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Probabilistic graphical models

What we need from probabilistic models:
e Ability to operate in high dimensional spaces

e Support efficient inference and learning

Probabilistic graphical models offer:

e Structured specification of high dimensional distributions in terms of low
dimensional factors

e Efficient inference and learning taking advantage of the structure

e Graphical representation interpretable by humans



Probabilistic inference & Statistical inference

The phrase 'probabilistic inference’ is often used in the PGM literature and
considered synonymous to or a special case of statistical inference.
| like the following distinction:

e Probabilistic inference: calculate (deduce) probabilities (or probability
distributions) from a modelled distribution with known parameters, using
probability theory,

e Statistical inference: estimate (infer) parameters (or other unknowns) from
data for a hypothesized theoretical distribution, using statistical tools.

e Frequentist statistics: works with point estimates; requires a lot of data;

o Bayesian statistics: treats parameters as random variables with a distribution;
already works with limited to no data.

Important observation: we can use probabilistic inference for (Bayesian) parameter
estimation.




Bayesian network: definition

A Bayesian network over random variables X = {X;,..., X,,} consists of
e ADAG G =(V,A) withY =X
e A set of local conditional distributions P = { Pr(X; | 0(X})) | X; € X}
where o(X;) denotes the parents of X; according to A
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Bayesian networks: compact represention of the joint

d-separation is used to capture independences among the variables;
as a result, every Bayesian network encodes a joint distribution factorized as

Pr(Xy,...,X,) = HPr(Xi | 0(X5))

T1 T2 T3 S1

Pr(f,t,s,t1,a,t3,51) = Pr(ta[t) Pr(t2[t) Pr(ts[t) Pr(s:1|s) Pr(¢[f) Pr(s| f) Pr(f)
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Monty Hall problem

You are given the choice between 3 doors. One has a real prize behind it, the
other two joke prizes.

You choose a door; the host then opens a door and offers you the choice to switch
to a closed door.
Would you switch?



Probabilistic Inference
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From the joint distribution ‘Pr(Xl, e X)) ‘ we can infer (calculate) a.o.
e the prior distribution | Pr(X;) | of any X;,

e the posterior distribution | Pr(X; | ) | of any X; given evidence for zp,
Note: interpretation of terms is slightly different when we consider learning!




Inference in Bayesian networks

Assume a Bayesian network over variables X = {X1,..., X}

Bayesian network,
variable(s) of interest (X)
_|_

Evidence (zg)

Inference methods

e Exact

o Brute force: compute P(X,xg) and marginalize out X \ X
o Take advantage of the network structure

e Approximate
e Sampling
e Deterministic




Exact inference

Considerations about exact inference:

e Product of functions raises complexity
e Exponentially in the case of discrete variables

e Complexity also depends on the elimination order

e Representation of densities turns out to be relevant
o Closed-form solutions to product and marginalization are preferable



Approximate inference

e sampling: Monte Carlo techniques, e.g. importance sampling, MCMC

e accurate with enough samples
e sampling can be computationally demanding

e deterministic, e.g. variational approaches

e uses analytical approximations to the posterior
e some techniques scale well



Bayesian network model parameters
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The probabilistic modelling cycle

DATA

l

Build model Infer hidden quantities

Mixtures and mixed-membership models, Markov chain Monte Carlo,
time-series models, generalized linear models, variational inference,
factor models, Bayesian nonparametrics Laplace approximation

|

Apply model

Predictive systems,
data exploration,
data summarization

Criticize model

Performance on a task,
prediction on unseen data,
posterior predictive checks

REVISE MODEL

Image from: David M. Blei (2014) “Build, compute, critique, repeat: Data analysis with latent variable models.” Annual Review of Statistics and its

Applications 1, 303—-323.
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Learning probabilistic models from data

Model (simple):
e a theoretical probability density/mass function f

e associated with random variable X
e having parameter 6

Learning problem:
e We assume f is known except for parameter 6
e This is denoted as f(xz;0) or f(x | 0)
e Goal: estimate 6

Tools:

e for a sample X5,..., X,, drawn from f(z | 0), the likelihood function is:

(O] 2y, 20) S flar,. e | 0) = [ £lxi | 0)

i=1

i.e. the joint density/mass regarded as a function of parameter ¢



Learning parameters from data: frequentist approach
e POV: parameter 6 has a fixed but unknown value

. . . . Assume a sample of size 1,

Consider tossing a (fair?) coin X ~ B(50, p) (Binomial, 50 trials)

Goal: estimate p(heads)

The likelihood function is
Frequentist POV: 50

probability = relative frequency Ilp|z)= ( )p””(l — p)50*z
“in the long run” z
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Learning parameters from data: Bayesian approach

e POV: parameters are modelled as random variables — information about
them can be included prior to observing data

e Additional tools: using Bayes’ rule, the prior information is combined with
the likelihood, yielding a posterior distribution

e The posterior then becomes the new prior

e As such, inferences about the parameter allow for its updating; to this end we
can use existing algorithms for exact or approximate probabilistic inference!

