Syllabus, Chapter 4:

The Bayesian Network
Framework

93

The network formalism, informal

A Bayesian network combines two types of domain knowledge

to represent a joint probability distribution:

e qualitative knowledge: a (minimal) directed |-map for the
independence relation that exists on the variables of the
domain;

e quantitative knowledge: a set of local conditional probability
distributions.

94

A Bayesian network
Definition:
A Bayesian network is a pair B = (G, I") such that

e G = (Vg Ag)is a DAG with arcs A and nodes Vi =V,
representing a set of random variables V- = {V4,...,V,,},
n>1;

Y, {evit x {epent = [0,1]

such that for each configuration c, v, of the set p(V;) of
parents of V; in G, we have that

)=1 fori=1,.

These functions are called the assessment functions for G;

their values are referred to as network- or model-parameters.

95

An Example

Consider the following piece of ‘medical knowledge’:
“A metastatic carcinoma can cause a brain tumour and is
also a possible explanation for an increased concentration of
calcium in the blood. Both a brain tumour and an increased
calcium concentration can result in a patient falling into a
coma. A brain tumour can cause severe headaches.”

The independences between the variables are represented in
the following DAG G:

96

An example - continued

Reconsider the following DAG G, and assume each V € V to
be binary-valued.

With G we associate a set of

m% assessment functions
@ @ I' = {ycar, VB, Yo, Vi, Yoo} -

For the function ¢, the following function values are specified:

Yoar(care) = 0.2, Your(—carc) = 0.8

For the function ~5 the following function values are specified:

vp(tum | carc) = 0.2, yp(tum | = carc) = 0.05
vp(—tum | carc) = 0.8, ~vp(—tum | = carc) = 0.95

97

An example - continued
Reconsider the following DAG G, and assume each V € V to
be binary-valued.

With G we associate a set of

m% assessment functions
@ @ I' = {ycar, VB, Ycat, Vi, Yoo} -

For the function ~.,; the following function values are specified:

Yea(cal conc | carc) = 0.8 ~yea(cal conc | = carc) = 0.1
Yea(—cal cone | carc) = 0.2 yeou(—cal cone | —carc) = 0.9

For the function v the following function values are specified:

vu(headache | tum) = 0.8 vy (headache | ~tum) = 0.6
v (= headache | tum) = 0.2 ~yy(— headache | —tum) = 0.4

98

An example - continued

Reconsider the following DAG G, and assume each V € V' to
be binary-valued.

With G we associate a set of
assessment functions

F - {’}/Ca'rg P)/Ba 70(117 fYH? ’}/CO}

For the function ~, the following function values are specified:

Yeo(co[tumAcal cond) = 0.9 Yeo(co| = tumAcal conc) = 0.8
Yeo(co|tumA—=cal conc)= 0.7 vyeoo(co| ~tumA= cal conc) = 0.05
Yeoo(meo|tumAcal conc)= 0.1 ’yco(—'co|ﬂtum/\cal conc)= 0.2
Yeo(—co |[tum A= cal conc) = 0.3 voo(—co| —~tum A= cal conc) = 0.95

The pair B = (G,T") is a Bayesian network.

99

A probabilistic interpretation

Proposition:

Let B = (G,T') be a Bayesian network with G = (V, Ag) and
nodes V; = V, representing a set of random variables

vV ={W,...,V,},n>1. Then

Pr(V) = [[(Vi | (V)

defines a joint probability distribution Pr on V' such that GG is a
directed I-map for the independence relation [p, of Pr.

Pr is called the joint distribution defined by B and is said to
respect the independences portrayed in G.

NB we will often omit the subscript in + if no confusion is possible.

100

An example

Consider the Bayesian network 5:

=0.8

y(vg |v1) = 0.9 v(vz |v1) =0.2
Y(ve | —7v1) = 0.3 @ @ y(v3 | 7v1) = 0.6

U4"l)2/\’l)3)—01
(U4 ‘ ﬁvg/\vg) =0.2
(v | v2) = 0.4 Y(vg | v A —w3) = 0.6
v(vs | v2) = 0.5 Y(vg | 72 A —w3) = 0.1

Let Pr be the joint distribution defined by 5. Then, for example
Pr(vy Avg Avs Avg Avs) =
= (vs [v2) v(va [v2Av3)- (V3 [V1) V(02 [V1) Y(v1) =
=04-01-0.2-0.9-0.8=0.00576

Note: Pr is described by only 11 (free) model-parameters
instead of 31 numbers using a straightforward representation.

