
Utrecht University

Master Thesis

Repeatability in simulation of
large-scale agent-based social

behavior
Author:
Kelvin J. M. Lubbertsen
5766613

Supervisor:
Dr. M. M. Dastani

Second examiner:
Dr. F. P. M. Dignum

Department of Information and Computing Sciences
Faculty of Science

Artificial Intelligence

August 16, 2017

2

Contents

1 Introduction 7

1.1 Motivation . 7

1.2 Research question . 8

1.3 Outline . 8

2 Background 11

2.1 Process algebra . 11

2.1.1 Partially ordered sets . 11

2.1.2 Petri nets . 12

2.1.3 Basic process algebra . 13

2.2 Agents . 14

2.2.1 Proactive agents . 15

2.2.2 Reactive agents . 15

2.2.3 Rationality . 16

2.2.4 Multi-agent systems . 17

2.3 2APL and OO2APL . 17

2.3.1 Plans and triggers . 17

2.3.2 Deliberation cycle . 19

2.3.3 Goals . 20

2.3.4 Belief bases . 21

2.4 Large-scale agent-based social simulations 22

2.4.1 Simulation . 22

2.4.2 Agent-based social simulations 25

2.4.3 Parallel and distributed simulations 25

2.4.4 Scale of simulations . 28

2.5 DSOL . 28

2.5.1 Experimental tooling . 28

2.5.2 Statistical tooling . 29

2.5.3 Agents . 30

2.6 Repeatability and reproducibility 30

2.6.1 Repeatability . 30

2.6.2 Reproducibility . 33

3

4 CONTENTS

3 Repeatability and equivalences 37
3.1 Repeatability . 37
3.2 Reproducibility . 38
3.3 Equivalences . 38

3.3.1 Equivalent simulation assumption 39
3.3.2 Deterministic repeatability 42
3.3.3 Probabilistic repeatability 43

3.4 Summary . 46

4 Synchronization techniques 47
4.1 Formal Language . 47

4.1.1 Agents . 50
4.1.2 Triggers . 51
4.1.3 Deliberation cycle . 51

4.2 Measurements and Traces . 53
4.3 Synchronization . 57

4.3.1 Synchronization operator 57
4.3.2 Act-sense synchronization 57
4.3.3 Act-only synchronization 61

4.4 Consequences of synchronization 66

5 Results 67
5.1 Examples . 67

5.1.1 Auction . 67
5.1.2 Harry and sally . 68

5.2 Method of experimentation . 69
5.2.1 Enforcing non-repeatability in the auction example 70
5.2.2 Alternative delay forms 71

5.3 Turn-based synchronization results 72
5.3.1 Price distributions . 76

5.4 Agent ordering synchronization 77
5.5 Planned external triggers . 79
5.6 Summary . 80

6 Conclusion & Future work 81
6.1 Research question . 81
6.2 Future work . 82

List of Figures

2.1 Example from Nielsen and Thiagarajan (1984)[Figure 1], describ-
ing a marked petri net graphically 13

2.2 Example of a standalone action a in BPA 13
2.3 Examples showing use of operators + and · for transitions in BPA 14
2.4 Ways to study a system (from Law and Kelton (2014)[p.4] 22
2.5 The intersections of the three areas defining ABSS by Davidsson

(2002)[Figure 2] . 24
2.6 Example of concurrency in marked petri net 26

4.1 Examples of two agents running concurrently in partially ordered
sets (4.1a) and Petri nets (4.1b) 49

4.2 Incorrect agent ordering graph for harry-sally example 64
4.3 Serial agent ordering graph for harry-sally example 64

5.1 Durations of one bid by one bidder agent in the default configuration 70
5.2 Durations of one bid by one bidder agent in the default configuration 70
5.3 Degree of repeatability for maximal delay 72
5.4 Winners of auctions based on synchronization type 75
5.5 Repeatable price distribution for agent 35 in auction example

(with seed = 3) . 77

5

6 LIST OF FIGURES

Abstract

In large-scale agent-based social simulations situations are tested and compared
based on measurements. These measurements measure the behavior of the
agents in the simulation. Due to the concurrency within the simulation model
of large-scale agent-based social simulations the ordering of some actions cannot
be ensured which can lead to noise within the simulation model.

Noise within the simulation model means that the simulation is less accu-
rate due to the fact that it no longer models the real world system it tries to
represent. Given the same input one would expect a similar output, but this is
not always the case in large-scale agent-based social simulations. Ensuring this
means ensuring repeatability.

We propose synchronization techniques in multi-agent systems for ensuring
repeatability in large-scale agent-based social simulations and show the correct-
ness of these techniques in our attempt to ensure repeatability in large-scale
agent-based social simulations.

Chapter 1

Introduction

In this chapter we will introduce the topic of ensuring repeatability in large-scale
agent-based social simulations. For doing so we will first clarify the motivation
for this topic, why it is relevant and we want to investigate it. Then we will
give an outline of our research by defining our research question and we finish
of with an outline of the rest of this thesis.

1.1 Motivation

For many years simulation has been one of the most applied scientific disciplines
(Lane et al., 1993) and in the last decades needs have come along to model as
agents with complex cognitive states (e.g. agent-based simulations in Law and
Kelton (2014)) to describe more complex behavior. With the emergence of more
complex demands from the industry, like simulating accurate human behavior
instead of just procedural tasks like a production line, we see an important ap-
plication for multi-agent systems. These systems are capable of modeling more
complex situations by using BDI-agents (in Dastani (2008)) and communication
like FIPA-ACL by FIPA (1999).

In recent years applications have been developed that require many agents,
think for instance about modeling roads with many vehicles as agents. To
allow such growth in processing power, multiple agents are simulated in parallel.
This requires repeatability, a notion which says that given a similar input the
output should be similar under certain conditions. This is needed for easy
debugging for the programmer of the simulation but also because simulations
tend to model real world systems and any behavior that is due to repeatability
problems decreases the accuracy of the simulation. Therefore it is important to
ensure repeatability in such simulations.

7

8 CHAPTER 1. INTRODUCTION

1.2 Research question

Having motivated why this is important, we can easily define the research ques-
tion: how can repeatability in large-scale agent-based social simulations be en-
sured?

From this we identify three key parts of the problem: ensuring repeatability
in the agents itself, ensuring repeatability in the multi-agent system and building
such a large-scale agent-based social simulation which ensures repeatability.

Firstly it is important to look at repeatability from an agent perspective.
Since agents are such an important part of the simulation it is important to
identify what are common problems that make ensuring repeatability difficult
and how to solve these problems.

But agents do not behave on their own in large-scale agent-based social
simulations, they interact with the environment and each other. They together
with other agents form a multi-agent system, so our second part about ensuring
repeatability is about ensuring repeatability in large-scale multi-agent systems
where interacting agents run concurrently.

Last but not least, one should be able to build such repeatable large-scale
agent-based social simulations. This is what we therefore look at as well.

So combining all these parts, we have divided the main question into three
sub-questions, namely:

• How can we ensure repeatability in complex reasoning agents such as BDI-
agents?

• How to ensure repeatability in large-scale multi-agent systems where in-
teractive agents run concurrently?

• How to build large-scale agent-based social simulations that ensure re-
peatability?

All these three questions together answer the main research question: how
can repeatability in large-scale agent-based social simulations be ensured?

1.3 Outline

In this thesis we will try to answer the research question based on the sub-
questions defined above. But to do this, first in chapter 2 we will describe
the background material needed for this thesis, such as what an agent is and
what a simulation is. This chapter finishes with an overview of the notion of
repeatability and the related notion of reproducibility from the literature.

The notion of repeatability from the literature is then used to define our
own notion of repeatability in chapter 3. In this chapter we also reason about
different variations in the form of different equivalence relations.

Having a clear idea about our notion of repeatability we try to ensure it
in complex reasoning agents and large-scale multi-agent systems by the means

1.3. OUTLINE 9

of different synchronization techniques for different issues with repeatability.
This is done in chapter 4. Here we try to answer both the first and second
sub-question from section 1.2.

Finally, in chapter 5, we implement based on a few examples the synchro-
nization techniques from chapter 4. We do this to show how to build large-scale
agent-based social simulations that ensure repeatability and therefore show that
our synchronization techniques ensure different types of repeatability problems
in large-scale multi-agent systems.

At last we will answer the research question, conclude the thesis and discuss
some future work in chapter 6.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Background

In this chapter background information from other sources is provided to explain
the relevant notions on which this thesis is built.

The outline of this chapter is as follows. First the concepts of process algebra
are described in section 2.1, then the concepts of agents and multi-agent systems
in section 2.2. We continue with the implementation of cognitive agents and
multi-agent systems in 2APL and OO2APL in section 2.3. And to continue with
large-scale social simulations 2.4 and the simulation tooling DSOL section 2.5
to finish with the notions of repeatability and reproducibility in the literature
in section 2.6.

2.1 Process algebra

For describing processes, algebras such as partially ordered sets by Dushnik and
Miller (1941) and Petri nets by Petri (1962) have emerged. In this section we
talk about these process algebras.

Process algebras are used for describing the flow of processes, or the behavior.
Computer programs can be modeled as processes and their behavior can be
analyzed using these process algebra. Therefore we describe them here.

2.1.1 Partially ordered sets

Partially ordered sets are sets that define some sort of order between its elements.
This order is what turns it into a process. A partially ordered set is defined
as a tuple (X,≺), where X is the set of elements and ≺ is the irreflexive and
transitive relation of the elements of X (see Best and Fernandez (1988)).

The relation ≺ for two elements in X (i.e. x, y ∈ X : x ≺ y) states that x
happened before y. This relation ≺ is transitive, irreflexive and non-symmetric,
creating an acyclic order. Using this relation, complex processes can be modeled
which contain forks (i.e. the process splits into two processes) and joins (i.e. two
processes merge into one process). This is possible because multiple elements

11

12 CHAPTER 2. BACKGROUND

can run in parallel, which means that two elements (i.e. a, b ∈ X) have no
ordering, meaning that neither a ≺ b nor b ≺ a. From this parallelism comes the
name ‘partially ordered’, because of the lack of ordering between two elements
like a and b.

2.1.2 Petri nets

Petri nets are a different type of process algebra. Compared to partially ordered
sets it has one big advantage: it can model the flow through the process explic-
itly. This is a special type of petri net, called a marked petri net. Overall petri
nets are more specific when modeling processes. They contain separate notions
of states and transitions. States, also known as S-elements, they represent the
elements we have seen already in partially ordered sets. The transitions, also
known as T-elements,define the relation between states and add some transition
logic that can be used to describe the flow.

Formally a petri net N is a triple N = (S, T ;F) with the requirements that
S ∪ T 6= ∅ and S ∩ T = ∅. In this S is the set of S-elements, T the set of
T-elements and F the flow relation between the transitions and the states. The
set of states and transitions is called X = S ∪ T . Formally speaking F is (by
Nielsen and Thiagarajan (1984)):

F ⊆ (S × T) ∪ (T × S) such that dom(F) ∪ range(F) = S ∪ T (2.1)

The above requirements about F state that a flow relation is a relation from
a S-element to a T-element or from a T-element to a S-element. Furthermore it
states that the flow relations of F should cover all S-elements and T-elements.

Furthermore, the notions of pre-sets and post-sets exist. A pre-set of an
element x ∈ X, denoted ∗x denotes all the elements that come directly before
this set, whereas the the post-set (i.e. x∗) denotes the elements that come
directly after it.

To describe the flow of processes, markings exist. Markings are sets of tokens
that are placed on states. A marking fires whenever every state in the pre-set
of a transition contains at least one token. These tokens are then placed on the
states in the post-set of that same transition. For this, the M , which denotes
the marking is added to the tuple of a petri net. A petri net which contains a
marking is called a marked petri net.

Two important characteristics of petri nets exist: the notion of live marked
petri nets and that of safe marked petri nets. A live marked petri nets is a petri
net where there will always be a transition that can be fired, meaning that there
is always a next marking, it never stops. A marked petri net is safe if by the
structure of the petri net it is impossible that at one time, more than one token
exists on a single state.

One of the main reasons why petri nets have become so popular is their
ability to easily write them graphically. For demonstration purposes of this,
suppose a marked net Σ, described in Figure 2.1. In this figure, the S-elements

2.1. PROCESS ALGEBRA 13

Figure 2.1: Example from Nielsen and Thiagarajan (1984)[Figure 1],
describing a marked petri net graphically

a

√

Figure 2.2: Example of a standalone action a in BPA

are circles and the T-elements rectangles. This is a common convention for
petri nets according to Nielsen and Thiagarajan (1984). This petri net shows a
marking of 1 for the top three states and is a petri net that is safe and live.

2.1.3 Basic process algebra

Another type of process algebra is called basic process algebra (BPA) and de-
fined by Fokkink (2007). Advantage of this process algebra is the existence of
logical axioms (i.e. transition rules) and proof structure. In BPA a process
consists of a nonempty finite set of actions named A. Every action a ∈ A is
a standalone action that can be executed alone. A process terminates by a
transition to a final state denoted as

√
(see Figure 2.2).

As can be seen from Figure 2.2, these processes can easily be represented
graphically. Written formally, the example of Figure 2.2 is denoted as:

a
a−→
√

(2.2)

Note here that a actually is ‘consumed’ by applying it over the transition.
This may not seem like a big deal yet, however with multiple actions and the
use of operators it will become clear why this is important.

Transitions and concurrency between actions is denoted using the operators
+ and · (see Figure 2.3). By conventions the · operator is left out when it is
clear from the context, meaning that a · b · c can be written as abc. This makes
it easier to read because it requires less brackets.

14 CHAPTER 2. BACKGROUND

a

b

√

(a) Example for a · b

a b

√ √

(b) Example for a+ b

Figure 2.3: Examples showing use of operators + and · for transitions in BPA

An example of a process is denoted in BPA is:

a · (a+ b) · b (2.3)

Note from this example that actions can occur more than once (i.e. they are
not unique) and that (by convention) the termination (

√
) is left out when it is

clear from the context and serves no further use.
The main advantage of BPA is the existence of a sound and complete set of

axioms and transition rules that makes it easy to proof things about processes.
Examples are for instance:

x
x−→
√ (2.4)

Or:

x
x−→
√

x · y x−→ y
(2.5)

2.2 Agents

In short two types of agents exist, as explained in Shoham (1993) and Kabanza
et al. (1997). Before describing these types, it is first important to describe what
both types have in common: being an agent. This definition is used throughout
science, for Artificial Intelligence the definition is given by Shoham. He defines
an agent as:

An agent is an entity whose state is viewed as consisting of men-
tal components such as beliefs, capabilities, choices, and commit-
ments. These components are defined in a precise fashion, and
stand in rough correspondence to their common sense counterparts.
(Shoham (1993) , p.52)

Shoham adds to this that agents should be ‘autonomous’. About this he
states:

2.2. AGENTS 15

The sense of autonomy is not precise, but the term is taken to mean
that the agents’ activities do not require constant human guidance
or intervention. (Shoham (1993) , p.52)

2.2.1 Proactive agents

As already mentioned in the definition of Shoham, agents consist of beliefs,
capabilities, choices and commitments. This concept was already formalized by
Rao and Georgeff (1991) when this concept was formed by Shoham. In their
work Rao and Georgeff use modal logic to create a framework in which they
describe agents to have beliefs, desires and intentions.

The framework of Rao and Georgeff uses branching time temporal logic and
extends it with three modal operators, not surprisingly for the three notions
beliefs, desires and intentions. Though the modal operator for desires is not
called ‘desire’, but ‘goal’.

Beliefs are the things the agent thinks are true. Though it should be men-
tioned that this does not necessary mean that this is the case. The agent can
be wrong, but based on the information it got at the time it decided this, it
thought it was the case. However, because the agent is considered consistent, it
cannot be the case that if the agent beliefs φ, that it also beliefs ¬φ.

The second notion, that of desires is defined by the modal operator ‘goal’.
An agent that actively tries to achieve a certain desire is said to have that as a
goal. Think for instance about an example in which a cleaning robot (i.e. the
agent) cleans a floor in a room. In this case according to the framework, the
agent has a goal ‘clean the floor of the room’.

The last notion is the most abstract, namely that of intentions. An agent is
said to intend a certain state in time, if the agent has a plan (i.e. a path through
time) of which it has already performed (or is performing now) one step. Getting
back to the cleaning robot example, the agent can have the intention ‘clean the
house’, which exists of cleaning the floors of multiple rooms and the windows
of the house. Since it already started cleaning the floor of the first room, the
agent is said to intend to clean the house.

Proactive agents are for instance implemented in programming languages
like 2APL (Dastani, 2008). In Dastani (2008) an agent can have goals, which
help the agent plan in advance and therefore behave proactive.

2.2.2 Reactive agents

Different from proactive agents are reactive agents. As the definition already
mentions, these types of agents only respond to inputs it receives, think for
instance about messages, events that occur in the world or internally in an agent.
Internal events seem at first a bit weird, since that would mean that agents have
some sort of proactiveness, however this is primarily a case of defining the scope
of the trigger. In many agent-oriented programming languages or frameworks
like Dastani and Testerink (2014) there exist different types of triggers, namely

16 CHAPTER 2. BACKGROUND

internal and external ones. External triggers are for instance triggers from the
environment of the agent.

For internal triggers it is key to have a clear example in mind. On such
example can be the case in which an agent receives an external trigger from the
environment and then sets a timer. When this timer finishes, this is an internal
trigger, due to the scope of the timer.

Messages are a third type of trigger of an agent in many frameworks and
languages like in Dastani and Testerink (2014); Dastani (2008); Bellifemine et al.
(2007). These are commonly separated from external triggers (i.e. from the
environment) to make implementing agent communication languages like FIPA
(1999); Finin et al. (1994) easier.

2.2.3 Rationality

Agents in most implementations (like Dastani and Testerink (2014); Dastani
(2008); Bellifemine et al. (2007)) are defined to be rational. According to Rao
and Wooldridge (1999), rationality in agents is defined as:

Rational agents are software entities that perceive their physical or
software environment through appropriate sensors; have a model and
can reason about the environment that they inhabit; and base their
own mental state take actions that change their environment. (Rao
and Wooldridge (1999) , p.1)

Furthermore Rao and Wooldridge (1999)[p.1] describe rational agents by
three key aspects:

• Balancing reactive and proactive behavior

• Balancing perception, deliberation and action

• Balancing self-interest and community interest

Reactive and proactive behavior is already described in sections 2.2.1 and
2.2.2, finding a balance in this is important. Think about a case in which
an agent performs a certain task to achieve a long term goal (i.e. proactive
behavior) in which it suddenly realizes it is in danger and should flee, then it
is desired to balance the agent in such a way that it prioritizes this reactive
behavior above the proactive behavior. The other way around, when an agent
is performing a task for a long term goal, if it gets distracted all the time it is of
no use either. This is meant by the correct balance of behavior, which rational
agents do.

The balance in perception, deliberation and action is all about balancing
the input and which ones to take most serious. For instance Van der Hoek
et al. (1999) embeds different types of beliefs (i.e. observation, communication
and default) in their framework. These types of beliefs are prioritized, this
framework prioritizes observations above communication and communication
above default beliefs.

2.3. 2APL AND OO2APL 17

The third type of balance is that of balancing their interests. Think for in-
stance about balancing between the interest of the group and that of an agent it-
self. Such a dilemma is the multi-agent social dilemma (Stimpson and Goodrich,
2003). The analysis in this dilemma is that it is the dominant strategy to invest
in the self-interest, however the community interest eventually leads to a big-
ger reward if all agents pursue it. The experiments by Stimpson and Goodrich
(2003) show that rational agents can see the interest of the community interest
and perform accordingly but also that one can tweak the balance such that
agents are only interested in their self-interested goal. This example shows that
rational agents can balance their interests.

