employed/unemployed

e Susceptibility to emotion and their current level of
emotional arousal

e Whether on facebook

e What personal friends they have (others they would
text/phone)

e Where they are physically
e Current knowledge of attacks, protests happening
e Whether protesting and whether attacked



Different contexts

Different locations:

Home - away from active involvement, but still in
contact via phone and Facebook

Street - socialising area, vulnerable to attack, face-
face emotional influence, start of protests

Square - where critical mass is achieved, protests
persist

Different times of day:

Waking — calmer at start of day but with variation,
clean slate as to knowledge of protests, attacks

Daytime - unemployed socialise on street, might
move to square

Evening - all socialise in street, might move to square
Night - employed go home, unemployed might go
home



Simulation demo
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