101

A probabilistic interpretation

Proof: (sketch)

Acyclic digraph G allows a total ordering ¢ : Vg <> {1,...,n}
such that «(V;) < 1c(V;) if there is a directed path from V; to
Vi, i # 7,inG.

Example:

102

A probabilistic interpretation: proof continued

Take ordering (¢ as an ordering on the random variables
Vi,...V, as well.

Let P be an arbitrary joint distribution on V' such that G is a
directed I-map for the independences in P.

Now apply the chain rule using (.

Example:
P(ViA...AV5) =

P(Vs [Vin...AVy) - P(Vi [Vi ANVa A V)
-P(Va [Vi AVo) - P(Vo | V) - P(V1)

103

A probabilistic interpretation: proof continued

Example:

PViA...AVs) = P(V5|VIA...AVy) - P(Vy| Vi AVaAVs)-

P(Vs [ViAVa) - P(Va | V1) - P(Vh)

Each V; is conditioned on just those V; with ¢¢(V;) < ta(V;).
Use the fact that G is an I-map for P.

Example: pv, A AVy) = P(Vi | Va) - P(Vy | Vo AVS)-
-P(Va [Vi) - P(Va | V1) - P(V1)

We have that P(Vi A... A V) = [] P(Vi| p(Vi)
VieVv

104

A probabilistic interpretation: proof continued

With graph G is associated a set I" of assessment functions
(Vi | p(V3)). If we choose Pr(V; [p(Vi)) = (Vi | p(Vi)), then

Pr(Vin...AV) =[] v(Vil p(V2)

VieVvV

defines a unique joint distribution on V' that respects the
independences in G.

Example: The joint distribution Pr defined by

Pr(Vin.. . AV5) = v(Vs | Va) - y(Va | Va A V) -
(Vs | V) -y (Va | V1) - v(VA)

respects the independences in G.

105

Consequences of probabilistic interpretation

Bayesian network B is a compact representation of a
multivariate joint distribution Pr(V'), from which we can
compute:

e any prior or marginal probability Pr(cw) for W C V;;

e any posterior or conditional probability Pr(cw | cg) for

W.ECV;
independences from [p, are respected by B and read from
graph G by means of the d-separation criterion
= blocking sets Z now have an intuitive meaning:

take Z = F if you have observed evidence for E C V.

106

An example

Let B = (G,I") and Pr be as before.

=038

~Y(v2 | v1) = 0.9 Y(vs | v1) =0.2
Joa | o =03 @ @ Yo) =06

’U4|’U2/\’U3)—01
(1)4 | ~va Awg) =0.2
Y(vs | v2) = 0.4 Y(vq | v2 A —w3) = 0.6
Y(vs | —~vg) = 0.5 v(vyq | =02 A —w3) = 0.1

How can we compute Pr(v; A vg Avg Awvs) ?
Pr(vy Avg A vz A vy Aws) = 0.00576
Pr(vy A = vy Avg Avg Avs) = 0.0016
Pr(vy Avs Avg Avs) =

= Pr(v; Avg Avg Avg Avs) + Pr(vg A =g Avg Avg A ws)
= 0.00576 + 0.0016 = 0.00736

Exact inference algorithms

Efficiently compute marginal and conditional probabilities from
the distribution defined by a network.

The best-known algorithms serve to compute univariate
distributions over V; € V, i.e. Pr(V;) or Pr(V; | cg):

o Belief propagation (BP) (J. Pearl (1986). Fusion, propagation and
structuring in belief networks, Artificial Intelligence, 29);

e Join-tree propagation (S.L. Lauritzen, D.J. Spiegelhalter (1988).
Local computations with probabilities on graphical structures and their
application to expert systems, Journal of the Royal Statistical Society
(Series B), 50);

e Variable elimination (N.L. Zhang, D. Poole (1994). A simple approach
to Bayesian network computations, 7th Canadian Conference on Al).

