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Probabilistic graphical models

What we need from probabilistic models:

• Ability to operate in high dimensional spaces

• Support efficient inference and learning

Probabilistic graphical models offer:

• Structured specification of high dimensional distributions in terms of low
dimensional factors

• Efficient inference and learning taking advantage of the structure

• Graphical representation interpretable by humans
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Probabilistic inference & Statistical inference

The phrase ’probabilistic inference’ is often used in the PGM literature and
considered synonymous to or a special case of statistical inference.
I like the following distinction:

• Probabilistic inference: calculate (deduce) probabilities (or probability
distributions) from a modelled distribution with known parameters, using
probability theory;

• Statistical inference: estimate (infer) parameters (or other unknowns) from
data for a hypothesized theoretical distribution, using statistical tools.

• Frequentist statistics: works with point estimates; requires a lot of data;

• Bayesian statistics: treats parameters as random variables with a distribution;
already works with limited to no data.

Important observation: we can use probabilistic inference for (Bayesian) parameter
estimation.
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Bayesian network: definition

A Bayesian network over random variables X = {X1, . . . , Xn} consists of

• A DAG G = (V,A) with V = X

• A set of local conditional distributions P = { Pr(Xi | σ(Xi)) | Xi ∈ X}
where σ(Xi) denotes the parents of Xi according to A
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Bayesian networks: compact represention of the joint

d-separation is used to capture independences among the variables;
as a result, every Bayesian network encodes a joint distribution factorized as

Pr(X1, . . . , Xn) =

n∏
i=1

Pr(Xi | σ(Xi))

Pr(f, t, s, t1, t2, t3, s1) = Pr(t1|t) Pr(t2|t) Pr(t3|t) Pr(s1|s) Pr(t|f) Pr(s|f) Pr(f)
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Monty Hall problem

You are given the choice between 3 doors. One has a real prize behind it, the
other two joke prizes.

You choose a door; the host then opens a door and offers you the choice to switch
to a closed door.

Would you switch?
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Probabilistic Inference

Pr(H) =
∑
c,r

Pr(H | c, r) Pr(c) Pr(r) Pr(R | C = door1, H = door3) =

Pr(H = door3 | C = door1, R) Pr(R)

Pr(H = door3)

From the joint distribution Pr(X1, . . . , Xn) we can infer (calculate) a.o.

• the prior distribution Pr(Xi) of any Xi,

• the posterior distribution Pr(Xi | xE) of any Xi given evidence for xE ,

Note: interpretation of terms is slightly different when we consider learning!
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Inference in Bayesian networks

Assume a Bayesian network over variables X = {X1, . . . , Xn}

Bayesian network,
variable(s) of interest (XI)

+
Evidence (xE)

 ⇒ P (XI |xE)?

Inference methods
• Exact

• Brute force: compute P (X,xE) and marginalize out X \XI

• Take advantage of the network structure

• Approximate

• Sampling
• Deterministic
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Exact inference

Considerations about exact inference:

• Product of functions raises complexity

• Exponentially in the case of discrete variables

• Complexity also depends on the elimination order

• Representation of densities turns out to be relevant

• Closed-form solutions to product and marginalization are preferable
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Approximate inference

• sampling: Monte Carlo techniques, e.g. importance sampling, MCMC

• accurate with enough samples
• sampling can be computationally demanding

• deterministic, e.g. variational approaches

• uses analytical approximations to the posterior
• some techniques scale well
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Bayesian network model parameters
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The probabilistic modelling cycle

Image from: David M. Blei (2014) “Build, compute, critique, repeat: Data analysis with latent variable models.” Annual Review of Statistics and its
Applications 1, 303–323.
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Learning probabilistic models from data

Model (simple):

• a theoretical probability density/mass function f

• associated with random variable X
• having parameter θ

Learning problem:

• We assume f is known except for parameter θ

• This is denoted as f(x; θ) or f(x | θ)
• Goal: estimate θ

Tools:

