Probabilistic inference for (Bayesian) statistical inference

Silja Renooij

Department of Information and Computing Sciences Utrecht University s.renooij@uu.nl

Slides are part of the ProbAI school slidedeck, containing slides contributed by Antonio Salmerón.

Probabilistic graphical models

What we need from probabilistic models:

- Ability to operate in high dimensional spaces
- Support efficient inference and learning

Probabilistic graphical models offer:

- Structured specification of high dimensional distributions in terms of low dimensional factors
- Efficient inference and learning taking advantage of the structure
- Graphical representation interpretable by humans

Probabilistic inference & Statistical inference

The phrase 'probabilistic inference' is often used in the PGM literature and considered synonymous to or a special case of statistical inference. I like the following distinction:

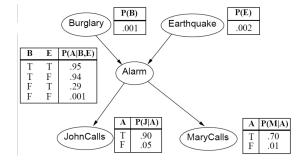
- **Probabilistic inference:** *calculate* (deduce) probabilities (or probability distributions) from a *modelled distribution with known parameters*, using *probability theory*;
- **Statistical inference:** *estimate* (infer) parameters (or other unknowns) *from data* for a hypothesized theoretical distribution, using *statistical tools*.
 - Frequentist statistics: works with point estimates; requires a lot of data;
 - Bayesian statistics: treats parameters as random variables with a distribution; already works with limited to no data.

Important observation: we can use probabilistic inference for (Bayesian) parameter estimation.

Bayesian network: definition

A Bayesian network over random variables $X = \{X_1, \ldots, X_n\}$ consists of

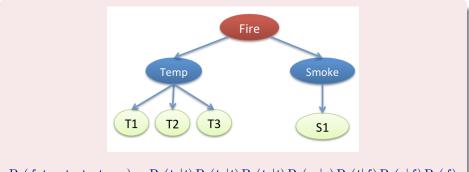
- A DAG $\mathcal{G} = (\mathcal{V}, \mathcal{A})$ with $\mathcal{V} = X$
- A set of local conditional distributions $\mathcal{P} = \{ \Pr(X_i \mid \sigma(X_i)) \mid X_i \in \mathbf{X} \}$ where $\sigma(X_i)$ denotes the parents of X_i according to \mathcal{A}



Bayesian networks: compact represention of the joint

d-separation is used to capture independences among the variables; as a result, every Bayesian network encodes a joint distribution factorized as

$$\Pr(X_1, \dots, X_n) = \prod_{i=1}^n \Pr(X_i \mid \sigma(X_i))$$



 $\Pr(f, t, s, t_1, t_2, t_3, s_1) = \Pr(t_1|t) \Pr(t_2|t) \Pr(t_3|t) \Pr(s_1|s) \Pr(t|f) \Pr(s|f) \Pr(f)$

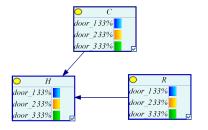
Monty Hall problem

You are given the choice between 3 doors. One has a real prize behind it, the other two joke prizes.

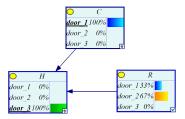
You choose a door; the host then opens a door and offers you the choice to switch to a closed door.

Would you switch?

Probabilistic Inference



 $\Pr(H) = \sum_{c,r} \Pr(H \mid c, r) \Pr(c) \Pr(r)$



$$\frac{\Pr(R \mid C = door_1, H = door_3) =}{\Pr(H = door_3 \mid C = door_1, R) \Pr(R)}$$
$$\frac{\Pr(H = door_3)}{\Pr(H = door_3)}$$

From the joint distribution $|Pr(X_1, ..., X_n)|$ we can infer (calculate) a.o.

• the prior distribution $|\Pr(X_i)|$ of any X_i ,

• the posterior distribution $\left| \Pr(X_i \mid \boldsymbol{x}_E) \right|$ of any X_i given evidence for \boldsymbol{x}_E ,

Note: interpretation of terms is slightly different when we consider learning!