2.2.4 Multi-agent systems

Just like humans, agents often do not live alone. In the sense of agents, we then
talk about multi-agent systems. According to Wooldridge (2009) a multi-agent
system consists of a few things, namely: (1) multiple agents, (2) communication
and (3) an environment. For instance in Dastani (2008) the possible existence of
multiple environments is explicitly mentioned, which makes it possible to have
more complex environments.

Furthermore, based on the notion of an agent Dastani states that agents can
communicate. It namely includes a set of messages in the agent configuration.

2.3 2APL and OO2APL

Now let us focus on practical implementations of agents. The focus here will
lay on the programming language 2APL introduced in Dastani (2008) and more
specifically the recently added framework from Dastani and Testerink (2014)
called OO2APL. Reason for this is that 2APL has a unique property over most
other programming languages: its modularity introduced by Dastani and Tes-
terink (2014) makes it easy to read and adapt the internal workings of 2APL.
Also it allows different planning, repairing and executing constructions for be-
liefs, goals and events (i.e. internal, external or messages) making it very suit-
able for concurrent execution.

2.3.1 Plans and triggers

The notion of plans was already discussed briefly, however this notion is key to
understanding the concepts of most agent-oriented programming languages and
frameworks. Sometimes, like in Pollock (1999), the notion of plans is coupled to
the notion of ‘intention’ from Shoham (1993). In agent-oriented programming
a plan is a procedure that is executed to enforce (partially) a certain next state.
Think for instance about an cleaning robot. To ensure the goal ‘clean the floor
of the room’, the robot can have multiple plans, like:

1. Clean the dirt at a location

18 CHAPTER 2. BACKGROUND

2. Go to the dirt

3. Scan surroundings (to check if the entire floor is clean or to identify the
next bit of dirt)

The above three plans are all three components of the procedure of the goal
‘clean the floor of the room’. To ensure the correct plan is executed, these plans
have conditions that check which plan should be executed. These conditions
are built based on the beliefs. Think for instance about conditions whether the
room still contains dirt or whether there is dirt at a certain location.

Such conditions are conditions over the beliefs, which is important to keep
in mind. It can for instance be the case that the agent believes that there is no
dirt in the room (i.e. in the case of the plan ‘scan surroundings’), but that he
just has not noticed yet that there is some dirt at a location he has not scanned
yet. By scanning the floor he then identifies new places of dirt, which he will
then clean.

As can be noticed from the example above, plans are triggered when a cer-
tain condition holds. The combination of the condition, information about the
trigger and the plan itself is called a plan scheme in OO2APL. In total, four
types of plan schemes exist in OO2APL (Dastani and Testerink, 2014), plan
schemes that handle:

• Internal triggers (e.g. triggers sent by other plans from the same agent)

• External triggers (e.g. triggers sent by the environment)

• Messages

• Goals

From OO2APL it can be noted that every trigger is analyzed and based on
that a plan is selected that should be executed. Therefore every agent consists of
four sets of triggers that are analyzed by the corresponding set of plan schemes
from which plans are selected.

The plan schemes define the agent at the moment the agent is created.
During the life of an agent its behavior can be changed using the notion of
trigger interceptors. Interceptors are plan schemes that can be added to the
agent’s plan schemes at runtime, they have the characteristic to be destroyed
when triggered by default, however this can be changed in the definition of the
interceptor.

For initialization the agent can define a special type of plan, called an initial
plan. This type of plan can for instance be used to adopt goals or send initial
messages. This type of plan in OO2APL corresponds to the initial goal base of
Dastani (2008)’s 2APL.

Interceptors are prioritized by default above all other plan schemes of the
same type. Meaning that for instance all goals are first checked against all
interceptor goal plan schemes before all other goal plan schemes are tried. This

2.3. 2APL AND OO2APL 19

is done because it makes sure that one can handle these earlier than the default
behavior and when necessary block the default behavior.

Whenever a plan is triggered at some time it can in OO2APL continue to
exist for a long period of time. These plans are called persistent plans. This is
especially useful for interceptor plan schemes where the plan scheme is removed
after it successfully consumes a trigger, this way the plan can continue in the
future. Note however that whenever a plan is not finished by default and the
trigger remains to exist, multiple instances of the same plan exist which can
lead to undesired behavior.

2.3.2 Deliberation cycle

One run in which all different types of triggers (i.e. internal triggers, external
triggers, messages and goals) are tested against all plan schemes and all plans
are executed is called a deliberation cycle in 2APL. A deliberation cycle consists
of the following steps according to Dastani (2008) and updated by Dastani and
Testerink (2014):

1. Apply all goals to all goal plan schemes

2. Apply all external triggers to all external trigger plan schemes

3. Apply all internal triggers to all internal trigger plan schemes

4. Apply all received messages to all message plan schemes

5. Execute all plans

In the above list, the interceptors are phases in the applications of the plan
schemes for the corresponding type. The agent designer gets, after creating an
agent on the platform, an interface from which it can send external triggers to
the agent it has just created. Internal triggers can, just like messages and goals,
be created in every plan.

All goals, triggers (i.e. internal and external), messages and plans are stored
in a separate object that is known to the platform that runs the agents. This
object consists of:

• A set of goals

• A set of internal triggers

• A set of external triggers

• A set of messages

• A set of plans

• A message client (for sending messages to other agents)

• The belief base (see section 2.3.4)

20 CHAPTER 2. BACKGROUND

• A set of interceptors for goals

• A set of interceptors for internal triggers

• A set of interceptors for external triggers

• A set of interceptors for messages

• An unique identifier that identifies the agent

• A set of death listeners

Most items in the list above are self-explaining, like the sets of goals, triggers
and interceptors for instance. However some are not, like the message client for
instance. This is the system in the platform that serves as the router making
sure that the messages arrive at the correct agent. By default, the agent can
only send messages to one agent at a time, but since the message client can
easily be changed, one can think of applications where groups of agents receive
the same message. For this purpose the message client gets notified when a new
agent is created, such that it can register this agent.

The death listeners are the second item in the list that requires some ad-
ditional description. When agents get removed from the platform (i.e. they
die), some things need to be notified. Think for instance about the message
client, you cannot sent messages to agents that do not exist anymore. Or the
user interface that might want to render the agent on the screen, which is not
needed anymore, since the agent does not exist anymore.

Based on this deliberation cycle one can clearly see that this is a cycle of a
pro-active agent, since it has goals. Whenever the set of goals is empty, it is
called a reactive agent.

2.3.3 Goals

Goals are in Dastani and Testerink (2014)’s framework a special type of trigger
which add another condition: the condition of whether the goal is achieved or
not. The condition reasons about the agent’s belief base (see section 2.3.4).
Achieved goals are removed from the set of active goal triggers.

When a new goal is added, this is called ‘adopting’ and can be done in
plans in Dastani and Testerink (2014)’s framework. But only if the goal is not
already adopted. When a goal is removed, which is called ‘dropping’, two cases
are possible:

1. The goal is achieved

2. The goal is dropped intentionally by a plan

The check of whether a goal is achieved is embedded into the abstract goal
class in OO2APL and checked every deliberation cycle. Plans can drop a goal
intentionally when this is desired by the agent designer.

2.3. 2APL AND OO2APL 21

For preventing that goals that cannot do anything at a deliberation cycle, an
agent can suspend goals. Think for instance about an agent that has to analyze
a certain property of the environment without the use of an external trigger,
then one can suspend a goal until it is possible for that agent to analyze the
property.

Furthermore, when no active goals or triggers exist (including internal and
external triggers and messages), the whole agent is set to a sleep-mode and
reactivated when needed. One can suspend goals up until a certain type of
trigger occurs or when a certain condition is met.

Instead of creating a plan every deliberation cycle and executing it accord-
ingly for a goal that does practically nothing (i.e. no action follows from the
plan), this concept improves on this by checking only if a condition holds. These
conditions are:

• One of the trigger sets (i.e. goals, internal triggers, external triggers,
messages) consists of a trigger of type X

• A certain condition on the trigger sets holds

2.3.4 Belief bases

Up until now, the focus has been on goals and plans and how they are designed
and implemented in Dastani and Testerink (2014). However there is another
important notion: that of beliefs. A quick recall: beliefs are the things the agent
thinks are true (but not necessary are) about the environment, itself and other
agents.

Beliefs in Dastani and Testerink (2014)’s framework are called ‘contexts’.
They are added when the agent is created, which does not mean that at that
time all the beliefs are known (they will inevitably change), but more on this
later. As an agent can contain multiple contexts, they together are called the
agent’s belief base as in Dastani (2008). Plans and goals can access the agent’s
belief base at every time and reason about it.

In Dastani and Testerink (2014), object-oriented programming is combined
with 2APL, which adds an additional layer of software engineering to the 2APL
definition. Key in this are the notions of classes and objects from object-oriented
programming paradigm. Classes are definitions of entities which contain prop-
erties and objects are instantiations of these classes that ‘live’ at runtime. Every
agent’s belief base can only contain one object of every class that it can request
by giving the type of class.

Note here that this means classes of belief bases, one belief base class can
for instance be the belief base of a type of agent. This belief base class can off
course contain lists which contain multiple objects of the same instance.

It can also happen that two agents share the same object of the same class
in their belief base. Examples of cases where this is the case is for instance the
‘blockworld’ or ‘itemdatabase’ environments used in Dastani (2008).

22 CHAPTER 2. BACKGROUND

System

Experiment
with the actual

system

Experiment
with a model of

the system

Physical model Mathematical model

Analytical solution Simulation

Figure 2.4: Ways to study a system (from Law and Kelton (2014)[p.4]

2.4 Large-scale agent-based social simulations

The subject under investigation in this thesis is a so called large-scale agent-
based social simulation. Based on the literature one can analyze what this
notion means, which is exactly the purpose of this section.

2.4.1 Simulation

Let us first look at what a simulation is. To do this, let us use Figure 2.4. It
can be derived from this figure that we first need a system. Examples of such a
system might be a forest fire (Filippi et al., 2010), a road construction situation
(Lu, 2003) or hospital management (Glowacka et al., 2009). One can experiment
with these systems in real world, however one can imagine that it is not always
a good idea. For instance it might be too expensive, unsafe or the real world
system does not exist yet.

When for some reason testing with a real system is impossible or impractical,
this system is represented as a model. A model is a representation of the real
system, however only with the components that have a correlation with the aim
of the simulation. Think for instance about a simulation of a service desk. Here
it might not be needed to model the actual locations of customers waiting in
the queue, only their ordering of the customers might be important.

Some elements do not have to be modeled in the same way as they exist in
the real world, as long as their behavior is similar enough such that the model
still represents the real world system. Examples of this might include modeling
a tram line, where you do not explicitly model the trams itself (i.e. where on
the track it is), but only their arrival at and departure from different stops.

As already briefly mentioned, simulations have a certain aim. They try to
measure a certain situation based on a set of criteria. These measurements are
numeric or boolean measurements that quantify this goal defined by the designer
of the situation. These measurements are therefore a set of formula. However,

2.4. LARGE-SCALE AGENT-BASED SOCIAL SIMULATIONS 23

there is a difference between an analytical solution of a mathematical model
and a simulation. An analytical solution can, through mathematics, find the
best possible value in certain scenario. But in many cases this is not possible,
because the problem is for instance NP-hard (van Leeuwen, 1990; Kirkpatrick
et al., 1983; Law and Kelton, 2014).

Building process

For better understanding simulations and their equivalence properties, let us
look at the building process according to Law and Kelton (2014). The designer
of the simulation has a few tasks. These tasks are:

• Defining the goal of the simulation

• Defining the scenarios for the simulation

• Defining the measurements for the simulation

The above tasks are required for defining the scope of the simulation model.
Based on this, the model is built. This model can use different simulation tech-
niques such as discrete event simulation (Varga, 2001) or continuous simulation
(Mitchell and Gauthier, 1976).

Discrete event simulation creates a model where every change of the state
is defined by an event. These events are stored in a priority queue where the
earliest event is picked and executed. Time advance therefore is not continuous:
if event x is scheduled at time tx and event y at time ty, then instead of doing
nothing for the times between tx + 1 until ty − 1, it simply advances from tx to
ty. Advantage of this approach is that it is very efficient for simulations with a
sparse time line (i.e. not many events per time unit and a big time gap between
two consecutive events).

Continuous simulation on the other hand has no time advance mechanism.
However, this does not make it useless, because discrete event simulation often
fails to produce analytically useful results for things like convergence to some
equilibrium (Özgün and Barlas, 2009). Here continuous simulations are more
useful. Even more, think about nonterminating scenarios in which (optionally
after a warm-up phase) a certain behavior is simulated until the model decision
is made to perform a measurement to describe the ‘end’ of the simulation (there
is little agreement about how to do this correctly, see Haddock (1987)).

Now that the model is built, in the following phase, three tasks are defined
(by (Law and Kelton, 2014)) to define the quality of the simulation model.
These are:

• Validation

• Input analysis

• Verification

24 CHAPTER 2. BACKGROUND

Social Science

Computer
simulation

Agent-based
computing

SocSim MABS

SAAS

ABSS

Figure 2.5: The intersections of the three areas defining ABSS by Davidsson
(2002)[Figure 2]

First let us look at the validation task. This is about determining the accu-
racy of the model compared to the real world system, but only for the purposed
goal of the simulation. It can therefore be the case that a model for one purpose
is valid, but not for another purpose. The validity of the model is measured
as the error between the real system and the model. This error is domain spe-
cific, but think for instance about the statistical difference of passenger arrivals
generated by a tram simulation and that of a real world system.

When having built a model, one must gather the needed input for the system.
Think in this case about things like serving times of a service desk, arrival times
of passengers, etc. Often one is not interested in the true values recorded, but
more importantly about the shape of the probability distribution from which
the values are samples. Different scenarios defined in the earlier stage may
define the mean of the probability distribution. Furthermore, one might have
to alter the recorded data and remove outliers and other impossible cases for
the purpose of this simulation. This process is called input analysis.

For verification we need to talk about the assumption document of the model.
When modeling a certain situation, you cannot model everything connected
to the real world system and therefore have to make assumptions. Think for
instance again about the assumption of leaving out traffic lights in the model.
In this very simple example, verification is checking whether there are indeed
no traffic lights in the design of the new tram line. More complex verification
steps might include checking assumptions by modeling them as well to see that
the claim made by the assumption is correct.

2.4. LARGE-SCALE AGENT-BASED SOCIAL SIMULATIONS 25

2.4.2 Agent-based social simulations

Two special fields of simulation are that of social simulation and agent-based
simulations. Let us analyze these subfields and their intersection (see Figure
2.5) to describe their usage and further understand their usage in ensuring
repeatability. To do so, we must understand these fields of simulation one by
one.

Starting with the already known field of simulations (see section 2.4.1), let
us first add the social sciences, leading to social simulations (i.e. SocSim in
Figure 2.5). These types of simulations analyze things like management, policy
and social psychology using computer simulations.

Secondly we have the combined fields of agent-based computing and com-
puter simulations (i.e. MABS in Figure 2.5). These lead to multi-agent based
simulations (Law and Kelton, 2014). This type of simulations make use of the
complex cognitive states in agents (e.g. beliefs, desires and intentions). With
the increase of computational power, we see more and more of these applications
(e.g. Cetin et al. (2003); Balmer et al. (2008); Tumer and Agogino (2007); Weiss
(2011)). In this multiple agents live together, but the do not interact in a social
way (i.e. communicate or coordinate) according to Law and Kelton (2014). In
Law and Kelton (2014) this subfield is said to be a special type of discrete event
simulation.

The third possible combination (see Figure 2.5) is that of the combination
of social science and agent-based computing. This subfield is mentioned in
Figure 2.5 as ‘SAAS’, which stands for Social Aspects of Agent Systems. This
is according to Davidsson (2002) about studying the social notions of norms,
organizations and competition for instance.

Combining all the fields of Davidsson (2002) in Figure 2.5, agent-based social
simulations (i.e. ABSS in Figure 2.5) are simulations in which complex cognitive
agents (e.g. BDI-agents) can interact with each other (e.g. communication and
coordination) and their environment.

The difference between agent-based social simulations and the subfields can
best be seen from the point of an agent. In social simulations it is social (i.e.
can interact with other agents) but it has no complex cognitive state, whereas
it has a cognitive state in agent-based simulations. In the form of social aspects
of agent systems, the agent does not have to be a computer program it can for
instance be a human which can of course interact with other humans and has a
complex cognitive state.

2.4.3 Parallel and distributed simulations

Parallel simulations or distributed simulations are simulations in which the or-
der of execution is not strictly serial. This means that there may exist multiple
threads (in the case of parallel simulation) or machines (in the case of dis-
tributed simulation) that run concurrently, meaning that they both perform a
set of actions serial with minimal interference between these multiple threads of
machines.

26 CHAPTER 2. BACKGROUND

s1 s2

t1 t2

s3 s4

(a) State of processes with
initial marking M0

s1 s2

t1 t2

s3 s4

(b) State of processes after applying next
marking M1

Figure 2.6: Example of concurrency in marked petri net

An influential researcher in this field is Fujimoto, in his publications (e.g.
Fujimoto (1990, 1995, 1997, 2001)) he describes the fundamentals of parallel
simulation. By Fujimoto (2001, 1995) the degree of parallelism is simply the
speedup gained by executing the simulation parallel.

The fields of distributed simulation and parallel simulation are strongly con-
nected. Both these fields have some sort of concurrency in the way they execute
simulations. Difference is that distributed simulations are a simulation where
the concurrency is between different machines. Concurrency, is formally defined
by Nielsen and Thiagarajan (1984) as two transitions t1 and t2 that fire, but
there is no order between these two (Nielsen and Thiagarajan, 1984)[p.90].

The simplest possible example for this is the existence of two transitions
that run concurrently. We describe this example for clarification in Figure 2.6
as petri nets. The two transitions t1 and t2 are said to run concurrently. By
firing the markings the nets’ markings change from Figure 2.6a to the marking
shown in Figure 2.6b. These markings M0 and M1 are consecutive markings
and therefore no ordering of first t1 and then t2 or the other way around exists.

Historically the U.S. Department of Defense has used distributed simulation
a lot for training for instance, sometimes (like in Fujimoto (2000)) these simu-
lations are called ‘Distributed Interactive Simulation’. These systems simulated
battlefields (i.e. virtual worlds) for training of soldiers (e.g. Calvin et al. (1993))
and are often considered distributed simulations. In parallel simulation the con-
currency exists in a single machine through multi-threading for instance. This
is different from distributed simulations where the concurrency exists between
different machines (i.e. t1 and t2 from Figure 2.6 are on different machines).

Time management

Important in the field of parallel and distributed simulation is time management.
Strictly speaking everything that has some concurrency in it has to deal with
time management, so also simulations. Think for instance about two processes
P and Q that run concurrently. They can send messages in the form of tuples
m = (info, time) consisting of information and the time that the message was

2.4. LARGE-SCALE AGENT-BASED SOCIAL SIMULATIONS 27

sent. Both P and Q perform some tasks and keep track of their notion of time
tP and tQ respectively. Time management is for instance needed for the case
that tP = 5 and tQ = 3 and Q sends a message (info, 3) to P at time 3, because
tP receives the message in the past we call this a conflict.

Reason that time management is needed it that concurrently running pro-
cesses can receive information from other processes that should be handled at a
time that was already handled in the past. Problem with this is that process P
has new information based on which it should have behaved differently at times
tP = 4 and tP = 5 in the example above.

The question now raises, how such cases described above are handled. This
is the field of time management. There are roughly two solutions: prevent these
cases from happening or solve them when they happen. These two solutions
form the basis for the two approaches for time management: conservative and
optimistic.

One approach is the conservative approach, this approach states that one
should assure such a message cannot arrive at a process before one continues.
They make use of the local causality constraint, which states that a process will
only advance in time if it can assure no message from any other process will
arrive for the current moment in time. This constraint exists in both parallel
simulations and distributed simulations.