The algorithms are quite different in terms of the underlying

ideas and their complexity.
108

Approximate inference algorithms

Estimate probabilities from the distribution defined by a
network.

e Loopy belief propagation
e Sampling-based approaches

¢ Monte Carlo techniques, e.g. MCMC

e accurate with enough samples

e sampling can be computationally demanding
e Deterministic approaches

e e.g. variational approaches, such as VI
¢ use analytical approximations to the posterior
e can scale well

109

Variable elimination (VE): idea and complexity

Let V = {11, V,, V3, V,}. Consider the computation of

Pr(v) = Y Pr(ey)Pr(ey, | cv,)-Priey, | ev)-Pr(vs | ey,

C€{v1,Vo,V3}

¢ avoid computing large factors: move summations inside
the factorisation;

e efficiency depends on size (w(idth)) of largest computed
factor, which depends on order of elimination:

> Pr(ev) - Y Priey, | ew) - Pr(va | cvy) - > Pr(ey, | ey)
cvy Cvy Cvy,

Complexity for individual Pr(V; | cg): O(|V| - exp(w))

e singly connected graphs: w = k for k£ = maxy, |p.(V;)|

e multiply connected graphs: w > k can be as large as |V|.

110

Join-tree propagation: idea and complexity

Idea of Join-tree propagation:

1) moralise and triangulate G;
2) identify cliques and organise these into a join tree;
3) translate I" into clique potentials;

)

4) update clique potentials by message passing between
cliques in the tree.

Efficiency depends on size of largest clique (— width w).

Complexity for all Pr(V; | cg) simultaneously: O(|V| - exp(w))

111

Pearl’s computational architecture

In Pearls BP algorithm the graph of a Bayesian network is
used as a computational architecture:

each node in the graph is an autonomous object;

each object has a local memory that stores the
assessment functions of the associated node;

each object has available a local processor that can do
(simple) probabilistic computations;

each arc in the graph is a (bi-directional) communication
channel, through which connected objects can send each
other messages.

112

A computational architecture

Message-passing and simple local computations:
now we all know with how many we are!

A computational architecture

If we observe a local change:
start message-passing to update computations.

M@g

Understanding Pearl: single arc (1)

Consider Bayesian network B with the following graph:

@ (V1)

@ v(Va | V1)

Let Pr be the joint distribution defined by 5.
We consider the situation without evidence.

e What does V; need to compute Pr(V;)?
e What does 1; need to compute Pr(13)?

115

Understanding Pearl: single arc (2)
@ y(v1), Y(—w1)

We consider the situation

'V va [v1), ﬁ” o) without evidence.

Y(vg | =w1), y(—vg | —vq)

e node V; can determine the probabilities for its own values:

Pr(vi) = v(v1), Pr(-v1) =~(-v1)

e node V, cannot determine Pr(1%), but does know all four
conditional probabilities: Pr(V5 | V1) = (Vs | V4)

V5 can compute its probabilities given information from V;:

Pr(ve) = Pr(va|v1)-Pr(vi) + Pr(vy | —v1) - Pr(—vy)
Pr(—w2) = Pr(—wv2 | v1) - Pr(v1) + Pr(—wv2 | —v1) - Pr(—wvy)

116

Understanding Pearl: directed path (1)

@ v(V1)
@ (Vo | V1)
@ (Vs | V2)

We consider the situation without evidence.
What does V; need to compute Pr(V7)?
What does V; need to compute Pr(15)?
What does V; need to compute Pr(V3)?

(How) does d-separation play a role?

117

Understanding Pearl: directed path (2)

(V1) A1), A(-0n)

7 vg | v1) ﬁv2 | v1)) . .
Y(va | =v1), Y(—vs | ~wy) Given information from V1,

node V, can compute
@ ’Y Vs | U2 —\’[)3 | ’UQ) Pr(UQ) and Pr(ﬁfUZ)

1}3 | _|1}2 _‘U3 | _‘UQ)

We consider the situation
without evidence.