Inference in Bayesian networks

Assume a Bayesian network over variables $\boldsymbol{X} = \{X_1, \dots, X_n\}$

$$\left.\begin{array}{c} \mathsf{Bayesian \ network,} \\ \mathsf{variable(s) \ of \ interest \ }(\boldsymbol{X}_I) \\ + \\ \mathsf{Evidence \ }(\boldsymbol{x}_E) \end{array}\right\} \Rightarrow P(\boldsymbol{X}_I | \boldsymbol{x}_E)$$

Inference methods

- Exact
 - Brute force: compute $P({m X}, {m x}_E)$ and marginalize out ${m X} \setminus {m X}_I$
 - Take advantage of the network structure
- Approximate
 - Sampling
 - Deterministic

Exact inference

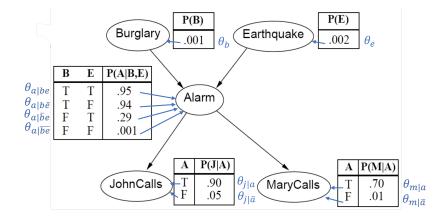
Considerations about exact inference:

- Product of functions raises complexity
 - Exponentially in the case of discrete variables
- Complexity also depends on the elimination order
- Representation of densities turns out to be relevant
 - Closed-form solutions to product and marginalization are preferable

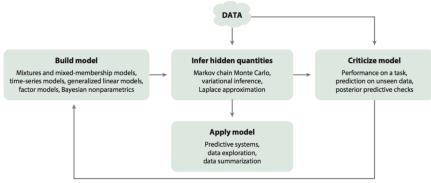
Approximate inference

- sampling: Monte Carlo techniques, e.g. importance sampling, MCMC
 - accurate with enough samples
 - sampling can be computationally demanding
- deterministic, e.g. variational approaches
 - uses analytical approximations to the posterior
 - some techniques scale well

Bayesian network model parameters



The probabilistic modelling cycle



REVISE MODEL

Image from: David M. Blei (2014) "Build, compute, critique, repeat: Data analysis with latent variable models." Annual Review of Statistics and its Applications 1, 303-323.

Learning probabilistic models from data

Model (simple):

- a theoretical probability density/mass function f
 - associated with random variable \boldsymbol{X}
 - having parameter θ

Learning problem:

- We assume f is known except for parameter $\boldsymbol{\theta}$
- This is denoted as $f(x; \theta)$ or $f(x \mid \theta)$
- Goal: estimate θ

Tools:

• for a sample X_1, \ldots, X_n drawn from $f(x \mid \theta)$, the likelihood function is:

$$l(\theta \mid x_1, \dots, x_n) \stackrel{\text{def}}{=} f(x_1, \dots, x_n \mid \theta) = \prod_{i=1}^n f(x_i \mid \theta)$$

i.e. the joint density/mass regarded as a function of parameter $\boldsymbol{\theta}$

Learning parameters from data: frequentist approach

• POV: parameter θ has a fixed but unknown value

```
Consider tossing a (fair?) coin
```

Goal: estimate p(heads)

Frequentist POV: probability = relative frequency "in the long run"

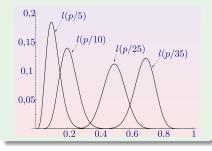
p x 50 After 50 trials: $HHHTTH \dots TH$ $\hat{p} = \frac{15}{50}$

What is underlying theoretical model $f(x \mid p)? \Rightarrow$

Assume a sample of size 1, $X \sim \mathcal{B}(50, p)$ (Binomial, 50 trials)

The likelihood function is

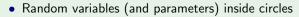
 $l(p \mid x) = {\binom{50}{x}} p^x (1-p)^{50-x}$



Learning parameters from data: Bayesian approach

- POV: parameters are modelled as random variables \rightarrow information about them can be included prior to observing data
- Additional tools: using Bayes' rule, the prior information is combined with the <u>likelihood</u>, yielding a posterior distribution
- The posterior then becomes the new prior
- As such, inferences about the parameter allow for its updating; to this end we can use *existing* algorithms for exact or approximate probabilistic inference!

Bayesian networks for Bayesian learning



- Grey if observable; white if hidden
- Fixed quantities without circle

Learning from data: Bayesian approach

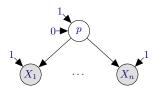
Distributions in a Bayesian model - I For learning:

- The prior distribution of θ , $\pi(\theta)$
- The joint distribution of (X, θ) , $\psi(x, \theta) = f(x|\theta)\pi(\theta)$
- The posterior distribution of θ given x, $\pi(\theta|x) = \frac{f(x|\theta)\pi(\theta)}{\int_{\theta} f(x|\theta)\pi(\theta) \ d\theta}$

The denominator of the posterior is often a problem to compute, since we have to integrate out θ . Exception: if prior and posterior are from the same family, then exact computation is easy. Otherwise: approximate.