The conservative approach will at all times satisfy the local causality con-
straint. To prevent deadlocks multiple solutions have been purposed. Null-
messages inform other processes with a new timestamp of the current time the
sending process is at, preventing many deadlocks. Also one looked at the de-
pendencies between processes in the form of process topologies, graphs that
represent the dependencies between processes, whether they can send messages
or not to limit the amount of assurance of other processes. Chandy and Misra
(1981) looked at whether processes can assure that their behavior does not
change whenever any message arrives, if this is the case it can inform other
processes about it.

Another approach of time management is solving conflicts when they occur.
This is called optimistic time management and whenever a process identifies
that a received message violates the local causality constraint it goes back in
time to the moment it would not have caused a conflict, which is called a roll-
back. This roll-back is implemented in the Time Warp mechanism by Jefferson
(1985), which saves states of processes (or differences between states) and when
a conflict occurs it resets itself to an earlier state.

This approach has a few advantages. Firstly, it allows a greater amount of
parallelism, because it does not have to wait for a conflict that can possibly
occur but eventually does not, since it only does conflict detection. This leads
on average to a greater speedup.

Secondly, it does not rely on domain specific properties like the distance
between two logical processes. This makes this type of time management more
broadly applicable and does not require special knowledge from the designer
that wants to use this type of time management.

28 CHAPTER 2. BACKGROUND

2.4.4 Scale of simulations

Scale is another important notion in simulations. The scale of a simulation is
more than just ‘more entities’ as Law (1998) is pointing out. With the no-
tion of scalability from Fujimoto (1995) he means more parallelism. He argues
that scaling the amount of machines (in distributed simulations) or the amount
of cores (in parallel simulation) can have great business benefits such as the
possibility to perform real time simulations.

The notion of scalability therefore seems relatively straight forward: it sim-
ply means ‘more’. This implies the use of concurrency within the simulation
model, meaning we are dealing with parallel simulation. Therefore the require-
ment for the notion of ‘large-scale’ in the context of simulations is the existence
of concurrency within the simulation model.

2.5 DSOL

DSOL is a simulation environment developed by Jacobs (2005). It was developed
as a distributed simulation platform, which also makes it suited for parallel
simulation. This platform, written in Java, consists of implementations for
allowing distributed and parallel simulation. For this purpose it implements
core features for simulation like statistical tooling, implementations of different
types of simulations and experimental tooling and extends this with easy to use
components like an user interface and animations.

2.5.1 Experimental tooling

Simulation is all about testing a real world system, therefore it performs experi-
ments. DSOL consists of an inbuilt simulator that can store different parameters
for experimentation and fires events at certain times and can even change the
model used for simulation.

An experiment in DSOL defines the amount of runs, the different scenarios
and initial states used for simulation and the model. Experiments are executed
by a simulator, which handles the experiments.

The simulator has two types of replications: for the experiment and the
simulator. With replication of the experiment, computational replication is
meant. This means that a certain task, in this case the experiment, is performed
multiple times, for simulations this leads in several outputs of which for instance
the average is used as the correct. This way extreme outliers are balanced out.
The replication of the experiment means generating averages over the outcomes
of one experimentation run.

DSOL knows two types of replication modes, namely terminating and steady
state. The terminating state mode is used when simulations are always termi-
nated, it continues to the next replication if the termination is reached. This is
impossible when we have a continuous nonterminating simulation, so then the
steady state mode is used. In such case when a steady state is reached (i.e.
subsequent states do not differ or have a very small margin of difference) we

2.5. DSOL 29

call the state ‘stable’ and assume the outcome has converged, then the next
replication is started.

2.5.2 Statistical tooling

One of the core features of simulation is dealing with uncertainty. Therefore, dif-
ferent types of statistical tooling is included in DSOL. These include probability
distributions and tooling for gathering statistics.

Simulation input

Probability distributions are the key part of statistical tooling regarding the
input of simulations. When creating a model, one can find that certain input
values change according to some probability distribution. Many commonly used
probability distributions are included in DSOL, both discrete and continuous
probability distributions.

Discrete probability distributions are probability distributions that can only
produce a finite set of outcomes, say O and keep track of a probability over
all outcomes of o ∈ O, where the probability of o is denoted as P (o). Since
it is a probability distribution, all probabilities add up to 1. DSOL consists of
multiple discrete probability distributions like the uniform distribution, constant
distribution (i.e. always the same value) and a Poisson distribution.

Note that therefore the outcome of a discrete probability distribution can
never be any other value than an element in O. This is the main difference
between discrete and continuous probability distributions.

For continuous probability distribution, a given outcome o, which is a sam-
ple from a continuous distribution the probability of that outcome, denoted
P (o) = 0, however because there are an infinite amount of outcomes, these
values together still add up to 1.

DSOL consists of many continuous probability distributions, including for
instance the normal distribution and the gamma distribution. Also it consists
of continuous versions of earlier mentioned discrete probability distributions like
the uniform distribution.

Simulation output

For the output of the simulations, it is first important to gather statistics. To
do this, DSOL has as set of commonly used practices to gather statistics. A
good example is for instance the Counter, a simple mechanism that can, due
to the modular structure of DSOL, easily be added to the desired element and
keeps track of whatever needs to be traced for the purpose of the simulation.
It by itself knows when to fire and can also automatically generate tables that
store the results. Such a counter can be seen as a measurement of a simulation.

This table generation illustrates the output generation methods of DSOL, by
building this once and a module, it can easily be included into other simulations.

30 CHAPTER 2. BACKGROUND

Furthermore, DSOL consists of a GUI and can directly display these models to
a non-technical user.

2.5.3 Agents

On the website of DSOL agent-based modeling (Verbraeck, 2017) is mentioned as
an implemented, however in the source code and in Jacobs (2005), this discipline
is not mentioned. Even the word ‘agent’ is not mentioned by Jacobs (2005).
Due to the modularity of DSOL however, agent-based modeling can easily be
implemented by using frameworks like OO2APL or JADE as the model.

2.6 Repeatability and reproducibility

The notions of repeatability and reproducibility are often used together, like in
Minitab Inc (2016); Taylor and Kuyatt (1994). We will discuss the notions or
repeatability used in the literature.

2.6.1 Repeatability

First repeatability. In Minitab Inc (2016), a publication about statistical tool-
ing, repeatability is defined as:

The ability of an operator to consistently repeat the same measure-
ment of the same part, using the same gage, under the same condi-
tions ((Minitab Inc, 2016) , p.1)

Here they speak about the subject of repeatability: measurements. With
measurements they means the outcome of a measurement (i.e. the result).
According to Minitab Inc (2016) repeatability is about the difference in results
of the measurement. This publication does not describe what the difference may
or may not be (i.e. deterministic, or from the same distribution).

The other part is about the same experimental conditions and gage, describes
the second requirement of repeatability: similarity. The situation under which
the measurement is performed may not change. Again, what similarity is, is not
defined by Minitab Inc (2016).

Now that we have an intuitive idea about repeatability, let’s look at it more
in depth. The National Institute of Standards and Technology (NIST) (in the
form of Taylor and Kuyatt) has defined repeatability as the following:

Definition 2.1 (Repeatability of measurements). Taylor and Kuyatt (1994)[D1.1.2
p.14] (NIST guidelines) Repeatability is the closeness of the agreement between
the results of successive measurements of the same measurand carried out under
the same conditions of measurement.

Notes:

1. These conditions are called repeatability conditions

2.6. REPEATABILITY AND REPRODUCIBILITY 31

2. Repeatability conditions include:

• the same measurement procedure

• the same observer

• the same measuring instrument, used under the same conditions

• the same location

• repetition over a short period of time

3. Repeatability may be expressed quantitatively in terms of the dispersion
characteristics of the results.

The above definition by Taylor and Kuyatt, which also includes these notes
in the definition, gives guidelines about repeatability. These guidelines are for
instance used in medical studies like Bartlett and Frost (2008), in which an
overview of measurement techniques is presented.

Also from NIST, Villarrubia et al. (2003), use repeatability in their simula-
tion study of CD-SEM. CD-SEM is a measurement system for ‘measuring the
dimensions of the fine patterns formed on a semiconductor wafer’ according to
High-Technologies Corporation (2017)[p.1]. They state:

Repeatability is a measure of random error associated with a mea-
surement, the amount of spread in the distribution of measured val-
ues when a measurement on the same sample is repeated many times
(Villarrubia et al. (2003) , p.1)

Important to note is that Villarrubia et al. talk here about a distribution
as an output rather than a value (which is a sample of the distribution). They
compare two distributions of values and if these distributions are equal then
they state that they are repeatable. This is a different interpretation of the
equality of the results, because the equivalence is over the distribution rather
than the values.

Also at (almost) the same time, McGregor worked on an overview of com-
puter simulation (McGregor, 2002) in which repeatability plays a vital role. In
computer simulation, models play a vital part: they represent the simulated
system in the computer. About two runs of the same model he states:

Two or more model runs will always execute in exactly the same way
and produce precisely the same results if no parameters are changed
between runs (McGregor (2002) , p.1684)

Here McGregor describes the equivalence of the input as also seen in the
argument made by Villarrubia et al.. However, McGregor continues with:

Any impression of randomness in a simulation model is due to the
use of pseudo-random numbers to generate certain events such as
breakdowns, cycle times and so on (McGregor (2002) , p.1684)

32 CHAPTER 2. BACKGROUND

Here McGregor describes the input of a measurement as a distribution. Fur-
thermore, this induces a correlation between the input distribution and the
output distribution, since the randomness of the simulation model means the
output of the simulation which is correlated to the random numbers that gener-
ate the events (i.e. the input). It shows a one-way implication: the input affects
the output, not the other way around.

According to McGregor, repeatability is necessary to recreate and under-
stand events during the model run and for debugging during construction. He
also states:

All events that influence the model execution are contained within
the model and are therefore repeatable (McGregor (2002) , p.1685)

The above citation talks about what should be included in the scope of
the initial state for repeatability. McGregor states about this that all events
that influence the model execution should be included. He does not specify
the exact events that exist in his model. But because he includes ‘all’, it can
be deduced that he also includes the initial value (i.e. the seed) from pseudo-
random number generators, since they also influence the model execution and
should by McGregor’s quote be included.

From the field of distributed simulations, Fujimoto describes repeatability
for the purpose of describing simulation executions. He states:

A distributed simulation is said to be repeatable if subsequent execu-
tions of the simulation using the same initial conditions and input as
a reference execution produce exactly the same results (e.g., model
statistics) as the reference execution (Fujimoto (1997) , p.2)

Again, here the same requirements for repeatability can be identified: the
initial states between two runs should be equivalent and the results should be
equivalent. He describes these equivalences as statistical equivalence, meaning
that two results should samples from the same distribution. Meaning that unlike
McGregor, he does not include the seed for pseudo-randomness in the model
state but states that two inputs should be from the same distribution.

Also note that he states that parallelism does not matter for repeatability (by
comparing it with a reference execution which is or is not a parallel execution).
This is assuring since it allows us to ensure repeatability in parallel execution,
which according to the description of repeatability of Fujimoto is possible.

Again, almost the same requirements, with a tiny difference in the inter-
pretation of what is meant by ‘equivalent’. So now we have seen parallel or
distributed simulations define the notion of repeatability, however not yet in
agent-based distributed simulations. However, in Riley and Riley (2003), the
notion of repeatability is mentioned in this field. In a description of the results
ran by the authors of this paper they write:

[..] we repeatedly ran simulations with the same random seeds given
to both the world model and the agents (Riley and Riley (2003) ,
p.824)

2.6. REPEATABILITY AND REPRODUCIBILITY 33

Based on this quote combined with the assured repeatability conditions, you
can conclude that they do include the random seed in the scope of the initial
state and the equivalence relation between the states. About the output, they
state:

In all cases, the results of the simulation in terms of the positions,
the sensations, and the actions of all the agents are exactly identical
(Riley and Riley (2003) , p.824)

Here they describe the output equivalence relation, for which they use a
strict version that requires the outputs to be exactly the same (i.e. no samples
from the same distribution). This is trivial due to the inclusion of the seed of
the (pseudo) random number generator in the initial state’s equivalence relation.
They conclude by stating:

It should be noted that the order of event realization is not identical
(Riley and Riley (2003) , p.824)

The realization Riley and Riley make is critical, they do include parallelism,
since they are writing about distributed agent-based simulations, but state that,
just like Fujimoto (1997), parallelism does not influence the possibility of re-
peatability and in this case the order of event realization is not critical: we can
allow some parallelism without harming repeatability.

Let us now summarize what we have seen so far. First we have seen a set of
conditions under which repeatability is assured. We have seen the origins in the
literature and seen how slightly different interpretations of these conditions are
used throughout the literature. Furthermore we have described how in different
subfields of the literature all the way to distributed agent-based simulations
repeatability is defined and used.

2.6.2 Reproducibility

Let us now look at reproducibility, because in the literature this notion is used as
well as repeatability. Sometimes the use of reproducibility is correct and some-
times it is not. Also, just like repeatability, Minitab Inc defines reproducibility:

The ability of a gage, used by multiple operators, to consistently
reproduce the same measurement of the same part, under the same
conditions. (Minitab Inc (2016) , p.1)

Note already the difference with repeatability: reproducibility is about mul-
tiple operators. But also here the notion of similarity is not further defined by
Minitab Inc for the sense of their statistical tooling. Luckily Taylor and Kuyatt
again comes to the rescue with the following definition:

Definition 2.2. Taylor and Kuyatt (1994)[D1.1.3 p.14-15] (NIST guidelines)
Reproducibility is the closeness of the agreement between the results of measure-
ments of the same measurand carried out under changed conditions of measure-
ment

Notes:

34 CHAPTER 2. BACKGROUND

1. A valid statement of reproducibility requires specification of the conditions
changed

2. The changed conditions may include:

• principle of measurement

• method of measurement

• observer

• measuring instrument

• reference standard

• location

• condition of use

• time

3. Reproducibility may be expressed quantitatively in terms of the dispersion
characteristics of the results.

4. Results are here usually understood to be corrected results.

Let us analyze the above definition given by Taylor and Kuyatt, which also
includes the notes in the definition. This states that conditions change and de-
fines these conditions. Note that one of the possibly changed conditions here is
the observer, as also mentioned by Minitab Inc. However, here this is only one
of the conditions that might change, not necessarily should. By some interpre-
tations it can be seen as that with a different observer also a different method or
principle of measurement or some other conditions from Definition 2.2 is used.
However Taylor and Kuyatt want to be very clear about this and define all of
them.

In medical measurement, Bartlett and Frost describes reproducibility as:

Reproducibility refers to the variation in measurements made on a
subject under changing conditions (see definition 2.2). The changing
conditions may be due to different measurement methods or instru-
ments being used, measurements being made by different observers
or raters, or measurements being made over a period of time, within
which the error-free level of the variable could undergo non-negligible
change (Bartlett and Frost (2008) , p.467)

In the above quote in reality Bartlett and Frost also refers to the definition
of reproducibility in Taylor and Kuyatt (1994). Since it is a direct reference,
it comes at no surprise to see that it also talks about changing conditions and
the conditions that can change are somewhat similar (apart from the fact that
Taylor and Kuyatt (1994) is more detailed).

What Bartlett and Frost states is that the variation of results is (almost
entirely) due to the changed conditions. This is in line with what is stated by
Lin. He states that:

2.6. REPEATABILITY AND REPRODUCIBILITY 35

[...] the more the data are scattered [, the more it is] nonreproducible
(Lin (1989) , p.255)

Defining here the relation between reproducibility and the variation in the re-
sults, Lin proposes a statistical degree of reproducibility based on this variation
between results. The degree of reproducibility is subject to a set of parameters.
Specifying the parameters correctly is key, one can imagine that with wrong
parameters either everything or nothing is defined to be reproduced whenever
the difference is even very minor.

To give another quote on what reproducibility is, let us look at what Santer
et al. says about it:

[Reproducibility is] the independent verification of prior findings
(Santer et al. (2011) , p.1232)

This quote is from meteorological research, but still important. It namely
shows the additional level of abstraction of reproducibility compared to repeata-
bility. The ‘independence’ in Santer et al.’s quote clearly is about the conditions
that might change and the following quote seems to confirm this:

[Reproducibility is] the ability to independently verify the prior find-
ings reported by an established model. The ability to independently
replicate, reproduce and, if needed, extend computational artifacts
associated with published work (Arifin and Madey (2015) , p.219)

The observation by Arifin and Madey is based on the verification philosophy
of computer experiments described in Fomel and Hennenfent (2007) and Santer
et al. (2011). When looking at this again, the independence can be interpreted
as changing conditions.

Let us now summarize the notion of reproducibility from the literature. We
have seen that reproducibility is about changing conditions under which the
experiment is performed. Just like with the notion of repeatability the notion
of reproducibility is about the variance of the results, although here the variance
is primarily due to the phenomenon under investigation rather than the system.
Furthermore, also two variations of looking at the equivalence of exist: one which
defines equivalence based on values whereas the other defines the equivalence
based on the distribution of which these values are samples.

36 CHAPTER 2. BACKGROUND

Chapter 3

Repeatability and
equivalences

Here we will define our own notion used throughout this thesis. So in this
chapter we will bridge the gap between the literature and our work.

3.1 Repeatability

In section 2.6.1 we have given an overview of repeatability in the literature. We
observe that repeatability is about the correlation between the input and the
output of a system which adds a few requirements.

Different interpretations exist, which differ based on what means ‘equiva-
lent’. Mainly two views exist on this, a strict view which states that equivalent
means the same value and a more abstract view which looks at values as samples
from probability distributions and analyzes equivalence over these probability
distributions. Without this interpretation though we can create a notion of
repeatability:

Definition 3.1 (Repeatability). Let f l,t be a measurement function where l
denotes the location and t the time, let p and q be two initial states such that two
measurement results x and y are a result of measurement function f (resulting
in x = f l,t(p) and y = f l

′,t′(q)) and given an equivalence relation ≈, we call f
repeatable if p ≈ q then x ≈ y, when:

• l ≈ l′

• t ≈ t′

Note from the above definition that we include all repeatability conditions
from Definition 2.1: the measurement instrument, observer and its procedure f
are the same (i.e. f ≡ f) in both measurements, the location of that measure-
ment is equivalent (i.e. l ≈ l′), the time is equivalent (i.e. t ≈ t′), the input is
equivalent (i.e. p ≈ q) and the output is equivalent (i.e. x ≈ y).

37

38 CHAPTER 3. REPEATABILITY AND EQUIVALENCES

The measurement function f in the definition of repeatability can be any-
thing. We try to ensure repeatability in the sense of large-scale agent-based
social simulations and in that case f is a large-scale agent-based social simula-
tion. The equivalence relation ≈ is given in this definition and the subject in
section 3.3. For now it suffices to be able to say that there is an equivalence.

3.2 Reproducibility

Already mentioned is the relevant notion of reproducibility in section 2.6.2. In
the literature the statement is made that conditions on the measurement have
changed, such as the method of measurement or the observer. From this we
define the notion of reproducibility as:

Definition 3.2 (Reproducibility). Let f l,t and gl
′,t′ be measurement functions

where l denotes the location and t the time, let p and q be two initial states such
that two measurement results x and y are a result of measurement function
f and g respectively (resulting in x = f l,t(p) and y = gl

′,t′(q)) and given an
equivalence relation ≈, we call f reproducible by g if p ≈ q then x ≈ y

We define the notion of reproducibility here to be able to show the exact
difference between repeatability in this thesis. From the definition above one
can note that the changing conditions requirement from Definition 2.2 is entirely
included, the difference between f and g stands for the principle and method of
measurement, the measurement instrument, reference standard, the condition
of use, the time and the location.