Node V; now sends node V3 the required information; node V3
computes:
Pr(vs) = Pr(vs | va) - Pr(vy) + Pr(vs | =wg) - Pr(—wv9)
= (vs | v2) - Pr(vz2) +(vs | =w2) - Pr(-w2)
Pr(—w3) = y(—ws | v2) - Pr(ve) + vy(—ws | —w2) - Pr(—ws)

Note that V; indirectly passes on information received from V;
to V3; this is fine: they are not d-separated.

118

Introduction to causal message parameters

(Vi) 2(w1), A(=v1)
Node V; sends a message
L enabling V; to compute the
probabilities for its values.

7 v2 | v1) ﬂvz | v1)
Uz | ﬁvl —'112 | —'111)

This message contains a function 7, : {vy, ~v;} — [0,1] for
which

E 7TV2 CVl

C \%1

m‘g is called the causal (message) parameter from V; to V5.

119

Causal message parameters: an example

@ v(v1) =0.7, v(-v1) = 0.3

Node V;:
LV .
vt)02 s o) — 08 e receives no
Y(vg |v1) = Y (T2 | V1) =
messages
@ y(va | ~w1) = 0.5, y(—wa | ~v1) = 0.5 g

e computes and

7TV 4
° sends to V5! 7y}

v(v3 | v2) = 0.6, v(—wvs | ve) = 0.4
Y(vz | =v2) = 0.1, v(—ws | ~w2) = 0.9

with WX; (v1) = vy(v1) = 0.7; 7'('“2(_'?]1) =0.3
Node V; computes Pr(1]):

PI‘(’UI) = 77“2 (Ul) = 077 Pr(_'Ul) =0.3

120

Causal message parameters: an example (cntd)

@ v(v1) = 0.7, v(—v1) = 0.3

il Node V3!
Y(vy | v1) = 0.2, y(—wg | v1) = 0.8 e receives 7rV from V;
vz [7v1) =05, (7w | 7v1) =05 o computes and
™2 | sends to V: 7?2

v(vs | v2) = 0.6, v(—w3 | v2) = 0.4
Y(vs | —v2) = 0.1, y(—wvs | ~v2) = 0.9

with 71—“2(1}2) = Pr(vg | v1) - Pr(vq) + Pr(vg | —vy) - Pr(—wy)
= (va | v1) - vk (01) + (w2 | ~on) -7yl (—on)
=02-074+05-0.3=0.29
My (-w2) = 0.8-0.740.5-0.3 = 0.71

Node V; computes Pr(1%):
Pr(ve) = 7TV *(v9) =0.29; Pr(—wy) =0.71

121

Causal message parameters: an example (cntd)

@ v(v1) = 0.7, v(—v1) = 0.3
) Node V3:
’y ve | v1) = 0.2, y(-va | v1) = 0.8 e receives 7rV from V,
Y(v2 [1) = 0.5, y(-w2 | ~v1) =0.5 sends no
™ messages

"YUg|’U2) =0.6, y(—wv3 | va) =04
U3|_‘U2 —01 "}/(_\Ug|_'U2) 0.9

Node V5 computes Pr(V3):

Pr(vs) = 7(vs | vg) - 2 (va) + y(v3 | ~wa) - my2 (o)
=0.6-0.294+0.1-0.71 =0.245

Pr(-ws) = 0.4-0.29 + 0.9 - 0.71 = 0.755

122

Understanding Pearl: simple chains

We consider the following networks without observations.

(% (Y _\U v
ot e) e, 2t

~y(v1 | —w2), y(—v1 | S

’y vy | vg Aws), y(vg | v1 A —w3)
@ v(va), ’Y(ﬁvz)

’UQ | U1 A U3 (UQ ‘ U1 A —\1)3)

’VU3|U2 —|v3|vg) @
Y(vs | —w2), v(—wvs | —v2) v(v3), v(—vs3)

For each network: whose information would V;, i = 1,2, 3, need
to compute Pr(V;)? (consider d-separation and independence)

123

Understanding Pearl with evidence (1)
Consider B = (G, T") with evidence V; = true (v,):