• for a sample X1, . . . , Xn drawn from f(x | θ), the likelihood function is:

l(θ | x1, . . . , xn)
def
= f(x1, . . . , xn | θ) =

n∏
i=1

f(xi | θ)

i.e. the joint density/mass regarded as a function of parameter θ
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Learning parameters from data: frequentist approach

• POV: parameter θ has a fixed but unknown value

Consider tossing a (fair?) coin

Goal: estimate p(heads)

Frequentist POV:
probability = relative frequency

“in the long run”

X

p 50
After 50 trials:

HHHTTH . . . . . . TH

p̂ = 15
50

What is underlying theoretical
model f(x | p)? ⇒

Assume a sample of size 1,
X ∼ B(50, p) (Binomial, 50 trials)

The likelihood function is

l(p | x) =
(
50

x

)
px(1− p)50−x
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Learning parameters from data: Bayesian approach

• POV: parameters are modelled as random variables → information about
them can be included prior to observing data

• Additional tools: using Bayes’ rule, the prior information is combined with
the likelihood, yielding a posterior distribution

• The posterior then becomes the new prior

• As such, inferences about the parameter allow for its updating; to this end we
can use existing algorithms for exact or approximate probabilistic inference!

Bayesian networks for Bayesian learning

X

θq
• Random variables (and parameters) inside circles

• Grey if observable; white if hidden

• Fixed quantities without circle
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Learning from data: Bayesian approach

Distributions in a Bayesian model - I

For learning:

• The prior distribution of θ, π(θ)

• The joint distribution of (X, θ), ψ(x, θ) = f(x|θ)π(θ)

• The posterior distribution of θ given x, π(θ|x) = f(x|θ)π(θ)∫
θ
f(x|θ)π(θ) dθ

The denominator of the posterior is often a problem to compute, since we have to
integrate out θ. Exception: if prior and posterior are from the same family, then
exact computation is easy. Otherwise: approximate.
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Learning from data: Example of Bayesian approach

• Assume a sample X1, X2, . . . , Xn ∼ B(1, p) and p ∼ U(0, 1) (uniform)
(= Be(1, 1) (beta))

p

· · ·

0

1

X1 Xn

1 1

• Then the likelihood and the prior are,

f(x1, . . . , xn|p) = p
∑

xi(1− p)n−
∑

xi , with xi = 0, 1; p ∈ (0, 1),

π(p) =
1

1− 0
= 1, if p ∈ (0, 1)

• The posterior distribution is

π(p|x1, . . . , xn) =
f(x1, . . . , xn|p)π(p)∫ 1

0
f(x1, . . . , xn|p)π(p) dp

=
p
∑

xi(1− p)n−
∑

xi∫ 1

0
p
∑

xi(1− p)n−
∑

xi dp
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Learning from data: Example of Bayesian approach

Pattern matching: the Beta distribution Be(α, β)

f(p) =
Γ(α+ β)

Γ(α)Γ(β)
pα−1(1− p)β−1;

∫ 1

0

f(p) dp = 1

∫ 1

0

p
∑

xi(1− p)n−
∑

xi dp =

=

∫ 1

0

Γ(
∑

xi+1)Γ(n−
∑

xi+1)
Γ(n+2)

Γ(n+2)
Γ(

∑
xi+1)Γ(n−

∑
xi+1) p

∑
xi(1− p)n−

∑
xi dp

= Γ(
∑

xi+1)Γ(n−
∑

xi+1)
Γ(n+2)

∫ 1

0

Γ(n+2)
Γ(

∑
xi+1)Γ(n−

∑
xi+1) p

∑
xi(1− p)n−

∑
xi dp

= Γ(
∑

xi+1)Γ(n−
∑

xi+1)
Γ(n+2) · 1
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Learning from data: Example of Bayesian approach

Assume a sample X1, X2, . . . , Xn ∼ B(1, p) and p ∼ U(0, 1) = Be(1, 1)

• Then the likelihood and the prior are,

f(x1, . . . , xn|p) = p
∑

xi(1− p)n−
∑

xi , with xi = 0, 1; p ∈ (0, 1),

π(p) = 1, if p ∈ (0, 1)