Note the difference with repeatability. First of all, reproducibility is about
two different systems f and g, where repeatability is about only one system.
This difference between repeatability and reproducibility is formulated by the
difference in the notation of the a strict equivalence f ≡ f in Definition 3.1
(repeatability) whereas in Definition 3.2 f l,t 6= gl

′,t′ is possible.
Now that the formal description of reproducibility is clear, we can clearly

see that for the purpose of ensuring equal or similar results in large-scale agent-
based social simulations in which agents run concurrently repeatability is more
what we need than reproducibility. Since also the observer, measurement instru-
ment, measuring principles and condition of use are identical (i.e. we only make
one simulation platform and model), we clearly have to deal with repeatability
instead of reproducibility in the problem we are facing.

3.3 Equivalences

In Definition 3.1 we have given the equivalence relationship, here we will describe
some equivalence relationships that are possible and discuss their behavior. By
no means is this a complete list of equivalence relationships, but these are con-
sidered most relevant in the sense that they describe the different views of the
literature on repeatability.

A quick recap shows us that the equivalence is over:

3.3. EQUIVALENCES 39

• The measurand

• The measurement procedure

• The observer

• The measurement instrument

• The location

• The repetition time period

• The results

In this part, the equivalences of these notions are covered and multiple dif-
ferent types of repeatability are defined.

3.3.1 Equivalent simulation assumption

We shall assume that we have the same scenario which we shall investigate.
This means we assume that the same implementation of a simulation is used
under the same conditions for the same purpose. So from the above repeatability
equivalences, we assume that the measurement procedure, observer, instrument,
location are identical. Also we assume, since we are talking about repeatability
instead of reproducibility, that the difference in time period is so small, that we
can state that the repetition time period of two independent simulation runs
are ‘similar’. We call this the equivalent simulation assumption.

Reason behind assuming identical equivalence has to do with the difference
between repeatability and reproducibility, assuming that many of the above
mentioned subjects change means a different implementation of the simulation
and therefore brings us to reproducibility in the sense of large-scale agent-based
social simulation, which does not serve the purpose of this thesis.

Time difference equivalence

First however we need a more formal statement when we call two repetition
time periods close to each other. We shall denote a time period t as a range
[start, end] (where start < end). We identify the following time intervals that
might arguably be possible:

• The duration of n repetitions of the experiment

• The duration of the research project of which the experiment is a subpart

For reasoning about these cases, assume for now that all other cases identi-
fied in Definition 3.1 are said to be equivalent. We then talk for instance about
a research project that has just developed a large-scale agent-based social sim-
ulation in which all the equivalences are said to hold, except the one currently
under investigation: the repetition time period. The question is whether or not

40 CHAPTER 3. REPEATABILITY AND EQUIVALENCES

we call two measurements repeatable given that they for instance differ for more
than one day?

The question then raises how small is ‘small’ in the statement that there
must only be a ‘small’ difference in the repetition times. One could argue that
more than one day is close enough. Because one may not make any changes to
the implementation of the simulation (due to the assumption of the identical
measurement instrument), the difference may not be that big. On the other case
however, the runtime of the experiment is taken into account as well, making it
better scalable.

CPU clock timestamp

For better determining what is a suitable difference in time interval, we shall
identify the consequences of different time intervals. The most easily imaginable
of any time difference is a different value of the internal clock of the CPU. This
value represents the time the CPU is on and might be used on different locations
in the system. Cases where this might influence the behavior of a computer are:

• When the timestamp is used for (pseudo) random number generation (i.e.
the seed)

• When the timestamp is used for an application specific calculation (e.g.
the duration of an event)

• When the timestamp is used for tie breaking (e.g. in multi-threaded sit-
uations)

In the first case for random number generation, if the timestamp is even
slightly different, the seed will cause an entirely different stream of (pseudo)
random numbers. Therefore, here it does not matter how big the difference in
time is, it will differ anyhow.

In the second case, the timestamp also has no impact whatsoever, it is
here all about the duration of the event, which can vary due to the amount of
processing done at different moments in time.

In the last case, tie breaking is done through some process involving the
timestamp of the CPU’s clock. One can imagine that such a timestamp might
be used to tie break. An example of this might be the following.

Given t is the timestamp and r is the result of the following calculation on
the timestamp:

r = t mod 2 (3.1)

Then a simple mechanism might result in choosing option one if r = 0 and
option two if r = 1. But as can be seen, also here the size of the time difference
does not matter: every time difference can lead to entirely different behavior in
tie breaking.

3.3. EQUIVALENCES 41

Processor load

Processor load is another thing that can vary. One can imagine that this may
vary slowly over time, but also fast. Imagine a computer performing an exper-
iment and in the background also some maintenance task that is totally inde-
pendent of the experiment but does take processor power. The computer then
has to assign processor time to both tasks. Again, this may change rapidly or
slowly over time depending on that background task. Key is however that when
the difference between the time intervals gets smaller, it becomes more likely
that the same background task is still running and influences the experiment in
a similar way.

Also processor load might influence certain metrics like runtime. Having
background tasks running in one experiment and not in another experiment
changes the measurement instrument and therefore one might argue that this
is indeed a violation of the repeatability conditions and so do we.

Summary of time period equivalence

We have seen that identifying what generates noise due to differences in time
is possible, it has been done above. The conclusion of what this has for a
consequence is also possible: it might (given that no synchronization techniques
are implemented) cause deviations in the results which cause unrepeatability of
the results. However, we have also seen that the difference in time intervals has
no big influence on the notion of repeatability. It can have a very disturbing
effect on the repeatability, but often it already has a disturbing effect from even
the smallest imaginable change (e.g. adding 1 to the timestamp).

However, for now we will create a definition of the time period equivalence
according to the most strict version we have proposed above, based on the run-
time of an experiment. This form is suitable by the DSOL simulator used, which
consists of an inbuilt replication mechanism which performs a given amount of
replications of the same experiment under the same circumstances. We state
therefore that the experiment time is the time the simulator needs to perform
two experiments of n replications (often 30 is used for statistical significance).

Definition 3.3 (Time period equivalence). Given two time periods a = [astart, aend]
and b = [bstart, bend] of two independent experiments (i.e. astart < bstart), we
define these two time periods time period equivalent in the sense of repeatability
in large-scale agent-based social simulations if and only if:

bstart − aend ≤ r

Where r is the average runtime, defined as:

r = (aend − astart) + (bend − bstart)

Note from the above definition we state that the difference in time may not be
greater twice the duration of an experiment (i.e. all 30 replications of the same
experiment). This strict notation is plausible by the inbuilt simulator replication

42 CHAPTER 3. REPEATABILITY AND EQUIVALENCES

system in DSOL (Jacobs, 2005), which reschedules the same simulation again
in milliseconds. So only when an simulation takes less than a millisecond this
equivalence is not plausible for us, which seems unlikely given that the creation
of a multi-agent system combined with the DSOL simulator already takes 133.5
milliseconds (average for the creation of our own experiments).

Furthermore, we will use in the experiments of this thesis a degree of re-
peatability, which shows the notion of repeatability empirically, where the time
difference again is about milliseconds between finishing experiments. Making it
again plausible to use the above definition.

Summarizing the equivalent simulation assumption

Now knowing all the components needed for the equivalence relation of time
periods we can finish building the formal notation of the equivalent simulation
assumption.

We use the assumption for the measurement instrument, location, observer
and measurement procedure that they are used in both experiments and there-
fore are the same. This is because we assume that the same simulation (i.e.
same implementation of the same multi-agent system) is used in both runs.
This makes that we assume for the observer (i.e. the metrics gatherer in the
simulator and the measurement procedure), the measurement instrument (i.e.
the simulation model with the multi-agent system) and the location (i.e. same
computer/operating system) that they are the same. We need with this equiv-
alence the notion of repeatability instead of reproducibility, which is exactly
what is desired.

Assuming the equivalent simulation assumption, this leaves us with two main
subjects we reason about in the remainder of this chapter: the measurand and
the results. We shall, as a convention, state that the measurand is the input of
the experiment of the simulation, denoted I, and the results are the output of
the experiment of the simulation, denoted O.

3.3.2 Deterministic repeatability

The strongest type of equivalence imaginable is the deterministic equivalence,
meaning that O and O′ are equal if and only if:

I ≡ I ′ (3.2)

For repeatability this means that, with the equivalent simulation assumption,
we need to have deterministic equivalence on the result as well:

O ≡ O′ (3.3)

By default, using the serial assumption in computers used in Duffy (1992),
every serial program has this type of deterministic repeatability because the
computer as we know it is a Turing Machine (Copeland, 1993).

3.3. EQUIVALENCES 43

The serial assumption used in Duffy (1992) and also described in McCool
et al. (2012) states that programmers assume that a set of operations is per-
formed strictly serial. Meaning that given a set of operations there exists a
strict order meaning:

Definition 3.4 (Serial assumption). Given a set of actions A = {α1, α2, .., αn},
a trace t is a sequence of actions from A. We define that the serial assumption
holds on trace t if and only if ∀x, y ∈ t : x < y or y < x (where < is performed
based on time).

For this assumption to hold, McCool et al. (2012) states that one must
perform at most one action at one time, otherwise one cannot ensure the relation
<. Speaking in terms of computer, this means that at most one processor may be
used, which is a problem often made by design in computer programs according
to McCool et al. (2012). This design fault is not something specific to our
problem.

We can state that the deterministic repeatability is described as:

Definition 3.5 (Deterministic repeatability). Given a large-scale agent-based
social simulation, the input of that simulation denoted I and the results of that
simulation denoted O, we state that the output of that simulation is determin-
istically repeatable under the equivalent simulation assumption if for two runs
with inputs i and i′ (where i ≡ i′) for the outputs o and o′ it holds that o ≡ o′.

3.3.3 Probabilistic repeatability

A different form of repeatability we define is that of probabilistic repeatability.
Here the philosophy is that different values can be from the same probability
distribution and the equivalence relation is on the distributions.

But what is a probability distribution? We have described in section 2.5.2
that they state something about a chance that something has a certain value.
Formally this means:

Definition 3.6 (Probability distribution). Let O = {o1, o2, .., on} be a set of
outcomes and P = {p1, p2, .., pn} a set with the corresponding probabilities, we
call X = {(p1, o1), (p2, o2), .., (pn, on)} a probability distribution where:∑

p∈P
p = 1

Note from the above definition that all probabilities, which correspond to the
chance that of all values of O value oi occurs, together sum up to 1. This is al-
ways the case with probability distributions. We also mentioned that there exist
discrete and continuous distributions. We can model both types of distributions
because both O and P can be infinite sets. Different types of distributions ex-
ist like uniform and normal distributions, which can all be represented using
this definition, the differences between these types consist of different formulas

44 CHAPTER 3. REPEATABILITY AND EQUIVALENCES

for calculating the mean for instance, which is not relevant for our purpose of
reasoning about equivalences, but it can theoretically be defined.

As an example suppose the values a, b, c are all samples from a distribution
D = (O,P), which means that a ∼ D, b ∼ D and c ∼ D where in this case
the operator ∼ is from probability theory meaning ‘sample of’ (i.e. if a ∈ O
then a ∼ D). Because it are samples it might well be possible that a 6≡ b for
instance. With deterministic repeatability this would lead to a violation and
therefore the two outcomes, even if we have not even considered them yet, not
repeated.

Suppose we have two experiments that pick samples from two distributions
D and D′, we state that these are the inputs of the experiments, meaning the
equivalence relation is over these. We state that D ≡ D′, since we are still
talking about distributions we call this the equivalence relation for probabilistic
repeatability.

The same goes for the results of the simulation. Because the inputs are
considered equivalent, so should be the outputs. Because the input values are
samples from a distribution, so should be the outputs. We call the distribution
of this output X and state here we have to deal with the notion of probabilistic
repeatability, meaning that given two equivalent input distributions and two
corresponding output distributions the system that produces these distributions
is considered probabilistically repeatable. Formally speaking:

Definition 3.7 (Probabilistic repeatability). Given a large-scale agent-based
social simulation, the input probability distribution of that simulation denoted I
and the result distribution of that simulation denoted R, we state that the output
of that simulation is probabilistically repeatable under the equivalent simulation
assumption if for two runs with inputs i and i′ (where i ∈ OI and i′ ∈ OI) for
the outputs o and o′ it holds that o ∼ O and o′ ∼ O.

Correlation input and output

We state that the input distribution D and output distribution X are correlated,
since an arbitrary sample from D (say a ∼ D) results in a result sample b ∼ X.
Since the simulation is run on a computer, which is a Turing machine, the output
is (given the same input) always the same. This is with serial execution always
the case, however for parallel execution, the whole existence of the problem
of ensuring repeatability shows that it is not required, therefore we have to
assume that correct measures have been taken (i.e. synchronization techniques
implemented) that ensure deterministic repeatability.

Assuming this, we can see that a mapping occurs between values from the
input distribution to the output distribution. We specify this mapping as a
function:

Definition 3.8 (Deterministic input and output mapping). Given a large-scale
agent-based social simulation, which takes inputs from an input distribution I
and results according to distribution X, we define a mapping between samples

3.3. EQUIVALENCES 45

from I (e.g. a ∼ I) to samples from X (e.g. b ∼ X) as a function m : I → D
defined as m(a) = b

This mapping is what we reason about. Since given a sample a ∼ D (i.e.
the input) it corresponds to the sample b ∼ X, which is the output, (of the
output by this mapping (i.e. m(a) = b) which are exactly the input and output
conditions this chapter is about.

When it is possible to make such a mapping we state that repeatability
is ensured in the most strict fashion: deterministic repeatability. Since given
the same input, the same output is produced. However, when we drop the
assumption we can have that m(a) = c or m(a) = b (where c 6= b), which
basically states m(a) 6= m(a), which is a problem because it allows internal noise
in the program and that means that it is not simulating the real world system
but has internal deviations by the execution. If a real world system does have
noise, it means it is part of the initial state making that it is not the same initial
state (i.e. m(a) vs m(b)) meaning that we do not have m(a) 6= m(a). Therefore
we state that without the assumption of determinism within the mapping such
a mapping as defined in Definition 3.8 does not exist.

When this is the case another mapping is possible, the one we call the
probabilistic input and output mapping:

Definition 3.9 (Probabilistic input and output mapping). Given a large-scale
agent-based social simulation, which takes inputs from an input distribution I
and results according to distribution X, we define a mapping between samples
from I (e.g. a ∼ I) to samples from X as a function m : I → D defined as
m(a) ∼ X

The nuance here is that the mapping m(a) is a sample from X, but not
defined as a specific sample. This might be a small adaption but opens up
a whole new range of opportunities. But when implemented incorrectly and
specific measurements in the simulation are used, it can also lead to internal
noise in simulations by which it causes internal deviation by the model, not the
modeled behavior of the simulation.

To show the new range of opportunities, suppose an auction with n bidders
according to an English auction (i.e. highest bid wins and everybody gets in-
formed about all bids). Suppose the bidder which is prepared to pay the lowest
price is bidder 1 and this is ordered all the way up to the bidder who is prepared
to pay the highest price, which is bidder n. Suppose this prepared price (de-
noted pi for agent i) is the upper bound to what an agent will bid. Now consider
the output of such a large-scale agent-based social simulation to be the price
agent n pays for the item for sale in the auction. When ensuring repeatability
within the protocol of the auction, we ensure that the agent with the highest
price (i.e. agent n) will always win the auction, however the value the agent
pays can, when not ensuring deterministic repeatability but probabilistic, vary
between [pn−1, pn]. This range is the distribution of results (i.e. X from the
formal definition).

By this example, we can see that we still ensure deterministic repeatability
within the protocol of the auction: the same agent wins the auction. But the

46 CHAPTER 3. REPEATABILITY AND EQUIVALENCES

price he pays for the highest item may vary: in one run the auctioneer receives
the bid from agent i for instance earlier than that of agent j whereas in another
run this is the other way around. Key here is when this happens near the last
bids. Suppose that every agent increases his bid by 2 every round. Then when
the auctioneer announces the price of pn−1 − 1 agent n − 1 will place a bid of
pn−1 and agent n will place a bid of pn−1 + 1 (assuming there is a difference
between pn − pn−1 ≥ 1). The order in which these two bids are processed by
the auctioneer is very important, there are two cases: first process the bid of
agent n− 1 or first process the bid of agent n.

If the auctioneer decides to process the bid of agent n first, the auction is
finished. Because no agent will bid higher than n’s bid of pn−1 + 1 since it is
definitely higher than n− 1 is prepared to pay.

The other case is that first the bid of agent n − 1 is processed. In such a
case the auctioneer announces this bid of pn−1 to all agents (only agent n will
respond because all other agents have a p lower than the current price) and
agent n responds with a bid with the price:

pbid =

{
pn if pn ≤ pn−1 + 2

pn−1 + 2 otherwise
(3.4)

In this case we can see that there are two possible values from the distribution
of X (i.e. the values of pbid), this increases when instead of 1 there are more
agents with a price of pn−1.

3.4 Summary

In this chapter we have created our own notion of repeatability for use through-
out this thesis and combined it with the notion of large-scale agent-based social
simulations. Furthermore we have defined different types of repeatability: deter-
ministic and probabilistic. About these two types we have reasoned and shown
what their behavior might be, while we still consider them repeatable.

Chapter 4

Synchronization techniques

In this chapter we talk formally about the synchronization techniques, there-
fore we first describe repeatability in the sense of traces and measurements (for
simulations) to continue with examples of problems with repeatability that can
emerge when we do not include correct synchronization techniques. We will fo-
cus purely on the theoretical side and proof formally that these synchronization
techniques work.

4.1 Formal Language

For describing the agent platform, we need a formal language for describing
these agents. Specifically, we are in the terms of repeatability interested in
processes. Since repeatability is about program runs, or traces, which are a
result of processes, we are looking for formal languages describing processes.
More specifically, repeatability in large-scale agent-based social simulations is
about measurements and measurements are the result of a process. So when
reasoning about the measurements, we reason about the processes, or process
equivalence. By process equivalence we mean, equivalence of the traces or runs
the process can produce.

Languages for describing processes are also known as process algebra. Mul-
tiple ones exist including:

• Petri nets (Petri, 1962)

• Partially ordered sets (Dushnik and Miller, 1941)

• Communicating Sequential Processes (Hoare, 1978)

Note above that we choose partially ordered sets for comparison here. We
could have also included Basic Process Algebra (BPA) by Fokkink (2007) here.
However these two are very similar and based on how often they are used in
the literature (i.e. citations of Fokkink (2007) vs. Dushnik and Miller (1941)
and related publications like MacNeille (1937); Trybulec (2000); Trotter (1995,

47

48 CHAPTER 4. SYNCHRONIZATION TECHNIQUES

2001) compared to Groote and Huttel (1994); Fokkink and Zantema (1994);
Bergstra and Klop (1984)), the choice is made to use Partially ordered sets.

To compare which process algebra is best suited for the desired purpose,
we should identify our needs. There are a few requirements that the language
should have, namely:

• It should be able to model relative time

• It should be able for different actions to take longer or shorter than others

• It should be able to model concurrency

• It should be able to model synchronization

• It should be able to model shared resources

These requirements are based upon what large-scale agent-based social sim-
ulations need. We will discuss them one by one.

The first requirement is needed because the model some real world system
which means it should model time, because for repeatability timing (or time
relative to other actions in processes) is important for action conflicts. Also
the second requirement is about time, but then the timing of actions. These
requirements can be added in CSP by two events: start and finish. These start
and finish events can have an arbitrary time between them, as with the relative
time in the form of comparing traces. For Petri nets it is more difficult because of
the inbuilt marking transition mechanism for modeling the duration of actions,
which automatically fires transitions that are active. Partially ordered sets can,
just like CSP, model time in the same flexible way but lack the possibility to
model flow (e.g. markings in Petri nets).

Another requirement is that of concurrency (i.e. causal independent). This is
needed because we talk about large-scale agent-based social simulations, mean-
ing that agents can run concurrently. Because all process algebras have an
internal graph-like structure, one can model concurrency as two or more (par-
tially) disconnected processes (see Figure 4.1).