(1), A(=v1) Node V; updates its probabili-
’ ties and causal parameter:
s i (v1) =P (v)
@ vy(va | v1) ﬂv2 | v1) = Pr(vl | Ul) =1
U2 | ﬁvl _'UQ | _'Ul) 77“2 (_'Ul) = P (—\1}1) =0

Given the updated mformation from V1, node V;, updates the
probabilities for its own values:

Pr'l (vg) = 7(va | v1) -y} (v1) + (v | —w1) -)l (=)
=7(v2 | v1)

Prt (=) = y(-wa | v1) - 7&‘;2 (v1) + (=02 | ~v1) - W\‘g(ﬁvl)
= (w2 [v1)

Note that the function ~+(V7) remains unchanged!

124

Understanding Pearl with evidence (2a)

(Vi) (1), (o)

7 vy | V1), ﬁvz | v1)
Y(ve | —w1), y(—wg | —v1)

Suppose we have evidence V; = true for node V5.

e Should the evidence affect Vi, i.e. is Pr**(V}) # Pr(17)?

e What does V; need to compute Pr**(V;)?
e What does V; need to compute Pr**(14)?

125

Understanding Pearl with evidence (2b)
Consider B = (G, T') with evidence V, = true :

@ ~+(w1), v(~01) Node V; cannot update its
probabilities using its own
knowledge; it requires in-
formation from V5! What in-
formation does V; require?

7 v2 | V1) ﬁUz | v1)
02 | _‘Ul ﬁvz | ﬁU1)

Consider the following properties:

_ Pr(vy | v1) - Pr(vy)

Pr*? (Ul) PI‘(UQ)

o Pr(ve | v1) - Pr(v)

Pr(vy | —vy1) - Pr(—w
PILZ(ﬁUI) = (2 ‘ Przz)z) (l) X PT(UQ | —\1)1) . Pl"(—ﬂjl)

126

Introduction to diagnostic message parameters

@ (), v(mey) Node V, sends a message
Ao enabling V; to update the
’ probabilities for its values.

v(va | v1) ﬂvz \ Ul)
Y(v2 | =v1), y(—v2 | —v1)

This message contains a function)\K; :{vy, v} — [0, 1]
defined on each value of V.

The message basically tells V; what node V, knows about V;;
in general:

Z A% (CV1) # 1

C %1

/\‘V/; is called the diagnostic (message) parameter from V5 to V.

127

Diagnostic message parameters: an example
Consider B = (G, T") with evidence V, = true:
(V1) 7(o1) = 0.8, 3(-v1) = 0.2
AVt

7v2|v1 =04, y(-vy | v1) =0.6
~v(ve | 7v1) = 0.9, y(—wvg | —v1) =0.1

Node V5:

e computes and sends to V;: diagnostic parameter AK; with

)\% (v1) =Pr(vy | v1) =7(ve | v1) =04
)\%(ﬂvl) =y(vy | 7v1) =0.9

Note that Z% Aey,) = 1.3 > 1!

128

Diagnostic message parameters: an example (cntd)

@ v(v1) = 0.8, v(—v1) =0.2
AVt Node Vl rev?elves
from Va1 Ay,
. Y(ve | v1) = 0.4, y(-wva | v1) = 0.6

(vg | 7v1) = 0.9, v(—vy | —v1) = 0.1

Node V; computes:
Pr?(vy) = a-Pr(vy | vy) - Pr(v)
=a- A (o) y(v) =a-04-08=a-0.32
Pr*?(—v) = « - /\“g(—wl) y(—v) =a-09-0.2=a-0.18
Node V; now normalises its probabilities using

Pro2(v) + Pr2(—v) = 1:a-032+a-018 =1 = a =2

resulting in Pr*?(v;) = 0.64 Pr”(—w;) = 0.36 |

129

Understanding Pearl: directed path with evidence

QOECEEN

7 vy | v1), Wz | v1)
Ug | _‘Ul _|’U2 | _VUl)

7 vz | v2), W% | v2)
Ug | _‘Ug _|’U3 | _VUQ)

Suppose we have evidence V3 = true for node V5.

e What does V; need to compute Pr*(V;)?
e What does 1; need to compute Pr*(15)?
e What does V3 need to compute Pr*(13)?

