
Syllabus, Chapter 3:

Independences and Graphical
Representations
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A qualitative notion of independence

Observation:

People are capable of making statements about
independences among variables without having to perform
numerical calculations.

Conclusion:

In human reasoning behaviour, the qualitative notion of
independence is more fundamental than the quantitative notion
of independence.
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The independence relation of joint distribution Pr

Definition: Let V be a set of random variables and let Pr be a
joint probability distribution on V .

The independence relation I Pr of Pr is a set
I Pr ⊆ P(V )× P(V )× P(V ), defined for all X,Y ,Z ⊆ V by

(X,Z,Y ) ∈ I Pr if and only if Pr(X | Y ∧Z) = Pr(X | Z)

Remarks:

• (X,Z,Y ) ∈ I Pr will be written as I Pr(X,Z,Y );
(X,Z,Y ) /∈ I Pr will be written as ¬I Pr(X,Z,Y );
• a statement I Pr(X,Z,Y ) is called an independence

statement for the joint distribution Pr.
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Properties of I Pr: symmetry

Lemma: I Pr(X,Z,Y ) if and only if I Pr(Y ,Z,X)

Proof: [NB This is an exercise from the Syllabus. In proofs you
should also explain your steps, like done in the lectures.]

I Pr(X,Z,Y ) ⇐⇒ Pr(X | Y ∧Z) = Pr(X | Z)

⇐⇒ Pr(X ∧ Y ∧Z)

Pr(Y ∧Z)
=

Pr(X ∧Z)

Pr(Z)

⇐⇒ Pr(X ∧ Y ∧Z)

Pr(X ∧Z)
=

Pr(Y ∧Z)

Pr(Z)

⇐⇒ Pr(Y |X ∧Z) = Pr(Y | Z)

⇐⇒ I Pr(Y ,Z,X)

�
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Properties of I Pr: decomposition

Lemma: I Pr(X,Z,Y ∪W )⇒ I Pr(X,Z,Y ) ∧ I Pr(X,Z,W )

Proof: (sketch) (Note: for U = Y ∪W , cU = cY ∧ cW !)
Suppose that

Pr(X | Y ∧W ∧Z) = Pr(X | Z). Then, by definition,

Pr(X ∧ Y ∧W ∧Z) = Pr(Y ∧W ∧Z) · Pr(X ∧Z)

Pr(Z)

For Pr(X | Y ∧Z) we find that

Pr(X | Y ∧Z) =
Pr(X ∧ Y ∧Z)

Pr(Y ∧Z)

=

∑
cW

Pr(X ∧ Y ∧Z ∧ cW )

Pr(Y ∧Z)

=
Pr(X ∧Z)

Pr(Z)
= Pr(X | Z) �
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Properties of I Pr: weak union, contraction

Lemma:
• if I Pr(X,Z,Y ∪W ) then I Pr(X,Z ∪W ,Y ) (weak union);

• if I Pr(X,Z,W ) and I Pr(X,Z ∪W ,Y ) then
I Pr(X,Z,Y ∪W ) (contraction)

• (for strictly positive Pr also the intersection property holds;
see syllabus)

Proof: left as exercise 3.1.
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Defining a qualitative independence relation

Independence
relation

I

Independence
relation

IPr

Joint

Pr
Distribution

Axioms:
symmetry,
decomposition,
weak union,
contraction

Properties:
symmetry,
decomposition,
weak union,
contraction
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The (qualitative) independence relation I

Definition:
Let V be a set of random variables and let X,Y ,Z,W ⊆ V .

An independence relation I on V is a ternary relation
I ⊆ P(V )× P(V )× P(V ) that satisfies the following axioms:

1 symmetry:
if I(X,Z,Y ) then I(Y ,Z,X);

2 decomposition:
if I(X,Z,Y ∪W ) then I(X,Z,Y ) and I(X,Z,W );

3 weak union:
if I(X,Z,Y ∪W ) then I(X,Z ∪W ,Y );

4 contraction :
if I(X,Z,W ) and I(X,Z ∪W ,Y ) then I(X,Z,Y ∪W ).
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An example

Lemma:
Let I be an independence relation on a set of random variables V .

We have that for all X,Y ,Z,W ⊆ V :

if I(X,Z,Y ) and I(X ∪Z,Y ,W ) then I(X,Z,W )

Proof: (Note: we have no Pr, just the axioms!)