Also CSP can describe concurrency, however it uses equations for it. The
example denoted in Figure 4.1, is denoted in CSP by equations 4.1, 4.2 and 4.3.

A = starta → β1 → β2 (4.1)

B = startb → γ1 → γ2 (4.2)

A||B (where αA 6= αB) (4.3)

The above equation 4.3 requires the given constraint of αA 6= αB. The sets
αA and αB denote the alphabets of the processes. This alphabet is the set of
events the process can handle from now up until the process is terminated (or

4.1. FORMAL LANGUAGE 49

starta

β1

β2

startb

γ1

γ2

(a) Partially ordered set of two agent
example

starta

β1

β2

startb

γ1

γ2

(b) Petri net of two agent example

Figure 4.1: Examples of two agents running concurrently in partially ordered
sets (4.1a) and Petri nets (4.1b)

if it does not terminate forever). For an arbitrary process P the alphabet is
denoted αP .

The requirement that αA 6= αB is because when the opposite is true, we
talk about interleaving in CSP. Therefore another operator exists, denoted as
in equation 4.4.

A|||B (where αA = αB) (4.4)

The fourth requirement is about synchronization. This is important for
solving repeatability conflicts. Synchronization means requiring cooperation
between agents in order to ensure something as a group. Specifically speaking,
suppose two agents A1 and A2 want to access a shared resource, due to synchro-
nization one can ensure that the resource can only be accessed by one agent at
one time. A violation of this, will possibly violate repeatability. Two languages
have synchronization embedded: Petri nets and CSP. Petri nets use for this the
transitions, which only fire when all ancestor states have a marking of at least
1. CSP uses for this the notion of the synchronization operator |{..}|, which
allows processes to halt until another process is ready.

In partially ordered sets synchronization does not exist explicitly and should
be added in the form of guards or some other additional formal notation to
ensure synchronization.

The last requirement is about shared resources. Agents can have shared
resources, think about the environment for instance, and modeling these in the
language is critical. With CSP this is no problem by the use of the synchro-
nization operator |{...}| which can denote shared resources and synchronization
of it. However Petri nets and partially ordered sets do not model resources in
their languages.

50 CHAPTER 4. SYNCHRONIZATION TECHNIQUES

Chosen language

From the survey above we decided to use is CSP. Reason for this is that it
is flexible enough to model concurrent processes and specific enough to model
things like synchronization. We use a few terms and notation that might look
unfamiliar, so we discuss these first.

First let us start with what a process looks like. A process P that can process
or handle an event x and then stops is denoted as:

P = x→ STOP (4.5)

Here STOP is a special type of process, meaning the process terminates.
When a process can handle event x and then continues to behave differently it
is denoted as:

P = x→ Q (4.6)

We call in the notation above P the predecessor process of Q. Furthermore,
also recursion is possible, namely when we replace in the above equation Q for
P :

P = x→ P (4.7)

The above means that process P can endlessly continue processing events of
type x. When we introduce a second event, namely y making it is possible to
perform either x or y. We denote it with the choice operator |:

P = x→ P |y → P (4.8)

Of the above process P we call αP the alphabet. In the example this means
that αP = {x, y}. The alphabet is the set of all possible events a process can
perform.

4.1.1 Agents

Let us now look at an agent to start with. An agent is an autonomous entity
(Shoham, 1993) and could therefore easily be modeled as an independent process
in CSP, say Ai. In the sense of a large-scale agent-based social simulation,
multiple agents exist. When multiple agents together exist in a system, this is
called a multi-agent system (Van der Hoek and Wooldridge, 2008).

Definition 4.1 (Multi-agent system). Given a set of agents A = {A1, A2, A3, .., An},
a multi agent system is denoted as: MAS = A1||A2||A3||..||An

Note here that we use the parallel operator ||, this means different agents
can have different alphabets, meaning agents can be of different types.

4.1. FORMAL LANGUAGE 51

4.1.2 Triggers

Now that these basic principles are discussed, let us look at the agents more in
detail. Specifically about the alphabet. Based on Dastani (2008); Dastani and
Testerink (2014), we know that an agent can receive multiple types of triggers.
Namely:

• Internal triggers

• External triggers

• Messages

• Goals

These different types of triggers are used for the behavior of the agent, all
describing different types of behavior. Internal triggers for instance are triggers
sent by an agent to itself and represent a single event. An external trigger
is a single event that is received by an agent. Messages are events sent by
other agents to the agent. Different than triggers, which are consumed after
processed, goals are persistent: they continue until they achieved or stopped
when the agent finds out it is impossible to achieve the goal. These triggers are
used by the agent to create a perception of the world.

4.1.3 Deliberation cycle

2APL and OO2APL use a deliberation cycle that handles all these types of
triggers described above. However, this handling of a trigger can best be seen
as a process of sense, reason and act (in this order) like in 3APL (Dastani et al.,
2005). Here sensing means receiving the triggers, reason means determining
what to do with it (i.e. which plans to select) and act means executing these
plans. Therefore, since we are talking about behavior, we define the deliberation
cycle as a cycle of sense-reason-act. Formally defined as:

Definition 4.2 (Deliberation cycle). Given the events sense, reason and act,
which denote the different stages of the sense-reason-act cycle, we define the
deliberation cycle D as the process:

D = sense→ reason→ act→ D|sense→ reason→ act→ STOP

Note here that a cycle has to finish completely before an agent can terminate,
this is a default implementation for instance used in OO2APL by Dastani and
Testerink (2014) for when there are no active goals to pursue. The STOP
process is a default process in CSP denoting that the process has finished.

We state that the deliberation cycle of the agent in an unmanaged unsynchro-
nized environment (i.e. the default setting of a concurrent multi-agent system)
is the whole behavior of the agent, therefore the agent process is the deliberation
cycle:

52 CHAPTER 4. SYNCHRONIZATION TECHNIQUES

Ai = D (4.9)

Note that a sense-reason-act cycle is a deliberation cycle for a reactive agent,
since no planning is involved. However, with a small difference in interpretation
proactive behavior is possible. To do this, we introduce something we call
persistent sensing. It means we suppose that a goal trigger is rescheduled in
the act-phase again when the goal remains active, this way proactive behavior
in the form of goals is handled and we can use this definition for proactive
agents as well. We do not need to adapt the definition of the deliberation cycle
for this. We just assume that whenever an agent pursues a goal that has not
finished, in act it will continue to hold this trigger and therefore initiates another
sense-event.

Sense-reason-act specification

Let us further specify what exactly is part of each phase of the sense-reason-act
cycle. Starting with sense. During the sense-phase, the following happens:

• Messages are received

• The current state of the environment is ‘sensed’

• External triggers are received

Receiving a message in this phase means that the agent becomes aware of
the fact that it has received a message. All agents have an ‘inbox’ in which
agents that send messages put the message. When the agent senses the new
messages it simply means that it checks this ‘inbox’ for new messages. The
same goes for the external triggers, which have a separate ‘inbox’.

In the reason-phase, the following happens:

• The belief base is updated based on the information it has ‘sensed’

• Internal goal logic is executed, meaning:

– Check whether the goal should still be pursued

– Check whether the goal needs to be suspended

– Check whether the goal is achieved

– Perform goal specific reasoning

Most important here is that in the reason-phase the beliefs are updated
based on internal logic. Think of this as a set of rules according to which the
agent handles, this handling is the act-phase, so only the checking of the rules
happens here. The result of the rules are executed in the act-phase. In the
act-phase the following happens:

• The environment is modified

• Messages are sent

4.2. MEASUREMENTS AND TRACES 53

4.2 Measurements and Traces

We start of with a program, since we are talking about a computer simulation.
This is a process according to Hoare (2015) in CSP, in our case a special type
of program: a large-scale agent-based social simulation. A process according to
Hoare is defined by its behavior. A simulation run is therefore a trace of events.

A trace is a sequence of events also known as a program run, or in the sense
of simulations, a simulation run. This means we reason about events within this
sequence, therefore we will need to define the operator for this sequence:

Definition 4.3 (Element in sequence operator). Given a sequence s = e1e3e2...en
which consists of the set of events E = {e1, e2, ..., en}, we define the operator ∈
as that if e ∈ E, then e ∈ s.

Now we come to defining traces, formally speaking:

Definition 4.4 (Trace). Given a process P , we define t a trace if t is a (possibly
empty) sequence of events in the order they occur, so ∀e ∈ t : e ∈ αP .

Note here that a trace is a sequence, meaning that ei ∈ t and ej ∈ t (where
i and j denote the indexes in the sequence) may be the same event (i.e. ei = ej
where i 6= j), but only a different instance.

Numerous traces may exist for a process. From CSP (Hoare, 2015)[sec 1.8]
comes the function traces, formally defined:

Definition 4.5 (Traces function by Hoare (2015)). Given an arbitrary process
P , we call the set of all possible traces T (see definition 4.4) the outcome of
function traces : P → 2T such that traces(P) is a set of traces.

Note from the above definition that one of the possible traces is indeed the
empty set (∅ ∈ traces(P)). A process can for instance have a case in which
none of the events in αP fires and therefore this is also a possibility to take into
account.

Given that a process consists of one agent, namely Ai, we state that a trace
t ∈ traces(Ai) is the sequence of events in the order in which it is executed.
We assume that agents are internally serial, meaning that there exists only one
ordering of events. We do this for a number of reasons.

Firstly, since the reality (OO2APL and 2APL) also include this in the execu-
tion of agents. 2APL does not include explicit parallelism, but OO2APL does
(by the number of processors assigned to the Platform-class). However, this
parallelism only exists between agents, internally they are implemented serial.

Secondly, for simplicity since it drastically decreases the amount of theoret-
ical possible traces and we do not have to deal with the ordering of execution
of plans of the same agent.

Thirdly, the repeatability primarily occur in real life when agents interact.
Think for instance about non-repeatability as a result of a different ordering
of tasks between humans. It is unlikely that such problems occur in the same
human, since he or she is in control of that ordering. It therefore is in line with

54 CHAPTER 4. SYNCHRONIZATION TECHNIQUES

the philosophy of seeing agents as highly intelligent, autonomous and rational
entities to assume that agents are internally serial.

The magic word was already mentioned a few times: ordering. A trace is an
ordering of events. Such a trace ordering is defined as the sequence ordering:

Definition 4.6 (Sequence ordering). Given a sequence t = e1e2...en, we define
the ordering of sequence t, denoted ≤t as the ordering based on index, meaning
that for two events ei, ej if i ≤ j, then ei ≤t ej.

Since a trace is a sequence, this implies that the ordering where this definition
is about, talks about trace ordering as well. When we talk about the order of
traces we will use the notion of trace ordering to imply that we talk about traces,
otherwise we talk about the ordering of a sequence.

Note from the above definition that with e1 and e2 we are talking about
instances, not the event types. For instance it can be the case that an action
exists for multiple deliberation cycles, making an appearance in the trace more
than once.

Coming back to the problem we are trying to solve: repeatability in large-
scale agent-based social simulations. Within simulations we talk about measure-
ments, for which we are trying to ensure repeatability. For this, let us define
a measurement criterion, which is defined on the large-scale agent-based social
simulation:

Definition 4.7 (Measurement criterion). Given an arbitrary large-scale agent-
based social simulation P , we define the measurement criterion as the result of a
function mc that maps a process to a finite nonempty sequence of events (where
all events exist in αP).

Note from the above definition that the measurement criterion measures
the relevant events that together define an outcome. Think of the outcome for
instance as a number whereas the events can be +1 and −1, the sequence of
these events together form this number from a given initial value. This outcome
is what we call a measurement, defined as:

Definition 4.8 (Measurement). Given an arbitrary large-scale agent-based so-
cial simulation P , an arbitrary measurement criterion EP (i.e. a sequence which
is the result of an arbitrary mc(P)) and the set of traces T = traces(P), we call
the measurement a function mEP

: T → {>,⊥}, defined as:

mEP
(t) =

{
>, ∀e, e′ v EP : e ≤EP

e′ ⇔ e ≤t e
′

⊥, otherwise

Note from the above that we use the sequence ordering for ≤EP
and ≤t and

since t is a trace, we can also call ≤t the trace ordering operator.
Also note that this measurement checks whether the value is correct. If

it is correct and for all possible traces it is correct, we call the measurement
repeatable. The problem of ensuring repeatability therefore is:

4.2. MEASUREMENTS AND TRACES 55

Definition 4.9 (Problem of ensuring repeatability). Given an arbitrary large-
scale agent-based social simulation P , an arbitrary measurement criterion EP ,
the measurement mEP

, we call the problem of ensuring repeatability the problem
that ∃t, t′ ∈ traces(P) : mEP

(t) 6= mEP
(t′).

Different types of measurements criteria exist, for which this problem of en-
suring repeatability exists. One of them is the act-sense measurement criterion,
defined as:

Definition 4.10 (Act-sense measurement criterion). Given an arbitrary large-
scale agent-based social simulation P and an arbitrary measurement criterion
on that system called EP = mc(P), we call the EP an act-sense measurement
criterion if all events e ∈ EP are about tasks that are preformed in either the
sense or act-phase of a deliberation cycle and where the effects of the act-events
are sensed by the sense-events.

Note from the above definition that we here talk about actions of which the
results are sensed by the sense-events in EP , meaning that in EP there is at
least one sense-event and at least one act-event.

An example of such an act-sense measurement is communication, where the
act-event is an event that sends a message and the sense-event is the receiving
of the message. Problems with repeatability can occur when it is a possibility
that in one trace the act-event is performed after the sense-event and the other
time it is not.

Another application is that of modifying the environment and where this
modification is sensed by another agent. Think for instance about the environ-
ment as a door which can be opened or closed. One agent opens the door (i.e.
an act-event) and the other checks the state of the door. The problem is that
one cannot assure that another agent has already sensed the current position
of the door (i.e. open or closed), so in one trace it is possible that the other
agent reasons about the open door whereas in another trace it reasons about
the closed door.

Another type of measurement criterion is the Act-only measurement crite-
rion, defined as:

Definition 4.11 (Act-only measurement criterion). Given an arbitrary large-
scale agent-based social simulation P and an arbitrary measurement criterion
on that system called EP = mc(P), we call the EP an act-only measurement
criterion if all events e ∈ EP are actions tasks that are preformed in the act-
phase of a deliberation cycle.

The above definition is about events in the measurement criterion that only
regard modifications. For example think again about the environment as a door,
this door can be opened and closed by two agents. One agent wants to open the
door and the other wants to close it. The measurement is the outcome position
of the door, which depends on which agent performed its action (i.e. closing or
opening) last.

56 CHAPTER 4. SYNCHRONIZATION TECHNIQUES

External influences on the multi-agent system

It is possible to influence a multi-agent system from outside the multi-agent
system itself. For instance in Dastani and Testerink (2014) they use external
triggers for this. When these external triggers are part of a measurement crite-
rion we argue that these are part of the class of act-sense measurement criteria,
since the receiving of these external triggers is a sense-event. The act-event,
the one that sends these external triggers is however an external event. For-
mally we therefore add the external actor as another agent in the multi-agent
system making it possible to include these external influences in the same class
of measurement criteria.

Practically we then only need to include such an external actor within the
platform that runs the multi-agent system.

Other measurement criterion types

We have introduced two measurement criterion types, the question therefore
raises whether these are the only two relevant types for repeatability. We argue
that this is the case. Let us therefore look at the other possibilities within the
sense-reason-act cycle.

First look at measurement criteria like the act-sense measurement criterion.
This is an criterion that occurs between different phases of the sense-reason-act
cycle. We already looked at the relation between the act-phase and the sense-
phase, other possibilities are the relations between sense-reason and reason-act.
Sense and reason are both phases that do not have a publicly available result,
because the result of sense is that the agent’s perception of the world is updated
and the result of reason is that one has made conclusions about the agent’s
current perception. Because these results are not public other agents do not
depend on them and because agents are assumed to be internally serial, they
do not form a problem.

The same goes for measurement criteria like the act-only measurement cri-
terion. This criterion is about the ordering of events within one phase of the
sense-reason-act cycle. For sensing this does not form a problem, think for
instance about sensing a certain value of the environment. Here it does not
matter whether one agent senses it first or another, as long as the value does
not change, which means there should be an event from the act-phase between
the two, which would make it an act-sense measurement criterion.

Also for reasoning the ordering of events in this phase does not matter be-
cause of the same argument that the results are only visible internally and by
the assumption that agents are internally serial this causes no problems for
repeatability.

So therefore we conclude that the two measurement criterion types are indeed
all the possible types that are relevant for repeatability.

4.3. SYNCHRONIZATION 57

4.3 Synchronization

Now knowing the measurements and problems for repeatability that occur for
different types of measurement criteria we can start looking for a solution. This
solution means that we shall synchronize at certain points in the multi-agent
system to ensure repeatability.

4.3.1 Synchronization operator

For describing synchronization techniques we first have to describe the most
important operator in CSP for us: the synchronization operator. We define it,
based on Hall (2002) (who calls it the parallel interface).

Definition 4.12 (Synchronization operator). Given two arbitrary processes
P = a → P ′ and Q = b → Q′ and its predecessor processes X = c → X|c → P
and Y = d→ Y |d→ P that together form system S = (X → P)||(Y → Q), we
define the synchronization operator |{sync}|, which is an extension of the par-
allel operator ||, for processes P and Q in the synchronized S′ = (X → sync→
P)|{sync}|(Y → sync→ Q) where the trace ordering ≤S has the properties:

• ∀t ∈ traces(X),∀e ∈ t : e ≤S′ sync

• ∀t ∈ traces(Y),∀e ∈ t : e ≤S′ sync

• ∀t ∈ traces(P),∀e ∈ t : sync ≤S′ e

• ∀t ∈ traces(Q),∀e ∈ t : sync ≤S′ e

Intuitively the above definition states that given two processes that together
form a process P |{sync}|Q, P and Q can run independently, however when one
encounters the processing of event sync, both P and Q must process it at the
same time, so either P has to wait for Q or vise versa.

Note that due to the fact that this operator is an extension to the parallel
operator that it will behave as such for all events that are not mentioned in the
synchronization operator.

Also we use the operator || because we talk about arbitrary processes and
αP 6= αQ is often the case in here, we consider αP = αQ as a special case which
we solve by stating that different agents have different instances of for instance
sense-events (because they are of another agent), this way it is for large-scale
agent-based social simulations always the case that αP 6= αQ for any P and Q
that are different instances of agents. This has as an advantage that we can use
it for multi-agent systems where different types of agents behave together.

4.3.2 Act-sense synchronization

Based on the problems that can occur regarding repeatability for the act-sense
measurement criterion, let us try to solve these. To do this, let us describe the
problem. From this we form a formal problem which we will then solve.

58 CHAPTER 4. SYNCHRONIZATION TECHNIQUES

Example

This example is already mentioned briefly in section 3.3.3 and is based on an
auction. Suppose two types of agents exist in an auction: the auctioneer and
the bidder. The auctioneer has the following capabilities:

• Initiate the auction

• Announce the current highest bid and its bidder

• Receive bids

• Sell the item for sale

Here the initiation of the auction sends the initial announcement message to
start the auction. When handling the receiving of bids, the auctioneer checks
whether the received bid is higher than the currently highest bid and if this
is the case it will announce this bid as the highest received bid. If it has not
received a higher bid for n deliberation cycles (specified by the auctioneer and
often chosen as 3) the auctioneer will sell the item to the highest bidder.

Opposed to the auctioneer, the bidder has the capability to:

• Receive bidding announcements and respond to it (or not if the price
offered is too high for the bidder)

Here the bidder is a so called reactive agent: it does not plan by itself (i.e.
it has no goals), it will only respond to the announcements it receives. Every
bidder has determined a value it is maximally prepared to pay for the item for
sale and will not bid higher than this value. If the value is lower it will always
bid, although here the policy is that the first bid that the auctioneer receives
will be accepted.