• The posterior distribution is

π(p|x1, . . . , xn) =
f(x1, . . . , xn|p)π(p)∫ 1

0
f(x1, . . . , xn|p)π(p) dp

=
p
∑

xi(1− p)n−
∑

xi∫ 1

0
p
∑

xi(1− p)n−
∑

xi dp

=
Γ(n+ 2)

Γ(
∑
xi + 1)Γ(n−

∑
xi + 1)

p
∑

xi(1− p)n−
∑

xi

which corresponds to Be
(∑

xi + 1, n−
∑

xi + 1
)

Very easy to compute for some models
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Conjugate priors and likelihoods

Prior and likelihood are called conjugate, if prior and posterior are from same
family.

Likelihood Prior Posterior

B(1, θ) Be(α, β) Be (α+
∑n

i=1 xi, β + n−
∑n

i=1 xi)

NB(r, θ) Be(α, β) Be (α+ rn, β − nr +
∑n

i=1 xi)

G(θ) Be(α, β) Be (α+ n, β +
∑n

i=1 xi)

MN (n, θ1, . . . , θk) Dir(α1, . . . , αk) Dir(α1 + x1, . . . , αk + xk)

P (θ) Γ(α, β) Γ(α+
∑n

i=1 xi, β + n)

Exp(θ) Γ(α, β) Γ(α+ n, β +
∑n

i=1 xi)

N (µ, τ) N (µ0, τ0) N ( τ0µ0+nτx̄
τ0+nτ , τ0 + nτ)

N (µ, τ) Γ(α0, β0) Γ(α0 +
n
2 , β0 +

1
2

∑n
i=1(xi − µ)2)

20/24



Plate notation

The idea is to avoid repeated substructures

Example: independent data points

• Assume the elements in a sample X1, . . . , XN are independent if the
parameter θ is known

θ

· · ·X1 XN

θ

Xi

i = 1 : N

Unfolded notation Plate notation
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Learning from data: Bayesian approach

Distributions in a Bayesian model - II

For validation and use:

• The prior predictive distribution of X, m(x) =

∫
θ

f(x|θ)π(θ) dθ

• The (posterior) predictive distribution given x = {x1, . . . , xn}:

f(xn+1|x) =
∫
θ

f(xn+1|θ,x)π(θ|x)dθ =
∫
θ

f(xn+1|θ)π(θ|x)dθ
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Example Bayesian approach, continued

• The prior predictive distribution is

m(x) =

∫ 1

0

px(1− p)1−xdp =
Γ(x+ 1)Γ(2− x)

Γ(3)
=

x!(1− x)!

2
=

1

2
with x = 0, 1

• The (posterior) predictive distribution is

f(x|x1, . . . ,xn) =

=

∫ 1

0

px(1− p)1−x Γ(n+ 2)

Γ(
∑

xi + 1)Γ(n−
∑

xi + 1)
p
∑

xi(1− p)n−
∑

xidp

=
Γ(n+ 2)

Γ(
∑

xi + 1)Γ(n−
∑

xi + 1)

∫ 1

0

px+
∑

xi(1− p)n+1−(x+
∑

xi)dp

=
Γ(n+ 2)

Γ(
∑

xi + 1)Γ(n−
∑

xi + 1)

Γ(x+ 1 +
∑

xi)Γ(n+ 2− (x+
∑

xi))

Γ(n+ 3)
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Learning from data: Bayesian approach

• The method above is known as fully Bayesian approach

• Sometimes, we don’t need to compute the denominator of the posterior
distribution, in which case θ can be estimated as

θ̂ = argmax
θ
f(x1, . . . , xn, θ)

= argmax
θ
f(x1, . . . , xn|θ)π(θ)

= argmax
θ

{log f(x1, . . . , xn|θ) + log π(θ)}

known as the MAP (Maximum A Posteriori) estimator

• Note that we could also choose

θ̂ = argmax
θ

log f(x1, . . . , xn|θ)

which is actually the (frequentist) MLE (Maximum Likelihood Estimator)
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