We observe that

I(X ∪Z,Y ,W )⇒symm I(W ,Y ,X ∪Z)⇒weakunion

⇒ I(W ,Y ∪Z,X)⇒symm I(X,Y ∪Z,W )

From I(X,Z,Y ), I(X,Y ∪Z,W ) and the contraction axiom
we have that I(X,Z,W ∪ Y ); decomposition now gives
I(X,Z,W ). �
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Representing independences

Different ways exist of representing an independence relation:

• explicitly list all independence statements of the relation;
• explicitly list only the independence statements of a suitable

subset of the relation (the ‘basis’) — all other statements are
implicitly represented by means of the axioms;
• code the independence relation in a graph;
• . . .
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An example

ConsiderV={V1, V2, V3, V4} and independence relationI onV :
I({V1}, ∅, {V4}) I({V2}, ∅, {V1}) I({V4}, {V1}, {V2})
I({V2}, ∅, {V4}) I({V1, V4}, ∅, {V2}) I({V4}, {V1}, {V3})
I({V3}, ∅, {V4}) I({V2, V4}, ∅, {V1}) I({V4}, {V1}, {V2, V3})
I({V4}, ∅, {V1}) I({V2}, ∅, {V1, V4}) I({V1}, {V2}, {V4})
I({V4}, ∅, {V2}) I({V1}, ∅, {V2, V4}) I({V3}, {V2}, {V4})
I({V4}, ∅, {V3}) I({V2}, {V1}, {V4}) I({V1, V3}, {V2}, {V4})
I({V1, V2}, ∅, {V4}) I({V3}, {V1}, {V4}) I({V4}, {V2}, {V1})
I({V1, V3}, ∅, {V4}) I({V2, V3}, {V1}, {V4}) I({V4}, {V2}, {V3})
I({V2, V3}, ∅, {V4}) I({V4}, {V1, V2}, {V3}) I({V4}, {V2}, {V1, V3})
I({V4}, ∅, {V1, V2}) I({V2}, {V1, V3}, {V4}) I({V1}, {V3}, {V4})
I({V4}, ∅, {V1, V3}) I({V4}, {V1, V3}, {V2}) I({V2}, {V3}, {V4})
I({V4}, ∅, {V2, V3}) I({V1}, {V2, V3}, {V4}) I({V1, V2}, {V3}, {V4})
I({V1, V2, V3}, ∅, {V4}) I({V4}, {V2, V3}, {V1}) I({V1}, {V4}, {V2})
I({V4}, ∅, {V1, V2, V3}) I({V4}, {V3}, {V1, V2}) I({V2}, {V4}, {V1})
I({V1}, ∅, {V2}) I({V4}, {V3}, {V1}) I({V3}, {V1, V2}, {V4})
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Coding an independence relation with a graph

The global idea of coding an independence relation I on V in
graph G:

• each variable Vi ∈ V corresponds to a node Vi ∈ VG;
• (combinations of) edges/arcs define a graphical notion of

(d-)separation;
• there exists a mapping between (d-)separation and relation I

In the lectures, we from here on focus on IPr ⊂ I.
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Graphs as a language for coding I

The directed graph provides a more expressive language than
the undirected graph:

V2 V3

V1

vs.

V2 V3

V1

V2 V3

V1

V2 V3

V1
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Example reasoning patterns

length age reading

weather harvest grain price

burglar burglary
alarm earthquake

• do arcs capture causality? not necessarily
• do reasoning patterns really differ? last differs from first two
• what if we drop the direction of the arcs? last one incomplete
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“Intercausal” interaction

Consider an experiment with two coins and a bell: the bell
sounds iff the two coins have the same outcome after a toss.

Consider: variable C1: the outcome of tossing coin one;
variable C2: the outcome of tossing coin two;
variable B: whether or not the bell sounds;

independence relation I for this experiment.

We have, among others, that

IPr({C1}, ∅, {C2}) ¬IPr({C1}, {B}, {C2})
IPr({C1}, ∅, {B}) ¬IPr({C1}, {C2}, {B})
IPr({C2}, ∅, {B}) ¬IPr({C2}, {C1}, {B})

This independence relation is an example of an independence
relation with what is called an induced ‘dependency’.
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Directed versus undirected graph language

Arc directions encode the possibility of induced dependencies:

• a head-to-head node captures the possible occurrence of an
“intercausal” interaction between its parents:

Note:
An acyclic(!) directed graph without head-to-head nodes
encodes the same independences as its underlying undirected
graph:
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Undirected graphs:
separation and (in)dependence

The lectures and the examination focus on directed graphical
models. However, the concept of separation in undirected
graphs is easier than the concept of d-separation in directed
graphs, so you may want to study undirected graphs first. Both
course syllabus and these slides (with accompanying video)
provide the necessary information and exercises for that.