In this example the measurement criterion is who is winning the auction,
which depends on the communication. Communication depends on the messages
agents send and receive and is therefore an act-sense measurement criterion,
more specifically the criterion consists of the sending of a bid (i.e. the action)
and the receiving of it (i.e. the sense) which results in the auctioneer updating
the highest price and sending an announcement. The sequence of these actions
together form the eventual outcome of the simulation: the agent that is prepared
to pay the highest price wins the auction. This also is the case for sending and
receiving announcement messages, again an act-sense measurement criterion.

The problem with this is that when running this as a large-scale agent-based
social simulation, we cannot assure that every bidder had time to process the
announcement by the auctioneer and therefore it might be the case that the
highest bidder had no time to process the receiving of an announcement and
therefore does not bid, which leads to non-repeatability in the outcome.

4.3. SYNCHRONIZATION 59

Formal problem

Formally speaking, let us state that there are two types of relevant events:
receiving a message and sending it. Two types of messages exist: announcement
and bid. Furthermore a final message called sold is sent to finish the auction.

We call the sending of an announcement message sa(i, p), where i is the
agent and p is the price for the product agent i wants to pay. The receiving is
called ra(i, j, p), where agent i receives the announcement that agent j wants
to pay price p for the item for sale.

We call the sending of a bid message sb(i, p), where i is the agent that bids
price p. The receiving is called rb(i, p), where the auctioneer receives the bid of
agent i who wants to pay p for the item for sale.

Note that the receiving event of a message is slightly different then sending
it: such an event tries to receive a message. It checks whether there are unread
messages in a message box. If there is none, it still has checked whether a
message exists.

In the most simple case, there are two bidders (agents 1 and 2) and an
auctioneer. The auctioneer has set the starting price at 10, bidder 1 has a
maximum price of 25 and bidder 2 a maximum price of 33. Both agents bid the
price p+ 1 as a response to the received announcement from the auctioneer.

We can then have the following (partial) trace of a correct execution of this
example, namely:

t1 = ...sa(1, 25)ra(2, 1, 25)sb(2, 26)rb(2, 26)sa(2, 26)ra(1, 2, 26)sa(2, 26)sa(2, 26)sold(2)...

Another trace might be:

t2 = ...ra(2, 1, 20)sa(1, 20)sa(1, 20)sa(1, 20)sa(1, 20)sold(1)ra(2, 1, 20)...

The measurements are different for t1 compared to t2 because in t1 agent 2
wins and in t2 agent 1 wins and in t2 agent 2 tries to receive the announcement
before it is send. So clearly we have a problem of repeatability here.

Solution

Intuitively, the problem defines the conflict that exists between multiple con-
currently running agents that start shifting their times of execution (i.e. the
amount of deliberation cycles they have ran) due to the amount of load focused
which causes different ordering. For preventing this, we must ensure that agents
wait for all act-events to have finished before continuing to the sense-events.
This means synchronization between the act-phase and the sense-phase. To do
so formally we define an event called sync, which is used in the redefinition of
the deliberation cycle, which now becomes:

Definition 4.13 (Act-sense synchronized deliberation cycle). Given the events
sense, reason and act, which denote the different stages of the sense-reason-act

60 CHAPTER 4. SYNCHRONIZATION TECHNIQUES

cycle, and the synchronization event sync, we call an act-sense synchronized
deliberation cycle Ds, defined as:

Ds = sense→ reason→ sync→ act→ sync→ Ds|

sense→ reason→ sync→ act→ sync→ STOP

Furthermore, for ensuring synchronization, we will redefine the multi-agent
system as:

Definition 4.14 (Synchronized multi-agent system). Given a set of agents A =
{Ds

1, D
s
2, ..., D

s
n}, a synchronized multi-agent system is denoted as: MASs =

Ds
1|{sync}|Ds

2|{sync}|...|{sync}|Ds
n.

The intuition behind this synchronized multi-agent system is that the oper-
ator |{sync}| (see Definition 4.12) waits until both the process on the left and
on the right can process the event sync and then processes a new instance of
the event sync, after this the processes continue with the sense or act-phase
of the deliberation cycle. We call the adaptations we made to the default sys-
tem MAS (see Definition 4.1) to make it MASs as a function sync1, meaning
MASs = sync1(MAS).

So implementation based, we only have to check if all agents have finished
their deliberation cycle before we continue to the next deliberation cycle.

Proof

We have described intuitively that this works. Now let us proof it formally using
the introduced definitions. We therefore state:

Theorem 4.1. Given a large-scale agent-based social simulation P , an act-
sense measurement criterion EP (which is the result of a function mc over P),
the measurement mEP

is repeatable for sync1(P), meaning ∀t, t′ ∈ traces(sync1(P)) :
mEP

(t)⇔ mEP
(t′).

Proof. Suppose an arbitrary P and an arbitrary measurement criterion EP .
Problems with repeatability occur in the ordering between events from Act

(i.e. the set of all possible events in the act-phases of all agents) and the sense-
events, which form the set Sense (i.e. all the possible events in the sense-phase
of all agents).

We call S the set of all sense-events s ∈ Sense for which also holds that
s ∈ EP . And we call A the set of all act-events in a ∈ A for which also holds
that a ∈ EP .

All s ∈ S are by Definition 4.10 sense-events that notice a result that is
caused by one or multiple actions which are in A. Meaning we can combine
these events as causal relations, formally C ⊆ 2A×2S . This C consists of tuples
(x, y) ∈ C (read all elements of x are caused by all elements of y) where x ⊆ S
and y ⊆ A and x and y are both nonempty.

All we have to prove is that there exists only one possible order for these
causal relations C which we can do by the synchronization operator.

4.3. SYNCHRONIZATION 61

By Definition 4.13 we have that synchronization happens between the act
and sense-phase in the form of a sync-event. By Definition 4.12 we see that
for that it is required that all processes have arrived up until sync to continue,
by Definition 4.13 this means that all agents must have finished their act-phase
before continuing to the sense-phase and must have finished their sense-phase
before continuing to the act-phase. Meaning for the causal relations that ∀t ∈
trace(P),∀(x, y) ∈ C,∀a ∈ x,∀b ∈ y : a ≤t b.

By the notion of ordering within all causal relations in C for all possible
traces we can conclude that ∀t, t′ ∈ traces(sync1(P)) : mEP

(t) ⇔ mEP
(t′).

Since we assumed this for an arbitrary P and EP this holds for all possible
large-scale agent-based social simulations and all measurement criteria on these
large-scale agent-based social simulations. That is what had to be shown.

4.3.3 Act-only synchronization

The other type of measurement criterion we identified is the act-only measure-
ment criterion. Also for this we shall propose a synchronization technique, which
we call act-only synchronization.

We therefore first introduce an example for which the problem occurs. Then
describe it formally and finally solve it by synchronizing the multi-agent system.

Example

This example is about cleaning a world of bombs, two types of agents exist in
this: harry and sally. Both agents have in common that they are persons and
according to the characteristics of this example, a person can move from point
to point in a world. This world is nothing more than a k by l grid of discrete
locations that can be occupied by an agent. A move is a horizontal or vertical
movement in this grid. A maximum of one move in this grid per deliberation
cycle is allowed per agent.

In this environment, three types of static entities exist: bombs, traps and
walls. Bombs have to be picked up and delivered at traps to remove them. An
agent can only carry one bomb at a time. Traps cannot be picked up. Agents
cannot pass through walls, which therefore add some extra complexity to the
path planning.

The first type of agent is harry, his task is to identify bombs. For this he
has the following capabilities:

• Search for bombs (i.e. randomly walking around the environment)

• Inform sally about the bombs it discovered

The second type of agent is sally, she has the following capabilities:

• Search for traps (i.e. randomly walking around the environment)

• Receive bomb information from harry

62 CHAPTER 4. SYNCHRONIZATION TECHNIQUES

• Go to bombs, pickup the bomb and then deliver the bomb at a trap

When agents move, they ‘sense’ environment. Meaning they only get infor-
mation about the environment which is close to them. The sensing range in
this example is chosen as 4 in each size, so a sensing radius of 8. This is almost
half the size of the world, which is a 20 by 20 grid in the example here. Also
all bombs and traps are assumed to exist when starting the multi-agent system,
they are predefined by the designer, only the agents do not know them yet (i.e.
they do not exist in their belief bases at the start). When bombs are discovered
by harry, he sends a message to the closest sally to inform him about this bomb
she has found.

For the problem to occur, at least one harry and two sallies should exist.
This is because the conflict is between the two sallies and one harry in which the
two sallies both try to remove the same bomb which is identified by harry. The
problem is that a case exists in which one harry removes a bomb at location
(x, y) and at the same time harry scans this bomb and sends it to the other
sally. Then sally-2 thinks there is a bomb at that location, however this only is
the case if harry first scans the area and then sally removes the bomb at that
location, the other way around the behavior is different which might lead to
non-repeatability.

The measurement in this is the amount of bombs picked up per agent. This
may differ if two or more types of behavior are possible that lead to different
outcomes in the measurement.

Formal problem

Let us define the problem formally, for this we again use the sense-reason-act
deliberation cycle (see Definition 4.2). Formally speaking here, the problem is
a different ordering of actions of removing bombs (i.e. act-events). We state
that attempt to remove a bomb at location (x, y) by agent sally-1 is denoted
as r(x, y, 1). This attempt succeeds if there is indeed a bomb at the given
location and fails otherwise, but therefore it still exists within the trace. The
measurement criterion in this case is an act-only measurement criterion existing
of remove bomb attempts.

A possible (partial) trace is:

t = ...r(x, y, 1)...r(x′, y′, 2)r(x′, y′, 1)...

The above trace leads to the outcome of the simulation that both sally-1
and sally-2 have cleaned 1 bomb. Another possible trace is:

t′ = ...r(x, y, 1)...r(x′, y′, 1)r(x′, y′, 2)...

This here leads to the outcome that sally-1 has cleaned 2 bombs and sally-2
has cleaned none. Both traces are allowed by the default implementation and
the synchronization for an act-sense measurement criterion does not handle this,
because it exists between different act-events.

4.3. SYNCHRONIZATION 63

The outcomes are clearly different and that is a violation of the ordering
defined by the measurement criterion. This measurement criterion either is
r(x, y, 1)r(x′, y′, 2)r(x′, y′, 1) or r(x, y, 1)r(x′, y′, 1)r(x′, y′, 2), but because both
are allowed we have a problem here.

Solution

The solution for this is fixing the ordering of execution of the agents. One can do
a very strict ordering by fixing every agent in a specific spot in the execution,
but this would lead to serial execution. Therefore, we need something more
flexible.

We use for this a directed acyclic graph, which means a graph G = (N,E)
where there do not exist a cycle c ⊆ E where c = {(a, b), (b, d), ..., (x, a)}.

Intuition behind the use of a directed acyclic graph is that only if all agents
that come earlier in the ordering have finished their deliberation cycles, an agent
can be scheduled for execution its deliberation cycle. For this we introduce the
notions of predecessor sets and child sets, which can be seen as the pre-sets and
post-sets used in Petri nets but then for graphs.

Definition 4.15 (Predecessor set). Let G = (N,E) be a directed acyclic graph
where N is the set of nodes and E the set of edges (i.e. E consists of tuples
E ⊆ N × N where an tuple (a, b) ∈ E denotes a directed edge from node a to
b), we define the predecessor set of n ∈ N as all a ∈ N for which it holds that if
(a, n) ∈ E then a is in the predecessor set Pn (i.e. a ∈ Pn) and for every node
a that is in P also all nodes of its predecessor set are in P .

Now that we have defined a set with all predecessor nodes, we also need
to have a set with all children. Note however that this is a little bit different
because for determining which agents can be scheduled only the direct children
are of interest. Indirect children (i.e. children from direct children) cannot be
scheduled when an agent (when it represents a node) is finished and that is what
we are using this graph for. Formally:

Definition 4.16 (Children set). Let G = (N,E) be a directed acyclic graph
where N is the set of nodes and E the set of edges (i.e. E consists of tuples
E ⊆ N ×N where an tuple (a, b) ∈ E denotes a directed edge from node a to b),
we define the children set Cn of n ∈ N as all nodes a ∈ N for which (n, a) ∈ E
holds.

We use this directed acyclic graph as a graph of agents (i.e. the nodes
represent the agents). Such a graph represents the execution order and for this
it is required that all agents have an edge that directs to the node or departs
from it. We call such a graph of agents an agent ordering graph, formally defined
as:

Definition 4.17 (Agent ordering graph). Let A be a set of agents and E ⊆
A × A be a set of directed edges (a, b) ∈ E that should be read as the existence
of a directed edge from agent a to agent b, we define the agent ordering graph
O = (A,E) where:

64 CHAPTER 4. SYNCHRONIZATION TECHNIQUES

• All agents are connected by an edge (i.e. ∀a ∈ A : ∃x ∈ A such that
(a, x) ∈ E or (x, a) ∈ E)

• The graph is acyclic, meaning there does not exist a cycle c ⊆ E where
c = {(a, b), (b, d), ..., (y, a)}

The whole idea of using an acyclic-graph structure for execution comes from
the work-span model by McCool et al. (2012). There the work-span model is
used for defining the ordering of task execution.

It is now possible to generate an execution ordering. We use for proving the
correctness of this approach a graph where every agent’s execution is followed by
one other agent’s execution (i.e. serial execution). We call this agent ordering
graph the serial agent ordering graph where for every agent there is at most one
edge starting from that agent node and at most one edge ending at that agent
node.

This way we can proof that this approach always works, because if two
agents can perform their actions at the same time and these two agents are
for instance sally-1 and sally-2 from the example (see Figure 4.2), we still have
problems with ensuring repeatability. Here we do not (see Figure 4.3), however
Figure 4.2’s graph can result in a greater degree of parallelism so for efficiently
it is worth mentioning.

sally-2sally-1

harry

Figure 4.2: Incorrect agent ordering graph for harry-sally example

harry sally-1 sally-2

Figure 4.3: Serial agent ordering graph for harry-sally example

The scheduling of agents is done using the agent ordering graph. At the start
of a new round (i.e. every agent is allowed to perform another deliberation cycle)
for every agent the predecessor set is checked, whenever this one is empty the
agent can be scheduled. Whenever an agent is finished, for all its children the
predecessor set is checked to see if these agents have all finished, if that it the
case the child is scheduled. The same agent ordering is used during the whole
execution of the multi-agent system to prevent problems between different agent
orderings that can cause non-repeatability.

Let us now embed this agent ordering into the multi-agent system. For this
we redefine the deliberation cycle as:

4.3. SYNCHRONIZATION 65

Definition 4.18 (Act-only synchronized deliberation cycle). Given the events
sense, reason and act, which denote the different stages of the sense-reason-act
cycle, and the synchronization events start and finish for the start and finish
of the deliberation cycle, we call an act-only synchronized deliberation cycle for
agent i Das

i , defined as:

Das
i = sense→ reason→ starti → act→ finishi → Das

i |

sense→ reason→ starti → act→ finishi → STOP

Note from the above definition that it is very similar to the deliberation cycle
for the act-sense synchronization (see Definition 4.13), however here the starti
and finishi events are specific to one agent (agent i in this case). Furthermore,
given an ordering that agent i’s execution is followed by agent j’s execution it
is the case that finishi = startj . Meaning generally that ∀(a, b) ∈ E : enda =
startb. Using this, the multi-agent system is synchronized as:

Definition 4.19 (Act-only synchronized multi-agent system). Given a set of
agents A = {Das

1 , D
as
2 , ..., D

as
n } and an arbitrary agent ordering graph O =

(N,E) (where N is the set of agent identifiers 1 to n representing the agents), an
act-only synchronized multi-agent system is denoted as: MASas = Das

1 ||Das
2 ||...||Das

n

where ∀x, y ∈ N : if (x, y) ∈ E then Das
x |{starty}|Das

y .

Note from the above synchronized multi-agent system that it synchronizes
on the starti synchronization events, which correspond to the end-events based
on the agent ordering, making this definition flexible for every possible agent
ordering. We call the adaption from the default multi-agent system P to an
act-only synchronized multi-agent system for an agent ordering graph O as
sync2(P,O).

So let us now formally proof the correctness of this synchronization technique
for a serial agent ordering graph. Therefore we state:

Theorem 4.2. Given a large-scale agent-based social simulation P , an act-
only measurement criterion EP (which is the result of a function mc over P),
an arbitrary serial agent ordering graph O = (N,E), the measurement mEP

is
repeatable for sync2(P,O), meaning ∀t, t′ ∈ traces(sync2(P,O)) : mEP

(t) ⇔
mEP

(t′).

Proof. Suppose an arbitrary P , an arbitrary serial agent ordering graph O and
an arbitrary measurement criterion EP .

Problems with repeatability occur in the ordering between events from Act
(i.e. the set of all possible events in the act-phases of all agents).

All a ∈ Act are by Definition 4.11 act-events that perform some modification.
Given that there are n agents this means that there are at most (n+1)! possible
orderings of actions for one turn (i.e. factorial of n is

∏n
k=1 k) given that the

ordering of actions within the agents is fixed, which it is by the internal serial
assumption. This is n + 1 instead of n because there is also a possibility that
action a ∈ Act does not occur in this deliberation cycle.

66 CHAPTER 4. SYNCHRONIZATION TECHNIQUES

When we can proof that we can decrease the number of possible orderings
to just 1 we can proof that the ordering of the act-only measurement criterion
is satisfied and therefore we ensure repeatability.

To proof this, let us look at the agent ordering. We assumed an arbitrary
serial agent ordering graph O. By the characteristic of the serial agent ordering
graph we know that any agent node has at most one predecessor and one child
(because of the serial ordering characteristic of at most one edge into and out
of the node). Given that the same agent ordering is used throughout execution
(which is what is stated) we can deduce the amount of possible orderings to just
1, namely the ordering of the agents in O.

This is what had to be shown to ensure the ordering of the measurement
criterion and therefore ensure repeatability.

4.4 Consequences of synchronization

We have introduced synchronization techniques that limit the amount of possible
traces. Therefore, we can also state that by doing so, we limit the behavior. This
is done for ensuring repeatability, but doing so we must discuss the consequences.

It is important for the agent designer to think about this, because too much
synchronization is not needed, but to little means the possible emergence of
non-repeatable behavior. To help the agent designer with this task, we have
a checklist with questions the designer should consider when determining the
synchronization method:

• What is the influence of one agent performing more deliberation cycles
then another?

• What is the influence of one agent performing a sense of a result of which
the action is not performed yet by another agent?

• What is the influence of external triggers?

• What is the influence of one agent performing its actions before another
agent (and vise versa)?

Not surprisingly these questions correspond to the synchronization tech-
niques purposed. Doing so helps determining which behavior should be syn-
chronized and prevents limiting too much possible traces.

Chapter 5

Results

In this chapter we practically show the correctness of the synchronization tech-
niques proposed in chapter 4 so that they ensure repeatability. We have imple-
mented as a proof of concept the examples for the different problems identified
the developed synchronization techniques to show that we can ensure repeata-
bility in large-scale agent-based social simulations.

The structure of this chapter is as follows: first we describe the examples as
implemented in OO2APL (Dastani and Testerink, 2014) with DSOL (Jacobs,
2005). Then we continue with the method used in the experiments that ensures
repeatability. Then for each of the classes of repeatability problems described in
chapter 4 we describe the default behavior (i.e. the non-repeatability) and then
we describe the implementation of the corresponding synchronization techniques
and show that practically it ensures repeatability. We finish with describing
some of the observed behavior in the experiments.

5.1 Examples

In this section we describe the examples implemented for showing repeatability
or the lack of it. We have already described the examples from a functional
point of view in chapter 4, where we described their capabilities. Now however
we look at them from an implementation standpoint.