What if node V;, node V5, or both have evidence instead?

130

Pearl on directed paths — An example (1)

Consider B = (G, T") with evidence V3 = true:
@ v(v1), y(=v1)
Node V;:

7 vs | v1), wQ | vy) e receives Ay (1;)
V(w2 [7vr), v(Fe2 [201) o computes and sends to V5!
(Vi) =~(Vi)

7 vs | v2), ﬁvs | v2)
U3 | ﬁvg ﬁ’Ug; | ﬁ’UQ)

Node V; computes

r(v1) = a-Pr(vg [vi) - Pr(v) = a- A\ (01) - y(01)

P
Prl/‘:a(_‘vl) = - PI‘(U3 ’ —\Ul) . Pr(—wl) = Q-)\&(ﬁvl) ’ 7(_"01)

131

Pearl on directed paths — An example (2)

@ Y(v1), y(-v1) Node V;:
e receives ;! (V;) and Aj?(V2)
7 vg | v1) ﬂvz | v1) o computes and sends to Vi:
y(vg | —w1), y(—wg | —01) ’R—V,j (Vz)
e computes and sends to V;:
'y v3 | v2), —\7)3 | va))\‘\;1(‘/1)
113 | _|1}2 _‘Ug | _‘UQ) 2

with /\% (v1) =Pr(vs|v1)
= Pr(vs | ve) - Pr(vy | v1) 4+ Pr(vs | =v2) - Pr(—wa | v1)
=)\“2 (1)2) . 'y(vg ‘ 1)1) + A%(—VUQ) . fy(ﬂfUQ ’ 7)1)
AV (=01) = Pr(uvs | ~o1) =

The node then computes Pr*(14). ..

132

Pearl on directed paths — An example (3)

QECEEN

“Y v2 | V1), Wz | v1)
Uz | ﬁv1 —'Uz | —'Ul)

“Y v3 | v2), W3 | v2)
Ug | _‘Ug _|’U3 | _VUQ)

Node V;:

e receives causal parameter my; (Vg)

e computes and sends to V5:)\53(1/2) with
ANE(va) = Pr(vs | va) = v(vs | v2)
Az (=w2) = Pr(vs | ~vz) = y(vs | —wp)

e computes Pr”(Vj3)

133

Understanding Pearl: simple chain with evidence

Suppose we have evidence V3 = true in the following networks:

7 vy | va), Wl | va)

v(v1 | ~v2), (=1 | —v9) @ 7(2}1)7 ”}/(_ﬂ)l)

@ Y(v2), v(-v2) @ Y(v2 |01 Aws), y(vg | vr A —ws)

2}2 ‘ =1 A Ug) (1)2 ’ =1 A _|U3>

7 v3 | va), W3 | va)

(s | va), A(Fws | ~o2) @ Y(v3), v(—vs)

For each network: what does node V;, i = 1,2, 3, need to
compute Pr”(V;)?

134

The message parameters

Consider the BN graph as a computational
architecture:

causal and diagnostic message parameters

e are passed between objects (nodes)
e through communication channels (arcs).

Both causal and diagnostic messages are
computed for and sent along each channel.

The causal and diagnostic messages for the
same channel are computed independently.

135

D-separation and processing evidence

Let E C V be a set of nodes for which you have previously
entered evidence.

You now want to process new evidence, fornode V; € V '\ E,
i.e. you want to “update” the distributions for all V; € V' with this
new information.

¢ Nodes that need to update their distribution are all V; such
that =({V;} | E\ {Vi} [{Vih)&-

¢ In Pearl’s algorithm, d-separation is accounted for in the
contents of the messages; it doesn’t affect which messages
are sent.

136

Pearl’s algorithm (high-level)
Each V; € V does the following:

e compute 7(V;) once messages from all parents (if any) are
received;

e compute \(V;) once messages from all children (if any) are
received;

e for each child V;,, compute and send message i (V)
. /Lj.
once messages from all other neighbours are received;

V,
e for each parent Vj, , compute and send message \,/* (V)
once messages from all other neighbours are received.