Learning from data: Example of Bayesian approach

• Assume a sample $X_1, X_2, \dots, X_n \sim \mathcal{B}(1, p)$ and $p \sim \mathcal{U}(0, 1)$ (uniform) (= Be(1, 1) (beta))



• Then the likelihood and the prior are,

 $f(x_1, \dots, x_n | p) = p^{\sum x_i} (1-p)^{n-\sum x_i}, \text{ with } x_i = 0, 1; p \in (0, 1),$

$$\pi(p) = \frac{1}{1-0} = 1$$
, if $p \in (0,1)$

• The posterior distribution is

$$\pi(p|x_1,\ldots,x_n) = \frac{f(x_1,\ldots,x_n|p)\pi(p)}{\int_0^1 f(x_1,\ldots,x_n|p)\pi(p) \ dp} = \frac{p^{\sum x_i}(1-p)^{n-\sum x_i}}{\int_0^1 p^{\sum x_i}(1-p)^{n-\sum x_i} \ dp}$$

Learning from data: Example of Bayesian approach

Pattern matching: the Beta distribution $Be(\alpha, \beta)$

$$f(p) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha - 1} (1 - p)^{\beta - 1}; \qquad \int_0^1 f(p) \, dp = 1$$

$$\int_{0}^{1} p^{\sum x_{i}} (1-p)^{n-\sum x_{i}} dp =$$

$$= \int_{0}^{1} \frac{\Gamma(\sum x_{i}+1)\Gamma(n-\sum x_{i}+1)}{\Gamma(n+2)} \frac{\Gamma(n+2)}{\Gamma(\sum x_{i}+1)\Gamma(n-\sum x_{i}+1)} p^{\sum x_{i}} (1-p)^{n-\sum x_{i}} dp$$

$$= \frac{\Gamma(\sum x_{i}+1)\Gamma(n-\sum x_{i}+1)}{\Gamma(n+2)} \int_{0}^{1} \frac{\Gamma(n+2)}{\Gamma(\sum x_{i}+1)\Gamma(n-\sum x_{i}+1)} p^{\sum x_{i}} (1-p)^{n-\sum x_{i}} dp$$

$$= \frac{\Gamma(\sum x_{i}+1)\Gamma(n-\sum x_{i}+1)}{\Gamma(n+2)} \cdot 1$$

Learning from data: Example of Bayesian approach

Assume a sample $X_1, X_2, \ldots, X_n \sim \mathcal{B}(1, p)$ and $p \sim \mathcal{U}(0, 1) = Be(1, 1)$

• Then the likelihood and the prior are,

$$f(x_1, \dots, x_n | p) = p^{\sum x_i} (1 - p)^{n - \sum x_i}, \text{ with } x_i = 0, 1; p \in (0, 1),$$

$$\pi(p) = 1, \text{ if } p \in (0, 1)$$

• The posterior distribution is

$$\pi(p|x_1,\dots,x_n) = \frac{f(x_1,\dots,x_n|p)\pi(p)}{\int_0^1 f(x_1,\dots,x_n|p)\pi(p) \, dp} = \frac{p^{\sum x_i}(1-p)^{n-\sum x_i}}{\int_0^1 p^{\sum x_i}(1-p)^{n-\sum x_i} \, dp}$$
$$= \frac{\Gamma(n+2)}{\Gamma(\sum x_i+1)\Gamma(n-\sum x_i+1)} p^{\sum x_i}(1-p)^{n-\sum x_i}$$

which corresponds to
$$Be\left(\sum x_i+1, n-\sum x_i+1\right)$$

Very easy to compute for some models

Conjugate priors and likelihoods

Prior and likelihood are called conjugate, if prior and posterior are from same family.

