Agent-Based Modelling & NetLogo

Frank Dignum

(using slides from)
Bruce Edmonds
Centre for Policy Modelling
Manchester Metropolitan University

Society is Complex!

- This may not be a surprise to many of you...
- ...but in the sense of complexity science it means that significant global outcomes can be caused by the interactions of networks of individuals
- The outcomes are not modellable if you do not model interactions between individuals or model only the interaction of global variables...
- ...and if you try to model it in these ways, you will often be caught out by surprises
- Agent-based simulation allows the exploration of such surprises but it is still a maturing field

Equation-based or statistical modelling

Individual- or Agent-based simulation

What happens in ABSS

- Entities in simulation are decided on
- Behavioural Rules for each agent specified (e.g. sets of rules like: if this has happened then do this)
- Repeatedly evaluated in parallel to see what happens
- Outcomes are inspected, graphed, pictured, measured and interpreted in different ways

Simulation

Characteristics of agent-based modelling

- Computational description of process
- Not usually analytically tractable
- More specific...
- ... but assumptions are less 'brave'
- Detail of unfolding processes accessible
 - more criticisable (including by non-experts)
 - but can be more convincing than is warranted
- Used to explore inherent possibilities
- Validatable by a variety of data kinds...
 - but needs LOTS of data to do this
- Often very complex themselves

Micro-Macro Relationships

Macro/
Social data

Social, economic surveys; Census

Micro/
Individual data

Qualitative, behavioural, social psychological data

Choosing Simulation Techniques

- Every simulation technique has pros and cons
- The hardest decision is when to use which approach (or how to combine approaches)
- Analytic approaches rely on their formulation being simple enough to be solvable (or, in practice, they use simulation anyway)
- Statistical approaches rely (in different and subtle ways) on the representation of noise as random – they will miss surprises in their projections
- Agent-based approaches are complex, require lots of data and do not give probability forecasts
- Simplicity is no guarantee of truth or generality

Meaning from intermediate abstraction (often implicit)

In Vitro vs In Vivo

- In biology there is a well established distinction between what happens in the test tube (in vitro) and what happens in the cell (in vivo)
- In vitro is an artificially constrained situation where some of the complex interactions can be worked out...
- ..but that does not mean that what happens in vitro will occur in vivo, since processes not present in vitro can overwhelm or simply change those worked out in vitro
- One can (weakly) detect clues to what factors might be influencing others in vivo but the processes are too complex to be distinguished without in vitro experiments

Some modelling trade-offs

Example: A model of social influence and water demand

- Part of a 2004 study for EA/DEFRA, lead by the Stockholm Environment Institute (Oxford branch)
- Investigate the possible impact of social influence between households on patterns of water consumption
- Design and detailed behaviour from simulation validated against expert and stakeholder opinion at each stage
- Some of the inputs are real data
- Characteristics of resulting aggregate time series validated against similar real data

Simulation structure

Some of the household influence structure

Example results: relative aggregate domestic demand for water (1973 = 100)

Conclusions from Example

- The use of a concrete descriptive simulation model allowed the detailed criticism and, hence, improvement of the model
- The inclusion of social influence resulted in aggregate water demand patterns with many of the characteristics of observed demand patterns
- The model established how:
 - processes of mutual social influence could result in differing patterns of consumption that were selfreinforcing
 - shocks can shift these patterns, but not always in the obvious directions
 - the importance of introduction of new technologies

Example 2: Voting behaviour

- Institute for Social Change & Theoretical Physics Group, University of Manchester
- Centre for Policy Modelling,
 Manchester Metropolitan University

Overall Structure of Model

An Agent's Memory of Events

Changing personal networks over which social influence occurs

Composed of households of individuals initialised from detailed survey data

Each agent has a rich variety of individual (heterogeneous) characteristics

Including a (fallible) memory of events and influences

Example Output: why do people vote (if they do)

Possibilistic vs Probabilistic

- The idea is to map out some of the possible social processes that may happen
- Including ones one would not have thought of or ones that have already happened
- The global coupling of context-dependent behaviours in society make projecting probabilities problematic
- Increases understanding of why processes (such as the spread of a new racket) might happen and the conditions that foster them
- Complementary to statistical models

Role of ABM in Policy Assessment

- ABMs are good for analysing risk how a more standard model/prediction might go/be wrong
- That is, testing the assumptions behind simpler models (statistical, discrete event, system dynamic, etc.)...
- ...so exploring the possible deviations from their forecasts
- In other words, showing some of the possible surprises that could occur (but not all of them)
- To inform a risk analysis that goes with a forecast
- Can be used for designing early-warning indicators of newly emergent trends

ABSS Advantages

- ABSS allows the production and examination of possible complex outcomes that might emerge
- It does not need such strong assumptions (that analytic approaches require) to obtain results
- It allows the indefinite experimentation and examination of outcomes (in vitro)
- It aids the integration and use of a wider set of evidence, e.g. very open to stakeholder critique
- It suggests hypotheses about the complex interactions in observed (in vivo) social phenomena
- So allowing those 'driving' policy to be prepared, e.g. by implementing 'early warning systems'
- Can be complementary to other techniques

ABSS Disadvantages

- It does not magically tell you what will happen
- Are relatively time-consuming to construct
- It can look more convincing that is warranted
- Understanding of the model itself is weaker
- It needs truck loads of data for its validation
- It gives possibilities rather than probabilities
- Fewer good practitioners around
- Not such a mature field

To Learn More

- Simulation for the Social Scientist, 2nd Edition.
 Nigel Gilbert and Klaus Troitzsch (2005) Open University Press. http://cress.soc.surrey.ac.uk/s4ss/
- Simulating Social Comlexity a handbook. Edmonds & Meyer (eds.) (2013), Springer.
- Journal of Artificial Societies and Social Simulation, http://jasss.soc.surrey.ac.uk
- European Social Simulation Association, http://essa.eu.org
- NetLogo, a relatively accessible system for doing ABM <u>http://ccl.northwestern.edu/netlogo</u>
- OpenABM.org, an open archive of ABMs, including code and documentation