Skip to directed graphs
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The separation criterion: introduction

Definition:
Let G = (VG,EG) be an undirected graph with edges EG and
nodes VG = {V1, . . . , Vn}, n > 1.

Let s be a path in G from a node Vi to a node Vj.

The path s is blocked by a set of nodes Z ⊆ VG, if at least one
node from Z is on the path s.

If s is not blocked by Z, the path is called active given Z.
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The separation criterion

Definition:
Let G = (VG,EG) be an undirected graph. Let X,Y ,Z ⊆ VG

be sets of nodes in G.

The set Z separates the set X from Y in G— Notation:
〈X |Z |Y 〉G— if every simple path in G from a node in X to a
node in Y is blocked by Z.

Remarks:

• the above notion is known as the separation criterion for
undirected graphs;
• if there is no path between the nodes X and Y in a graph G,

then 〈X |∅ |Y 〉G.
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An example

V4

V2 V5

V6

V7V1

V3

Which of the following separation statements are valid?

a) 〈{V1} | {V2} | {V3, V6}〉G
b) 〈{V4} | {V2, V5} | {V6}〉G
c) 〈{V4} | {V1, V2, V5} | {V6}〉G
d) 〈{V1} | {V4} | {V5}〉G

e) 〈{V1, V5, V6} | ∅ | {V7}〉G
f) 〈{V2} | {V5} | {V7}〉G
g) 〈{V1} | {V5} | {V2}〉G

Answer:allexceptd)andg)
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Independence relations and undirected graphs

Definition: Let I be an independence relation on a set of random
variables V . Let G = (VG,EG) be an undirected graph with VG = V .

• graph G is called a dependency map ( D-map ) for IPr if for all
X,Y ,Z ⊆ V we have:

if IPr(X,Z,Y ) then 〈X | Z | Y 〉G;

• graph G is called an independency map ( I-map ) for IPr if for
all X,Y ,Z ⊆ V we have:

if 〈X | Z | Y 〉G then IPr(X,Z,Y );

• graph G is called a perfect map ( P-map ) for IPr if G is both a
dependency map and an independency map for IPr.

65



undirected D-maps: what can they tell?

Let IPr be an independence relation and G an undirected graph.

Consider a D-map for IPr, then

V1 and V2 neighbours2 =⇒ V1, V2 dependent

V1 and V2 non-neighbours =⇒ ?? V1 and V2 can be:
dependent,

independent, or

conditionally independent

2i.e. directly connected by an edge
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An example

Consider the independence relation IPr on V = {V1, . . . , V4},
defined by

IPr({V1}, {V2, V3}, {V4}) and IPr({V2}, {V1, V4}, {V3})

Which of the following undirected graphs are examples of
D-maps for IPr ?

V1

V2 V3

V4

V1

V2 V3

V4

V1

V2 V3

V4

V1

V2 V3

V4

See Exercise 3.5 (Syllabus) Answer:all
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Undirected I-maps: what can they tell?

Let IPr be an independence relation and G an undirected graph.

Consider an I-map for IPr, then

V1 and V2 non-neighbours =⇒ V1, V2 (condit.) independent

V1 and V2 neighbours =⇒ ?? V1 and V2 can be
dependent,

independent, or

conditionally independent
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An example

Consider the independence relation IPr on V = {V1, . . . , V4},
defined by

IPr({V1}, {V2, V3}, {V4}) and IPr({V2}, {V1, V4}, {V3})

Which of the following undirected graphs are examples of
I-maps for IPr ?

V1

V2 V3

V4

V1

V2 V3

V4

V1

V2 V3

V4

V1

V2 V3

V4

(See Exercise 3.5) Answer:all
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Properties of I

Let I be an independence relation on a set of random variables
V .

Lemma:
Every independence relation I has an undirected D-map.

Proof:
The undirected graph G = (V , ∅) is a D-map for I. �

Lemma:
Every independence relation I has an undirected I-map.

Proof:
The undirected graph G′ = (V ,V × V ) is an I-map for I. �
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An example

Consider the independence relation IPr on V = {V1, . . . , V4},
defined by

IPr({V1}, {V2, V3}, {V4}) and IPr({V2}, {V1, V4}, {V3})

The following undirected graph is a perfect map for IPr:

V1

V2 V3

V4

Is this P-map unique ? Does every IPr have a P-map ?