5.1.1 Auction

The first example is that of an auction. A small recap of what is already
described in section 4.3.2: there are two types of agents, an auctioneer and a
bidder. The auctioneer manages the auction by sending announcements about
bids it has received and accepted to all participating bidders. Bidders can
respond to this with a new (higher) bid or decide not to respond. These bidders
do this based on the maximum price they have in their belief base and a step
size.

67

68 CHAPTER 5. RESULTS

This step size is, just like the maximum price, a predefined value in the
belief base of the bidder. The values for the maximum price are samples from
an uniform distribution with a minimum of 0 and a maximum of 100. The
step sizes are samples from an uniform distribution with a minimum of 1 and
a maximum of 5. These values are predefined for this example as part of the
input. The auctioneer starts with a starting price of 5 for the item for sale
(which is simple an empty instance of the class ‘Item’).

Note that because we choose a minimum of 0 for the maximum price distri-
bution it can happen that there are agents within the range of [0, 5] and therefore
will never place a bid. This is of course dependent on the random values gen-
erated and causes the auction to vary in the amount of participating agents,
since some agents will have a maximum price lower than the starting price of
5 causing them to remain idle and never bid. This variance causes the amount
of active agents to vary, which causes a bigger probability of non-repeatability
because the amount of scheduling differs.

Furthermore, for experimental purposes, some non-functional behavior has
been implemented to store the results of the auction. This is done through an
additional message called ‘Sold’. This is sent by the auctioneer to the bidders
when the item is sold. Receiving this message means that all agents are done.
The receiving initiates an agent-death case, removing the agent from the multi-
agent system and by this the simulation is finished.

5.1.2 Harry and sally

The example of harry and sally is also discussed before, to recall: two agents
exist, one identifies bombs (i.e. harry) and one removes them (i.e. sally). They
walk around in a grid that consists of walls, bombs and traps, where they have
to clean the world of the bombs. For the functional behavior we refer to section
4.3.3.

Technically speaking there we go more in detail of the world manager. This
manager keeps track of when the world is cleaned of bombs and finishes the
simulation. It finishes the simulation by triggering an ‘EndOfSimulation’ and
storing the results. Furthermore, this agent can receive external triggers which
adds another bomb to the environment per external trigger received.

Another big element is the path planning and path traversal. Harry and
sally share the code for this because they are both considered agents of the type
person, which at the creation of the type harry gets extended with harry specific
functionality like identifying bombs and for sally with her specific behavior.
This way the path planning and path traversal is only implemented once, which
improves maintainability. Also they both share a part of the belief base, namely
a so called ‘PersonContext’. This context consists of data about the agent’s
relation with the environment (i.e. the location), data for the path planning
(i.e. the destination and path) and data for rendering the agents.

To allow interaction with the functionality of the person implementation and
the harry and sally implementations, internal triggers are used. Internal triggers
occur when:

5.2. METHOD OF EXPERIMENTATION 69

• The location of the agent changes

• A new path must be planned

• The destination of the planned path is reached

The above three triggers all have their own purpose. The trigger for when
the location of the agent is changed is used for sensing the environment for
bombs and traps (depending on the type of agent). The trigger for planning a
new path is implemented by the person and its task is to find the shortest path
from the current location to the new destination. The internal trigger for the
destination is used for planning a new path, harry chooses a random destination
as its next destination whereas sally chooses a bomb or trap as its destination,
depending on whether it carries a bomb or not.

For getting to the desired destination in a person agent has a goal called
‘TraversePath’. This goal simply traverses the path calculated by the handling
of the internal trigger for planning a new path, which is stored in the agent’s
belief base. Every deliberation cycle the goal performs the next step in the
generated path. For the path planning the A∗-algorithm (Hart et al., 1968) is
used and prevents agents from walking through walls, the agents cannot collide
with other agents or bombs.

5.2 Method of experimentation

For the notion of repeatability, having the same initial state is an important
characteristic. Within the implementation of the experiments this initial state
is generated in a serial phase in which pseudo-random numbers are generated
for determining the values of the belief base of the agents. The initial state
generated by this pseudo-random number sequence is equal given that the seed
(i.e. the initial value of the random number generator) is the same. This is the
case because the state is generated in a serial phase and by this serial ordering
the same values are assigned to the same attributes. Therefore we can conclude
that the random state is equal given the same seed.

Important in this thesis is ensuring repeatability. This means we always want
the same result. What this is depends on the measurement and is therefore spe-
cific to the different examples. We use the same measurements as described in
chapter 4. In the sense of the auction we measure who is the winner. We there-
fore want to ensure that the winner is always the same and more importantly,
it is the bidder who is prepared to pay the highest price. In the harry-sally
example this is about the amount of bombs each agent has cleaned.

Every initial state is for us one case, for statistical significance about the
synchronization techniques we therefore talk about at least 30 cases and take
the averages. However, for some analysis we will dive deeper into one example
to show specific behavior. For significance within these cases every case exists
of 30 runs with the identical seed, which should result in the same or similar
results.

70 CHAPTER 5. RESULTS

0 1 2 3 4 5

·104

Default (with sending a bid)

Default (without sending a bid)

Time in 10−9 seconds

Figure 5.1: Durations of one bid by one bidder agent in the default
configuration

0 10 20 30 40 50 60

Delayed (with sending a bid)

Time in 10−3 seconds

Figure 5.2: Durations of one bid by one bidder agent in the default
configuration

For allowing parallelism we use OO2APL’s inbuilt mechanism to use the Java
Thread Pool with 4 threads, because our test machine contains a processor (Intel
I5-2410M at 2.3 Ghz) with four threads. Therefore it is most logical to use all
these threads.

5.2.1 Enforcing non-repeatability in the auction example

The scheduler by default can sometimes cause repeatability by coincidence. We
assume that this is caused by some greedy scheduling algorithm within the Java
Virtual Machine. We can however force non-repeatability by ensuring that some
agents have an increased runtime per deliberation cycle, without synchronization
we see that some agents in the same time perform 10 deliberation cycles where
others only perform 1. To do this, we add to the bidders a random delay (where
the seed used for the delay generation is the current processor time) before
they respond with a bid to the auctioneer’s announcement. We therefore first
measure the time it takes for the agent respond.

First we analyze the current durations of a bid by one agent. For this we set
up an experiment where we pick 30 random seeds by which we run 30 auctions.
In total this resulted in 4403 bids which we timed. In Figure 5.1 the results
of this are shown. We see that measuring the plan schemes that actually send
bids takes significantly longer (t-test value of 1, 01716 ∗ 10−6) with a median of
0 compared to a median of 446 nanoseconds.

We therefore only delay the bids that actually send a message to the auc-
tioneer. We do this by adding a delay from an uniform distribution with a
minimum of 0 milliseconds and a maximum of 50 milliseconds. The results of
the durations are shown in Figure 5.2. From this we can see that they are picked

5.2. METHOD OF EXPERIMENTATION 71

from an uniform distribution because the mean is mean ≈ max−min
2 , the first

quartile around mean
2 and the last quartile around 3∗mean

2 .
We also choose a maximum of 50 milliseconds for another reason: from the

first quartile onwards, most the samples of this distribution (i.e. 75 percent by
the first quartile and upwards which is by Figure 5.2 around 12) have a degree of
repeatability of 50 percent or lower (only delays 15, 20 and 40 milliseconds have
a value of just 51, which we say is around 50). This degree of repeatability is
the probability that the best bidder in the auction (i.e. the one with the highest
best price) also wins the auction. The lower this degree, the more work for our
synchronization techniques to enforce repeatability. This is shown in Figure 5.3,
which shows the the probability that the best agent wins the auction compared
to the delay. Note here that the line drastically decreases whenever even a small
delay of 1 millisecond exists, by the implementation of the Java runtime it is
not possible to stably wait for less than 1 millisecond, which is why we have not
tested this. There are tricks available for waiting for less than one millisecond
but (on Windows computers at least) this is not accurate: we did one test
(30 trials and averaged) trying to have a delay of 1000 nanoseconds where we
ended with an average delay of 43344 nanoseconds instead and another test
with a delay of 100000 nanoseconds where we ended up with an average delay
of 139044 nanoseconds.

Note that it is possible that by the generation of a sequence of random
numbers, multiple numbers are equal. This means that it is possible for two
bidders to have the same (highest) price and therefore both are considered the
highest bidder. We state that this in this case both agents can win, paying
exactly the maximum price, because otherwise one of the two agents would
have placed a higher bid (assuming repeatability).

There is by the distribution we choose a probability of 1
50 that the delay is 0,

this by itself is a small amount which putting it against the rest of the samples
also causes non-repeatability because it is faster than the rest. This way we
increase the probability of non-repeatability even further.

5.2.2 Alternative delay forms

Up until now we have delayed the agents by waiting before the bidder sends
a message. This all works for auctions, but is implementation specific. We do
not think agent designers deliberately make their agents slower by these delays
and implement them in real world scenarios. The only reason these delays are
needed is for forcing the synchronization mechanisms to step in quite often,
which leads to better testing of our synchronization mechanisms.

A generic implementation is therefore not needed, although it can be achieved.
We shall propose a few ways of doing this. For this it is important to know that
OO2APL creates instances of plan schemes for every agent of the same type,
making them unique over every agent. This allows one to have multiple agents
of the same type with different implementations when one chooses an imple-
mentation of a certain plan scheme when the agent is created.

Furthermore, one is able to add a random number of empty plans at every

72 CHAPTER 5. RESULTS

0 20 40 60

0.4

0.6

0.8

1

Maximal delay (in ms)

D
eg

re
e

o
f

re
p

ea
ta

b
il

it
y

Figure 5.3: Degree of repeatability for maximal delay

deliberation cycle, which are then executed. But when leaving these plans empty
(or just simply doing some arbitrary code) one is able to influence the execution
time of an agent’s deliberation cycle indirectly. One must be careful with this
because the inbuilt empty plans are recognized by the platform and not executed
by default.

5.3 Turn-based synchronization results

For ensuring synchronization for act-sense measurement criteria (except external
triggers) we have developed a different variant of the agent platform. We call
this turn-based synchronization.

The platform consists of a mechanism that contains a state of deliberation
cycle per agent to ensure that an agent can only perform one deliberation cycle
and then has to wait until the other agents have finished their deliberation cycle.
This corresponds to the second synchronization point (i.e. after the act-phase)
in the formal description of act-sense synchronization. The first synchroniza-
tion point is already embedded into the practical implementation of OO2APL
because before executing the deliberation runnable (the implementation that
executes the deliberation cycle) it copies all triggers, messages and goals to sep-
arate collections so that the perception of the agent does not change during the
deliberation cycle, which is the purpose of the first synchronization step.

This however does not take into account the agent sensing the environment
during the sense-phase, which is not a trigger. However also the so called ‘con-
texts’ of the agent are synchronized such that during the deliberation cycle
they cannot change. Contexts represent the belief base of the agent, but also

5.3. TURN-BASED SYNCHRONIZATION RESULTS 73

it contains the instance that represents the environment. By synchronizing this
using Java’s synchronized-operator the synchronization before the act-phase is
ensured.

For this, agents have a state that tells in what phase of scheduling their
deliberation cycle they are. The possible states are:

• Scheduled, the agent’s deliberation cycle is scheduled

• Started, the agent’s deliberation cycle is scheduled and has started (but
not finished yet)

• Done, the agent’s deliberation cycle has finished and because there are no
triggers (i.e. goals or internal triggers) that exist for the next deliberation
cycle, no new deliberation cycle needs to be scheduled for the time t+ 1

• Rescheduled, the agent’s deliberation cycle has finished and there are trig-
gers that exist for the next deliberation cycle so at time t + 1 this agent
will perform a deliberation cycle

These states can be seen as a very linear process: it goes from ‘scheduled’, to
‘started’, to ‘done’ or ‘rescheduled’. When all agents have finished their deliber-
ation cycle (i.e. all have a state of ‘done’ or ‘rescheduled’) all agents that have
a state ‘rescheduled’ are scheduled for execution and the whole process starts
all over again. We need the state ‘rescheduled’ together with ‘done’ because
we make a distinction on which agents are finished and do not need to per-
form another deliberation cycle and agents that are finished and need another
deliberation cycle. Furthermore we need to distinct which agents have already
finished (i.e. ‘done’ or ‘rescheduled’) and still need to perform their delibera-
tion cycle (i.e. ‘scheduled’). The distinction between ‘scheduled’ and ‘started’ is
necessary because we need to distinct agents that are already performing their
deliberation cycle and agents that have just been scheduled when the simulation
is terminated during the execution of the agent platform. Then we know which
agents are currently performing a deliberation cycle and based on this we termi-
nate their threads by waiting before they have finished the current deliberation
cycle.

Let us now analyze a specific example that shows non-repeatability. For
this we use a seed of 3, which is chosen because the values it generates for the
belief bases of the bidders show some interesting things that result in interesting
behavior. This interestingness is in the fact that there are in this case 2 bidders
that have a maximum price that is very close to each other (i.e. 95 vs. 92) and a
another group of bidders with a price just below it (i.e. 3 agents with a price of
85 and 86) with no highest prices in between these groups. Furthermore there
is one auctioneer and 40 bidders.

From this configuration, the implementation generates 40 bidders and 1
auctioneer that together perform an auction. The belief bases of the bidders
are denoted in Table 5.1. From here we see that agent 35 should win (note that
the agent IDs are ascending numbers where agent 1 is the auctioneer).

74 CHAPTER 5. RESULTS

ID Maximum price Step size
2 34 1
3 10 2
4 28 3
5 49 5
6 59 2
7 85 3
8 77 5
9 81 2
10 76 3
11 86 5
12 11 3
13 85 1
14 78 4
15 57 5
16 46 4
17 38 1
18 22 4
19 92 3
20 61 5
21 53 3

ID Maximum price Step size
22 57 5
23 32 5
24 70 3
25 28 1
26 24 5
27 39 2
28 57 5
29 29 4
30 7 2
31 30 1
32 26 1
33 75 2
34 71 3
35 95 3
36 50 5
37 65 1
38 46 1
39 30 2
40 3 4
41 20 1

Table 5.1: Maximum price and step size for every bidder with the seed = 3

5.3. TURN-BASED SYNCHRONIZATION RESULTS 75

11 19 35
0

10

20

30

Agent ID

A
m

o
u

n
t

of
w

in
s

No synchronization
Turn-based synchronization

Figure 5.4: Winners of auctions based on synchronization type

Default Turn-based
implementation synchronization

Degree of repeatability 0.5088888888888889 1

Table 5.2: Results of random seeds for turn-based synchronization in
auction-example

We first show that non-repeatability in this case is a problem for the mea-
surement of the winner by recording how many times of the 30 runs an agent
has won the auction in Figure 5.4. In this figure we have left out all the bidder
agents that have not won an auction.

From Figure 5.4 we can see that without proper synchronization non-repeatability
is an issue in this example. By the nature of the measurement, since it is an
act-sense measurement criterion, the platform only has to synchronize on a de-
liberation cycle basis, so turn-based synchronization suffices. We also show in
this particular case (i.e. seed = 3) that repeatability is ensured by turn-based
synchronization.

It is however more important to generally show that turn-based synchro-
nization ensures repeatability in the auction example, not only for seed = 3.
Therefore we generalize the experiment by running it for 30 randomly generated
seeds. For these seeds we run two experiments: one with the default implemen-
tation of OO2APL and we compare this to the implementation with turn-based
synchronization. The results are shown in Table 5.2.

From Table 5.2 we can see that here we show empirically that turn-based
synchronization works. A degree of repeatability of 1 means that the value of
the measurement is always the same, the measurement taken is the winner of

76 CHAPTER 5. RESULTS

the auction. Note here that we talk about deterministic repeatability, since it
must be exactly the same value.

Also we see that the degree of repeatability of the default implementation
is around 0.5, exactly what we were aiming for when we tuned the delay up
to 50 milliseconds. This way we show that the repeatability is caused by our
implementation and it is very unlikely that it is this occurs by chance, since
around 50 percent of the cases, no repeatability is assured, the probability that
this occurs by chance is around 0.5089900 (900 because of 30 × 30 auctions),
which is extremely small.

5.3.1 Price distributions

Another measurement might be the price that the highest bidder pays for the
item for sale. When ensuring turn-based synchronization on the auction we
ensure repeatability for the highest bidder, therefore we ensure that the highest
bidder is always the same bidder (assuming there is only one bidder that is pre-
pared to pay the specified highest price). We also talk here about repeatability,
but this time about probabilistic repeatability. For this we analyze the output
distribution, which is considered always the same by the assumption that we
talk about the same winner and the same maximum price it is prepared to pay.

To properly analyze such an output distribution it makes no sense to talk
about averages over 30 different seeds (i.e. input states) because we would then
analyze an average output distribution of 30 different agents, therefore we will
pick one seed. In our experiment for the price distribution, we choose seed = 3
(see Table 5.1) as the input and a delay of 50 milliseconds. We run 30 times 30
auctions of which the average resulting price distributions are shown in Figure
5.5.

When looking at the resulting distribution in Figure 5.5 we can see that
although we ensure repeatability it is not deterministic repeatability for this
measurement, because the value can change. There are four values agent 35 can
bid ranging from 92 to 95. We note that the two most likely values are 92 and
95, this is because 92 is the maximum value of the second highest bidder and
therefore it will not bid any higher and furthermore, the step size of agent 35
(i.e. the highest bidder) is 3, therefore 92 + 3 is the most likely outcome.

It is much less likely that circumstances occur in which the prices 93 and 94
are reached, because they include multiple agents that behave in similar ways
(i.e. same delays) and only this coordination leads to this behavior. We can
see from the initial state in Table 5.1 that the chance of reaching 94 is higher
because both highest bidders have a step size of 3 and that can be caused by
starting from a bid of 85 and then adding up 3 all over again, where at a bid
of 91 the second highest agent should be slower to bid than the highest agent,
resulting in a final bid of 94. There are two agents with a maximum price of
85 which can result in a final bid of 94 by adding 3 to the maximum bid three
times. To have a resulting price of 93, both the highest bidder and second
highest bidder should be slower to bid than agent 13 bidding 84 for instance
and then continue to add 3 to the bid and then at a price of 90 the second

5.4. AGENT ORDERING SYNCHRONIZATION 77

92 93 94 95
0

5

10

15

Price

A
m

o
u

n
t

o
f

ti
m

es
p

a
id

Figure 5.5: Repeatable price distribution for agent 35 in auction example
(with seed = 3)

highest bidder should bid later than the highest bidder, resulting in a price of
93. We see here that the amount of requirements is higher and therefore it is
much less likely to occur.

5.4 Agent ordering synchronization

Agent ordering synchronization implements the agent partial ordering, theoret-
ically described in section 4.3.3. This type of synchronization is an extension to
turn-based synchronization (see section 5.3).

The agent ordering is defined during the creation of the multi-agent sys-
tem. In the implementation the so called preconditions of the agent (i.e. the
agents that had to finish before this agent can perform its deliberation cycle)
are stored. Whenever an agent reaches the finished-state from the turn-based
synchronization, the platform checks which agent’s preconditions are met, if all
preconditions are met it will schedule the agent to execute its deliberation cycle.

From an implementation standpoint we use every agent’s execution state
and create a graph of it. This corresponds to the predecessor set and child set
defined in section 4.3.3. Every element in the graph is considered a node we call
‘OrderingNode’. An ordering node consists of:

• The agent’s identifier

• The preconditions (i.e. nodes that come directly before in the agent or-
dering graph and have a parent-child relation)

78 CHAPTER 5. RESULTS

• The postconditions (the counterpart of the preconditions, for every pre-
condition in the child node a postcondition exists in the parent-node)

• Whether the agent has finished its deliberation cycle at that step

• Whether the agent is sleeping

• Whether the agent is scheduled for performing its deliberation cycle

On this, a few operations can be performed, namely:

• Checking whether the agent can be scheduled (based on the preconditions)

• Which agents can be scheduled after this has finished

This whole ordering is stored in a class called ‘AgentOrdering’. It stores all
agents based on their identifier in a hash table such that finding them based on
the agent identifier is fast. It has four tasks:

• Update the ordering

• Return the agents that can start a new round

• Return the agents that can be scheduled after an agent is finished

• Reset the properties of the nodes in the ordering such that a new round
can start

This agent ordering reacts to two types of events within the agent platform.
The first case is when a new round is started, then the properties are reset (i.e.
whether an agent has finished a deliberation cycle) and the agents that can
start a new round are returned by the agent ordering. The second case is when
an agent has finished a deliberation cycle and it checks whether the round is
finished and executes the first case or otherwise it checks which agent can be
started now that could not start earlier.