Bayesian networks for Bayesian learning

(7 _ -
e Random variables (and parameters) inside circles
e Grey if observable; white if hidden
e e Fixed quantities without circle




Learning from data: Bayesian approach

Distributions in a Bayesian model - |

For learning:

e The prior distribution of 6,

Y(z,0) = f(z]0)7(0) |

e The joint distribution of (X, 8),

e The posterior distribution of § given z, | w(6|x) = m
o f(x|0)T

The denominator of the posterior is often a problem to compute, since we have to
integrate out . Exception: if prior and posterior are from the same family, then
exact computation is easy. Otherwise: approximate.



Learning from data: Example of Bayesian approach

e Assume a sample X1, Xs,..., X,, ~ B(1,p) and p ~ U(0,1) (uniform)
(= Be(1,1) (beta))

e Then the likelihood and the prior are,
fl@r, s anlp) = p= " (1= p)" =", with z; = 0,1; pe (0,1),

m(p) = —— =1 ifpe(0,1)

e The posterior distribution is

_ f(z1,...,z,|p)7 (D) _ proi(1 — p)n— L
Sy f@1,aalp)m(p) dp [y pEE(l—p)n=Se dp

71—(p|xla ce 7xn)



Learning from data: Example of Bayesian approach

Pattern matching: the Beta distribution Be(«, )

f(p)=%pa‘l(l—p)ﬂ‘l: /Of(p) dp =

/ sz _ n—>y z; dp _
1r(z DT (=3 z;+1) I'(n+2)
:/0 Tty st DIy it D) p="i(1—p)" "= dp
_ T +1)I" i+1 I'(n+2) s
= Ha F(ngg)zm ) / F(Zzﬁl)(; —Sz,+1) pZ (1-pr 2w dp

_ Izt (n—=3 @i +1) |
- I'(n+2)
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Learning from data: Example of Bayesian approach

Assume a sample X3, Xo,..., X,, ~ B(1,p) and p ~U(0,1) = Be(1,1)
e Then the likelihood and the prior are,

f(z1,...,2a|p) :pzxi(l —p)”_zx’i, with 2; = 0,1; p € (0,1),
m(p) =1, if pe (0,1)

e The posterior distribution is

( _ f(za,. o zglp)T(p) pX (1 — p)n—
Pl ) = — __ i opEe
Jy f@i,.. . aalp)m(p) dp [y pETi(1—p)nX e dp
I'(n+2)

B > x;+1)T(n—> = + 1)1’2 Ti(l— p)”*Zmi

which corresponds to | Be (Z r;,+1,n— Z T; + 1)

Very easy to compute for some models




Conjugate priors and likelihoods

Prior and likelihood are called conjugate, if prior and posterior are from same

family.
Likelihood Prior Posterior
B(1,0) Be(a, B) Be(a+> " ja;,f+n—Y 1 x)
NB(r,0) Be(a, B) Be(a+rn,—nr+ Y | z;)
Gg(o) Be(a, B) Be(a+n,B+ Y i x;)
MN(n,01,...,0;) | Dir(ag,...,ax) | Dir(ay +x1,..., 05 + xp)
P(0) I'(a, B) Pla+ 370 @i, 8+n)
Exp(6) o, B) Dla+n, B8+ >0 x)
N(p, 1) N (1o, 70) N(%W7To+n7')
N(p,7) I'(ao, Bo) T(ag + 5, 60 + 3 21y (zi — 1)?)



Plate notation

The idea is to avoid repeated substructures

Example: independent data points

e Assume the elements in a sample X, ..., Xy are independent if the

parameter 6 is known

Unfolded notation Plate notation




Learning from data: Bayesian approach

Distributions in a Bayesian model - |l

For validation and use:

e The prior predictive distribution of X, | m(z) = /f(:v|9)7r(0) dé
0

e The (posterior) predictive distribution given & = {z1, ..., 2, }:

f(@niale) = /0 f(@nsa |0, ) (Bl d6 = /0 f @n s |0)7(6])d6
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Example Bayesian approach, continued

e The prior predictive distribution is

m(x) :/O p*(1—p) Fdp= F(x+1£)(1;)(2 —2) _ x!(lgm)! = with z = 0,1

e The (posterior) predictive distribution is

f@|z, ..., xn) =
=/0 p””(lfp)l’””r(zm+1;)(?(Zi)zxi+l)pzzi(l*p)”’z““dp
_ [(n+2) ' etsa - (a4 g
_F(in+1)1“(nfz:vi+1)/0 pPrETi(1 = p)nti- S g
_ I'(n+2) Tz+1+>Y 2z)T(n+2— (x4 x:))
T T+ DI + 1) I'(n+3)



Learning from data: Bayesian approach

e The method above is known as fully Bayesian approach

e Sometimes, we don't need to compute the denominator of the posterior
distribution, in which case 6 can be estimated as

6 = argmoaxf(xl,...,xn,ﬁ)
= argmax flz, ..., 2,|0)7(0)

= arg mgax{log flz1,...,2,|0) +logm(0)}
known as the MAP (Maximum A Posteriori) estimator
e Note that we could also choose
6= argmgxxlog fz1, ..., zn]0)

which is actually the (frequentist) MLE (Maximum Likelihood Estimator)