Answer:yes Answer:no,seenextslide
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An example

Reconsider the experiment with the two coins and the bell.

• the following graph is the only D-map for the independence
relation IPr of this experiment:

C1 C2

B

• the following graph is the only I-map for IPr:

C1 C2

B

• IPr does not have a perfect map !
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Directed acyclic graphs:
d-separation and (in)dependence
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The d-separation criterion: introduction

Definition: Let G = (VG,AG) be an acyclic directed graph
(DAG), and let s be a chain in G between Vi and Vj ∈ VG.

Chain s is blocked (or: in-active) by a set Z ⊆ VG if s contains
a node W for which one of the following holds:

• W ∈ Z and W has at most one incoming arc on chain s:

WVi/Vj =

W

W = Vi/Vj

W

• σ∗(W ) ∩Z = ∅ and W has two incoming arcs on chain s:

W
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An example

Consider the following DAG and some of its chains:

V1

V2V3

V4

V6

V5

V7

1) V4, V2, V5 from V4 to V5

2) V1, V2, V5, V6, V7 from V1 to V7

3) V3, V4, V6, V5 from V3 to V5

4) V2, V4 from V2 to V4

Which chains are blocked by which
of the following sets?

∅, {V2}, {V5}, {V2, V5},
{V4}, {V6}, {V4, V6}, {V7}

Answers:∅:3;{V2}:all;{V5}:1,2,3;{V2,V5}:all;{V4}:1,3,4;{V6}:2;{V4,V6}:all;{V7}:2
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The d-separation criterion

Definition:
Let G = (VG,AG) be an acyclic directed graph. Let X,Y ,Z ⊆ VG

be sets of nodes in G.

The set Z d-separates X from Y in G—notation: 〈X | Z | Y 〉dG
—if every simple chain in G from a node in X to a node in Y is
blocked by Z.

Remarks:

• The above notion is known as the d-separation criterion;
• 〈X |∅ |Y 〉dG indicates that all chains between X and Y , if

any, contain a head-to-head node;
• if X and Y are not d-separated by Z, we say that they are

d-connected given Z; the chain(s) between X and Y that
are not blocked are said to be active given Z.
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An example

Consider the following DAG and d-separation statements:

V1

V2

V4

V3

V5

a) 〈{V1} | {V2, V3} | {V5}〉dG
b) 〈{V1} | {V4} | {V5}〉dG
c) 〈{V2} | {V1} | {V3}〉dG
d) 〈{V2} | {V1, V5} | {V3}〉dG
e) 〈{V2} | ∅ | {V3}〉dG
f) 〈{V1} | {V3, V4} | {V2}〉dG

Which d-separation statements are valid in the graph ?

Answer:a,b,c
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Bayes-Ball for determining d-separation

〈X | Z | Y 〉dG ? Drop bouncing balls at X, which bounce from
node to node along chains, using the 10 rules of Bayes-ball:

• balls quit a chain at a stop
• any node reached (visited) by a ball is on an active chain
• Y consists of all non-visited nodes
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Independence relations and directed graphs

Definition:
Let IPr be an independence relation on a set of random variables V .
Let G = (VG,AG) be an acyclic directed graph with VG = V .

• graph G is called a dependency map ( D-map ) for IPr if for
every X,Y ,Z ⊆ V we have that:

if IPr(X,Z,Y ) then 〈X |Z |Y 〉dG;

• graph G is called an independency map ( I-map ) for IPr if for
every X,Y ,Z ⊆ V we have that:

if 〈X |Z |Y 〉dG then IPr(X,Z,Y );

• graph G is called a perfect map ( P-map ) for IPr if G is both a
D-map and an I-map for IPr.
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Directed D-maps: what can they tell?

Let IPr be an independence relation and G a DAG.

Consider a D-map for IPr, then

V1 and V2 neighbours3 =⇒ V1, V2 dependent

V1 and V2 non-neighbours =⇒ ?? V1 and V2 can be:
dependent,

independent,

conditionally dependent, or

conditionally independent

3i.e. directly connected by an arc
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An example

Consider the independence relation IPr on V = {V1, . . . , V4}
defined by

IPr({V1}, ∅, {V2}) and IPr({V1, V2}, {V3}, {V4})

Which of the following DAGs are D-maps for IPr ?

V1

V3

V2

V4

V1

V3

V2

V4

V1

V3

V2

V4

V1

V3

V2

V4

See Exercise 3.8 (Syllabus) Answer:all
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Directed I-maps: what can they tell ?

Let IPr be an independence relation and G a DAG.