The above two cases form three of the four tasks of the agent ordering class.
The other case is about updating the order and is normally done during the
creation of the multi-agent system. By default all agents can be executed at the
same time but the designer can for each agent identifier give a list of precondi-
tions (i.e. agents that have to be finished) for the specified agent. When the
agent ordering is manually overridden, the designer specifies the preconditions
and the postconditions are automatically updated.

In all experiments the ordering is updated before the start and not changed
during the experimentation. We use for this 30 randomly picked seeds for which
we run 30 experiments. We state that a result is repeated in the sense of
deterministic repeatability: every agent delivers the same amount of bombs to
the traps. The degree of repeatability is again the probability that the result
is repeated, meaning the chance that the result is equal to that of the most
frequent result (i.e. result with the highest probability of occurring). When
repeatability is ensured, this probability must of course be equal to 1.

5.5. PLANNED EXTERNAL TRIGGERS 79

Default Agent ordering
implementation synchronization

Degree of repeatability 0.5953703703703703 1

Table 5.3: Results of random seeds for agent ordering synchronization in harry
and sally example

Also we have to set the agent ordering. The ordering we use is simply the
following: first all harry agents execute in order, then all sally agents and then
the world manager. The results of this experiment is shown in Table 5.3. Here
we clearly see that agent ordering synchronization ensures repeatability for the
given measurement, whereas the default implementation does not.

5.5 Planned external triggers

External triggers are a special type of act-sense measurement criterion because
the sending part is outside the multi-agent system. We built a mechanism that
plans the arrival of external triggers repeatable.

Different than formally we also have to deal with sending external triggers.
For this we need a scheduler, something that schedules the external trigger in
such a way that it sends the external trigger at the same time during different
runs and therefore ensures repeatable delivery of these external triggers. We
call this the planning of external triggers.

For time based planning it is important to define a notion of time in the
OO2APL platform. However, when we define it independent of the platform, like
in the case of seconds or minutes for instance, it can happen that inconsistency
occurs due to the fact that in one run the agent performs n tasks whereas
in the other run it performs m tasks (assuming n 6= m). Deliveries of external
triggers using the real system time do not solve the problem of non-repeatability.
Therefore, we base time on the amount of deliberation cycles run by one agent
and whenever all agents are at the same time (i.e. the round has finished), we
deliver an external trigger.

We implement a different method for sending external triggers to the agents
to include a time at which the trigger is fired. These are all stored in a queue
where the platform checks at every turn (i.e. every agent has finished one
deliberation cycle) if the agent needs to receive external triggers. Because it
works on a turn basis on the platform, both turn-based synchronization and
agent ordering synchronization can be equipped with handling planned external
triggers.

From the example of harry and sally it means that we schedule n external
triggers which are sent to the world manager. This world manager then adds
a bomb at a randomly picked location in the world. This amount of external
triggers is picked from an uniform distribution with a minimum of 1 and a
maximum of 20. In this experiment we also run 30 times 30 experiments of the

80 CHAPTER 5. RESULTS

Default implementation Agent ordering synchronization
+ external triggers + external triggers synchronization

Degree of repeatability 0.5005555555555555 1

Table 5.4: Results of random seeds for agent ordering synchronization with
external trigger scheduling in harry and sally example

example of harry and sally but this time with the implementation of random
bombs by the world manager through external triggers.

We have however a problem because by default adding external triggers
with some delay is not possible. Because when we schedule all external triggers
directly (i.e. the default behavior) it would always be the same and therefore is
repeatable. We therefore create an additional thread which sends these external
triggers bases it on an interval to the agent platform.

In the experiment we compare the default implementation of the platform
with the external trigger synchronization and agent ordering synchronization for
the harry-sally example. The default implementation sends external triggers on
an unmanaged time interval basis whereas the external trigger synchronization
based on the time which is sent together with the external trigger when it was
scheduled. The results of these experiments are shown in Table 5.4.

From the results of the external trigger scheduling we see that external trig-
ger scheduling ensures deterministic repeatability on the measurement of the
amount of bombs picked up by every agent. What we also see is that the
default implementation performs worse when adding external triggers (by com-
paring it to the default implementation in Table 5.3, which is not surprising
since we increase the amount of ordering errors that can occur by adding bombs
in a way that is for the multi-agent system itself unpredictable and most of the
time different.

5.6 Summary

In this chapter we have shown that our implementations for ensuring repeata-
bility works on two examples: the auction and the harry-sally example. For this
we have described the way these synchronization techniques are implemented
and we have discussed probabilistic and deterministic repeatability.

From all these experiments we have concluded that we can ensure repeata-
bility in large-scale agent-based social simulations practically.

Chapter 6

Conclusion & Future work

In this thesis we asked the question ‘how to ensure repeatability in large-scale
agent-based social simulations?’. In this chapter we answer this research ques-
tion and discuss possible future work.

6.1 Research question

We divided the research into three sub-questions. Which we will answer one by
one to gradually answer the main question.

How can we ensure repeatability in complex reasoning agents such
as BDI-agents? We identified that problems of repeatability occurred when
the ordering of actions differed. This had influence on interactions between
different agents. Within these agents we assumed that agents are internally
serial, which ensured the same ordering. However, complex reasoning agents
can receive external triggers and in this sense it is important for an agent on
its own to handle this in a repeatable way. We proposed and implemented
a synchronization technique called external trigger synchronization that sends
triggers with a timestamp, which is the amount of deliberation cycles the agent
has executed since the creation of the agent. This way an agent always processes
external triggers in the same order with other actions within the agent and
therefore repeatability is ensured within complex reasoning agents.

How to ensure repeatability in large-scale multi-agent systems
where interactive agents run concurrently? For this we had a look at
the workings of agents, which use a deliberation cycle, and identified two types
of problems: problems in the ordering of sense and act events of the deliberation
cycle of agents and in the ordering of act events only. For the first problem we
synchronize before and after the act-phase of the deliberation cycle and for the
second type of problem we define an order of execution for the agent’s act-phase
of the deliberation cycle. We show that these synchronization techniques work.

How to build large-scale agent-based social simulations that ensure
repeatability? For this we implemented the two synchronization techniques

81

82 CHAPTER 6. CONCLUSION & FUTURE WORK

described earlier and built a system for sending external triggers repeatably. We
did some testing over these techniques and showed that they ensure repeatabil-
ity for two examples identified to have problems with repeatability for the three
ordering mistakes that can be made. These examples, an auction and an exam-
ple of two agents that try to clean a world of bombs, show that repeatability is
not by default ensured in OO2APL, but with the implemented synchronization
techniques they do ensure repeatability.

Overall we can now answer the main question: how to ensure repeatability
in large-scale agent-based social simulations. For this we purpose three synchro-
nization techniques that ensure this. When implemented we have shown that
they do ensure repeatability whereas they otherwise would not.

6.2 Future work

During the research we have discovered many different research alternatives
from which we want to discuss a few. These range from ensuring a different
notion to different solutions we will discuss further.

First of all there is the related notion of reproducibility in large-scale agent-
based social simulations. This notion is for differences between simulation im-
plementations interesting and can be used to compare different multi-agent sys-
tems in a formal way. Think for instance about different implementations for
delivering messages to agents and how this influences repeatability in large-scale
agent-based social simulations. This does apply to message deliveries but nearly
every decision made by the platform that executes the agents and thereby pos-
sibly affects repeatability.

Another possibility is that of investigating the possibility of some sort of
Time Warp mechanism (Jefferson, 1985) for repeatability. Therefore one has to
identify a problem with repeatability and then try to solve it through a roll-
back. Doing so makes the use of conservative synchronization techniques like
the once we implemented unnecessary.

Bibliography

Arifin, S. M. N. and Madey, G. R. (2015). Verification, Validation, and Replica-
tion Methods for Agent-Based Modeling and Simulation: Lessons Learned
the Hard Way!, pages 217–242. Springer International Publishing, Cham.

Balmer, M., Meister, K., and Nagel, K. (2008). Agent-based simulation of travel
demand: Structure and computational performance of MATSim-T. ETH,
Eidgenössische Technische Hochschule Zürich, IVT Institut für Verkehrs-
planung und Transportsysteme.

Bartlett, J. and Frost, C. (2008). Reliability, repeatability and reproducibil-
ity: analysis of measurement errors in continuous variables. Ultrasound in
Obstetrics and Gynecology, 31(4):466 – 475.

Bellifemine, F., Caire, G., Poggi, A., and Rimassa, G. (2007). Jade: A soft-
ware framework for developing multi-agent applications. lessons learned.
Information and Software Technology, 50(12):10 – 21.

Bergstra, J. A. and Klop, J. W. (1984). Process algebra for synchronous com-
munication. Information and control, 60(1-3):109–137.

Best, E. and Fernandez, C. (1988). Nonsequential Processes - A Petri Net View.
Springer-Verlag Berlin Heidelberg.

Calvin, J., Dickens, A., Gaines, B., Metzger, P., Miller, D., and Owen, D.
(1993). The simnet virtual world architecture. In Virtual Reality Annual
International Symposium, 1993., 1993 IEEE, pages 450–455. IEEE.

Cetin, N., Burri, A., and Nagel, K. (2003). A large-scale agent-based traffic
microsimulation based on queue model. In IN PROCEEDINGS OF SWISS
TRANSPORT RESEARCH CONFERENCE (STRC), MONTE VERITA,
CH, pages 3–4272.

Chandy, K. M. and Misra, J. (1981). Asynchronous distributed simulation
via a sequence of parallel computations. Communications of the ACM,
24(4):198–206.

Copeland, J. (1993). Artificial Intelligence: A Philosophical Introduction. Wiley-
Blackwell.

83

84 BIBLIOGRAPHY

Dastani, M. (2008). 2apl: a practical agent programming language. Autonomous
Agents and Multi-Agent Systems, 16(3):214–248.

Dastani, M. and Testerink, B. (2014). From Multi-Agent Programming to Object
Oriented Design Patterns, pages 204–226. Springer International Publish-
ing, Cham.

Dastani, M., van Birna Riemsdijk, M., and Meyer, J.-J. C. (2005). Programming
multi-agent systems in 3apl. In Multi-agent programming, pages 39–67.
Springer.

Davidsson, P. (2002). Agent based social simulation: A computer science view.
Journal of Artificial Societies and Social Simulation, 5(1).

Duffy, G. (1992). Concurrent interstate conflict simulations: testing the effects
of the serial assumption. Mathematical and Computer Modelling, 16(8-
9):241–270.

Dushnik, B. and Miller, E. W. (1941). Partially ordered sets. American Journal
of Mathematics, 63(3):600–610.

Filippi, J.-B., Morandini, F., Balbi, J. H., and Hill, D. R. (2010). Discrete
event front-tracking simulation of a physical fire-spread model. Simulation,
86(10):629–646.

Finin, T., Fritzson, R., McKay, D., and McEntire, R. (1994). Kqml as an agent
communication language. In Proceedings of the third international confer-
ence on Information and knowledge management, pages 456–463. ACM.

FIPA (1999). Specification part 2 - agent communication language.

Fokkink, W. (2007). Introduction to Process Algebra. Springer-Verlag, 2 edition.

Fokkink, W. and Zantema, H. (1994). Basic process algebra with iteration:
Completeness of its equational axioms. The Computer Journal, 37(4):259–
267.

Fomel, S. and Hennenfent, G. (2007). Reproducible computational experiments
using scons. In Acoustics, Speech and Signal Processing, 2007. ICASSP
2007. IEEE International Conference on, volume 4, pages IV–1257. IEEE.

Fujimoto, R. M. (1990). Parallel discrete event simulation. Commun. ACM,
33(10):30–53.

Fujimoto, R. M. (1995). Parallel and distributed simulation. In C. Alexopoulos,
K. Kang, W. L. and D.Goldsman, editors, Proceedings of the 1995 Winter
Simulation Conference, pages 118–125, Piscataway, New Jersey. Institute
of Electrical and Electronics Engineers.

BIBLIOGRAPHY 85

Fujimoto, R. M. (1997). Zero lookahead and repeatability in the high level
architecture. In Proceedings of the 1997 Spring Simulation Interoperability
Workshop, pages 3–7.

Fujimoto, R. M. (2000). Parallel and distributed simulation systems, volume
300. Wiley New York.

Fujimoto, R. M. (2001). Parallel simulation: parallel and distributed simulation
systems. In Proceedings of the 33nd conference on Winter simulation, pages
147–157. IEEE Computer Society.

Glowacka, K. J., Henry, R. M., and May, J. H. (2009). A hybrid data
mining/simulation approach for modelling outpatient no-shows in clinic
scheduling. Journal of the Operational Research Society, 60(8):1056–1068.

Groote, J. F. and Huttel, H. (1994). Undecidable equivalences for basic process
algebra. Information and Computation, 115(2):354–371.

Haddock, J. (1987). An expert system framework based on a simulation gener-
ator. Simulation, 48(2):45–53.

Hall, R. S. (2002). Lecture 13: Introduction to csp (communicating sequen-
tial processes). http://www.inf.fu-berlin.de/lehre/WS01/19530-V/

lectures/Lecture13.pdf.

Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A formal basis for the heuris-
tic determination of minimum cost paths. IEEE transactions on Systems
Science and Cybernetics, 4(2):100–107.

High-Technologies Corporation (2017). CD-SEM - What is a Critical Dimension
SEM? http://www.hitachi-hightech.com/global/products/device/

semiconductor/cd-sem.html. Accessed: 2017-03-10.

Hoare, C. (2015). Communicating Sequential Processes.

Hoare, C. A. R. (1978). Communicating sequential processes. In The origin of
concurrent programming, pages 413–443. Springer.

Jacobs, P. H. (2005). The DSOL simulation suite. PhD thesis, TU Delft, Delft
University of Technology.

Jefferson, D. R. (1985). Virtual time. ACM Transactions on Programming
Languages and Systems (TOPLAS), 7(3):404–425.

Kabanza, F., Barbeau, M., and St-Denis, R. (1997). Planning control rules for
reactive agents. Artificial Intelligence, 95(1):67 – 113.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by
simulated annealing. science, 220(4598):671–680.

86 BIBLIOGRAPHY

Lane, M. S., Mansour, A. H., and Harpell, J. L. (1993). Operations research
techniques: A longitudinal update 1973–1988. Interfaces, 23(2):63–68.

Law, A. M. and Kelton, D. M. (2014). Simulation modeling and analysis.
McGraw-Hill, 5th edition.

Law, D. R. (1998). Scalable means more than more: a unifying definition of
simulation scalability. In Proceedings of the 30th conference on Winter
simulation, pages 781–788. IEEE Computer Society Press.

Lin, L. I.-K. (1989). A concordance correlation coefficient to evaluate repro-
ducibility. Biometrics, 45(1):255–268.

Lu, M. (2003). Simplified discrete-event simulation approach for construc-
tion simulation. Journal of Construction Engineering and Management,
129(5):537–546.

MacNeille, H. M. (1937). Partially ordered sets. Transactions of the American
Mathematical Society, 42(3):416–460.

McCool, M. D., Robison, A. D., and Reinders, J. (2012). Structured parallel
programming: patterns for efficient computation. Elsevier.

McGregor, I. (2002). The relationship between simulation and emulation. In
Simulation Conference, 2002. Proceedings of the Winter, volume 2, pages
1683–1688. IEEE.

Minitab Inc (2016). Repeatability and reproducibility in measurement systems.
http://support.minitab.com/en-us/minitab/17/topic-library/

quality-tools/measurement-system-analysis/gage-r-r-analyses/

repeatability-and-reproducibility/. Accessed: 2017-03-08.

Mitchell, E. E. and Gauthier, J. S. (1976). Advanced continuous simulation
language (acsl). Simulation, 26(3):72–78.

Nielsen, M. and Thiagarajan, P. S. (1984). Degrees of non-determinism and
concurrency: A Petri net view, pages 89–117. Springer Berlin Heidelberg,
Berlin, Heidelberg.

Özgün, O. and Barlas, Y. (2009). Discrete vs. continuous simulation: When
does it matter. In Proceedings of the 27th international conference of the
system dynamics society, volume 6, pages 1–22.

Petri, C. A. (1962). Communication with automata.

Pollock, J. L. (1999). Planning Agents, volume 14, pages 53–79. Kluwer Aca-
demic Publishers.

Rao, A. and Wooldridge, M. (1999). Foundations of Rational Agency, volume 14,
pages 1–10. Kluwer Academic Publishers.

BIBLIOGRAPHY 87

Rao, A. S. and Georgeff, M. P. (1991). Modeling rational agents within a bdi-
architecture. pages 473–484.

Riley, P. F. and Riley, G. F. (2003). Next generation modeling iii - agents:
Spades — a distributed agent simulation environment with software-in-
the-loop execution. In Proceedings of the 35th Conference on Winter Sim-
ulation: Driving Innovation, WSC ’03, pages 817–825. Winter Simulation
Conference.

Santer, B., Wigley, T., and Taylor, K. (2011). The reproducibility of observa-
tional estimates of surface and atmospheric temperature change. Science,
334(6060):1232–1233.

Shoham, Y. (1993). Agent-oriented programming. Artificial Intelligence,
60(1):51 – 92.

Stimpson, J. L. and Goodrich, M. A. (2003). Learning to cooperate in a social
dilemma a satisficing approach to bargaining. In Proceedings of the 20th
International Conference on Machine Learning, pages 728 – 735.

Taylor, B. N. and Kuyatt, C. E. (1994). Guidelines for evaluating and expressing
the uncertainty of nist measurement results. Accessed: 2017-03-08.

Trotter, W. T. (1995). Partially ordered sets. Handbook of combinatorics, 1:433–
480.

Trotter, W. T. (2001). Combinatorics and partially ordered sets: Dimension
theory, volume 6. JHU Press.

Trybulec, W. A. (2000). Partially ordered sets. Def, 2:2D.

Tumer, K. and Agogino, A. (2007). Distributed agent-based air traffic flow
management. In Proceedings of the 6th international joint conference on
Autonomous agents and multiagent systems, page 255. ACM.

Van der Hoek, W., van Linder, B., and Meyer, J.-J. C. (1999). An Integrated
Modal Approach to Rational Agents, pages 133–167. Springer Netherlands,
Dordrecht.

Van der Hoek, W. and Wooldridge, M. (2008). Multi-agent systems. Founda-
tions of Artificial Intelligence, 3:887–928.

van Leeuwen, J. (1990). Handbook of theoretical computer science, volume 1.
Elsevier.

Varga, A. (2001). Discrete event simulation system. In Proc. of the European
Simulation Multiconference (ESM’2001).

Verbraeck, A. (2017). DSOL core project. http://www.simulation.tudelft.
nl/dsol/3.0/dsol-core/index.html. Accessed: 2017-05-03.

88 BIBLIOGRAPHY

Villarrubia, J. S., Vladar, A. E., and Postek, M. T. (2003). Simulation study
of repeatability and bias in the cd-sem. In Microlithography 2003, pages
138–149. International Society for Optics and Photonics.

Weiss, W. (2011). Development and use of the dynamic security model for
airports. Journal of Airport Management, 5(3):245–254.

Wooldridge, M. (2009). An introduction to multiagent systems. John Wiley &
Sons.