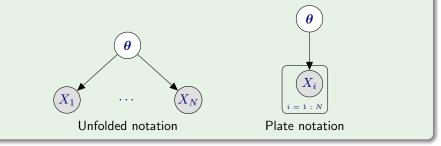
Likelihood	Prior	Posterior
$\mathcal{B}(1, heta)$	Be(lpha,eta)	$Be\left(\alpha + \sum_{i=1}^{n} x_i, \beta + n - \sum_{i=1}^{n} x_i\right)$
$\mathcal{NB}(r, heta)$	Be(lpha,eta)	$Be(\alpha + rn, \beta - nr + \sum_{i=1}^{n} x_i)$
$\mathcal{G}(heta)$	Be(lpha,eta)	$Be\left(\alpha+n,\beta+\sum_{i=1}^{n}x_{i}\right)$
$\mathcal{MN}(n, \theta_1, \dots, \theta_k)$	$Dir(\alpha_1,\ldots,\alpha_k)$	$Dir(\alpha_1 + x_1, \dots, \alpha_k + x_k)$
P(heta)	$\Gamma(lpha,eta)$	$\Gamma(\alpha + \sum_{i=1}^{n} x_i, \beta + n)$
$Exp(\theta)$	$\Gamma(lpha,eta)$	$\Gamma(\alpha + n, \beta + \sum_{i=1}^{n} x_i)$
$\mathcal{N}(\mu, \underline{ au})$	$\mathcal{N}(\mu_0, au_0)$	$\mathcal{N}(rac{ au_0+n auar{x}}{ au_0+n au}, au_0+n au)$
$\mathcal{N}(\underline{\mu}, au)$	$\Gamma(lpha_0,eta_0)$	$\Gamma(\alpha_0 + \frac{n}{2}, \beta_0 + \frac{1}{2}\sum_{i=1}^n (x_i - \mu)^2)$

Plate notation

The idea is to avoid repeated substructures

Example: independent data points

- Assume the elements in a sample X_1,\ldots,X_N are independent if the parameter θ is known



Learning from data: Bayesian approach

Distributions in a Bayesian model - II

For validation and use:

• The prior predictive distribution of
$$X$$
, $m(x) = \int_{\theta} f(x|\theta) \pi(\theta) \ d\theta$

• The (posterior) predictive distribution given $x = \{x_1, \dots, x_n\}$:

$$f(x_{n+1}|\boldsymbol{x}) = \int_{\theta} f(x_{n+1}|\theta, \boldsymbol{x}) \pi(\theta|\boldsymbol{x}) d\theta = \int_{\theta} f(x_{n+1}|\theta) \pi(\theta|\boldsymbol{x}) d\theta$$

Example Bayesian approach, continued

• The prior predictive distribution is

$$m(x) = \int_0^1 p^x (1-p)^{1-x} dp = \frac{\Gamma(x+1)\Gamma(2-x)}{\Gamma(3)} = \frac{x!(1-x)!}{2} = \boxed{\frac{1}{2}} \quad \text{with } x = 0, 1$$

• The (posterior) predictive distribution is

$$f(x|x_1, \dots, x_n) = \\ = \int_0^1 p^x (1-p)^{1-x} \frac{\Gamma(n+2)}{\Gamma(\sum x_i+1)\Gamma(n-\sum x_i+1)} p^{\sum x_i} (1-p)^{n-\sum x_i} dp \\ = \frac{\Gamma(n+2)}{\Gamma(\sum x_i+1)\Gamma(n-\sum x_i+1)} \int_0^1 p^{x+\sum x_i} (1-p)^{n+1-(x+\sum x_i)} dp \\ = \frac{\Gamma(n+2)}{\Gamma(\sum x_i+1)\Gamma(n-\sum x_i+1)} \frac{\Gamma(x+1+\sum x_i)\Gamma(n+2-(x+\sum x_i))}{\Gamma(n+3)}$$

Learning from data: Bayesian approach

- The method above is known as *fully Bayesian* approach
- Sometimes, we don't need to compute the denominator of the posterior distribution, in which case θ can be estimated as

$$\hat{\theta} = \arg \max_{\theta} f(x_1, \dots, x_n, \theta)$$

= $\arg \max_{\theta} f(x_1, \dots, x_n | \theta) \pi(\theta)$
= $\arg \max_{\theta} \{\log f(x_1, \dots, x_n | \theta) + \log \pi(\theta)\}$

known as the MAP (Maximum A Posteriori) estimator

• Note that we could also choose

$$\hat{\theta} = \arg\max_{\theta} \log f(x_1, \dots, x_n | \theta)$$

which is actually the (frequentist) MLE (Maximum Likelihood Estimator)