Consider an I-map for IPr, then

V1 and V2 non-neighbours =⇒ V1, V2 (cond.) independent,
or possibly(!) induced:
conditionally dependent

V1 and V2 neighbours =⇒ ?? V1 and V2 can be:
dependent,

independent,

conditionally dependent, or

conditionally independent
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An example

Consider the independence relation IPr on V = {V1, . . . , V4}
defined by

IPr({V1}, ∅, {V2}) and IPr({V1, V2}, {V3}, {V4})

Which of the following DAGs are I-maps for IPr ?

V1

V3

V2

V4

V1

V3

V2

V4

V1

V3

V2

V4

V1

V3

V2

V4

(See Exercise 3.8) Answer:all
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An example

Consider the independence relation IPr on V = {V1, . . . , V4}
defined by

IPr({V1}, ∅, {V2}) and IPr({V1, V2}, {V3}, {V4})

The following DAG is a perfect map for IPr:

V1

V3

V2

V4

Is this P-map for IPr unique ? yes
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An example

Consider the independence relation IPr on V = {V1, . . . , V4}
defined by

IPr({V1}, {V2, V3}, {V4}) and IPr({V2}, {V1, V4}, {V3})

The relation IPr has an undirected P-map, but does not have a
directed P-map. Consider for example the following DAG G:

V1

V2 V3

V4

In graph G we have that 〈{V1} | {V2, V3} | {V4}〉dG, but also that
〈{V2} | {V1} | {V3}〉dG !
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Independence relations and their graphical representation

directed acyclic
graphs

undirected
graphs

GRAPH- ISOMORPH

independence relations

(Graph-isomorph: independence relation with perfect map.)
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An I-map or a D-map ?

Reconsider the independence relation IPr on V = {V1, . . . , V4}
defined by

IPr({V1}, {V2, V3}, {V4}) and IPr({V2}, {V1, V4}, {V3})

Compare the following two representations of independence
relation IPr:

V1

V2 V3

V4

a D-map

and

V1

V2 V3

V4

an I-map
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Recall what we were looking for. . .

• We can factorise any joint distribution using the chain rule:

Pr(V ) = Pr(Vn | Vn−1 ∧ . . . ∧ V1) · . . . · Pr(V2 | V1) · Pr(V1)

• We want to exploit IPr to factorise the joint more efficiently→
store (conditional) distributions involving less variables:

Pr(V )
?
= Pr(Vn | Vm ∧ . . . ∧ Vk) · . . . · Pr(V2) · Pr(V1)

BUT:

• Pr(X | Y ) = Pr(X) is mathematically correct only if X is truly
independent of Y
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A minimal I-map

Definition: Let IPr be an independence relation on a set of
random variables V . Let G = (VG,AG) be a graph with VG = V .

The graph G is called a minimal I-map for IPr if the following
conditions hold:

• G is an I-map for IPr, and
• no proper subgraph of G is an I-map for IPr.
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An example

Consider the independence relation IPr on V = {V1, . . . , V4}
defined by

IPr({V1}, {V2, V3}, {V4}) and IPr({V2}, {V1, V4}, {V3})

The following DAG is a minimal I-map for IPr:

V1

V2 V3

V4

Is this minimal I-map for IPr unique ? no
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Directed or undirected ? (I)

Directed and undirected I-maps are related.

Definition: The moral graph of a DAG G = (VG,AG) is the
undirected graph obtained as follows:

• for each Vk ∈ VG add an edge between each pair of
unconnected parents Vi, Vj ∈ ρG(Vk);
• drop the directions of all arcs.

Definition: A graph is triangulated or chordal if any loop of
length ≥ 4 contains a shortcut.

Proposition: Let I be an independence relation over V .
Consider graphs G = (VG,AG) and G′ = (V ,EG′). Then,

moralisation+drop direction
=⇒G is an I-map for I G′ is an I-map for I⇐=

triangulation+add direction
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Directed or undirected ? (II)

Consider the following properties (partly proven later):

• Let G be a directed acyclic graph. Then G is a directed
I-map of I Pr ⇐⇒ Pr can be written as

Pr(V ) =
∏
Vi

Pr(Vi | ρG(Vi))

• Let G be an undirected graph. Then G is an undirected
I-map of I Pr ⇐⇒ 4 Pr can be written as

Pr(V ) = K ·
∏
Ci

Φ(Ci)

for some normalisation factor K.

←− what’s the meaning of
these clique potentials?!?

4=⇒ requires Pr to be strictly positive
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