Message-passing starts at root’ and ’leaf’ nodes;
upon processing evidence, message-passing is initiated at
observed nodes.

137

The message-passing

After establishing all prior probabilities, the Bayesian network is
in a stable situation.

evidence
N

Once evidence is entered into the network, this stability is
disturbed.

138

The message-passing, continued

Evidence initiates message-passing throughout the network:

After each node in the
network is visited by the
message-passing algorithm,
the network returns to a new
stable situation.

139

Notation: partial configurations

Definition:

A random variable V; € V is called instantiated if evidence
V; = true or V; = false is obtained; otherwise V; is called
uninstantiated.

Let E C V be the subset of instantiated variables. The
obtained configuration cg is called a partial configuration of V/,
written cy.

Example: Consider V = {V}, V5, V3}.
If no evidence is obtained (E =) then: ¢y = T(rue)

If evidence V, = false is obtained, then: ¢y = —w, [|

Note: with ¢y we can refer to evidence without specifying E.

140

Singly connected graphs (SCGs)

Definition: A directed graph G is called singly connected if the
underlying undirected graph of G is acyclic.

Example: The following graph is singly connected:

Lemma: Let G be a singly connected graph (SCG). Each
graph obtained from G by removing an arc, is not connected.

Definition: A (directed) tree is a SCG where each node has at
most one incoming arc.

141

Notation: lowergraphs and uppergraphs

Definition: Let G = (V, A¢) be a SCG and let Gy, v, be the
subgraph of G after removing the arc (V;,V}) € Ag:

Guwvy) = (Va, Ac \ {(Vi,V})})

Now consider a node V; € V:

For each node V; € p(V}), let G(*V be the component of

G v,,v;) that contains Vj; G*V v is caIIed an uppergraph of V;.

For each node V. € o(V;), let G, , | be the component of
G,y thatcontains Vi.; Gy, 1) is caIIed a lowergraph of V;.

142

(‘4+

e Node V; has:

—“+
((M Vo)

,,,,,,,, a [N — two uppergraphs

+ +
G (Vi.Vo) and G (Va.Vo)

— two lowergraphs
G vovs and G o)

G(\'n.\"'l)

For this graph we have, for example, that

(Ve AWk Vo,)
(Ve . AV Ve,)

I(VG+) (2)7 VG+)

(V1,Vp) (V2,V0)

143

Computing probabilities in SCGs

Lemma:

Consider B = (G,T') with SCG G = (Vg, Ag), where
Vo=V ={V,...,V,}, n > 1; let Pr be the joint distribution
defined by B.

+_ - _ +
Forviev,letv;t = | Ve v and V;" =V \ V.
Viep(Vi)

Then

Pr(Vi|ev) = a- Pr(ey - [Vi) - Pr(Vi | ¢y)

where ¢y = ¢,,- A ¢y,+ and « is a normalisation constant.

144

Computing probabilities in SCGs
Proof:
Pr(V; | &v) = Pr(Vi | &,— AGy+)

Pr(&, | Vi) Pr(@y+ | Vi) - Pr(Vy)

PF(EV_— A EV.+)
Pr(cy+)

= Pr(G,— | Vi) -Pr(Vi | Cos) —— _
ey [V PrVe L) i a0

=a-Pr(cy,- | Vi) -Pr(Vi | ¢y+)

1

Pr(cy- | cy+)

145

Compound parameters: definition

Definition:

Consider B = (G, T') with SCG G = (Vg, Ag) and joint
distribution Pr. For V; € V, let V;“L and V,;~ be as before;

e the function 7 : {v;, —-v;} — [0, 1] for node V; is defined by
(Vi) = Pr(V; | Gy)
and is called the compound causal parameter for V;;
e the function X : {v;, —v;} — [0, 1] for node V; is defined by
V) = Pr(ey,- | Vi)

and is called the compound diagnostic parameter for V.

146

Computing probabilities in SCGs

Lemma: (‘Data Fusion’)

Consider B = (G, T') with SCG G = (Vg, Ag) and joint
distribution Pr. Then

foreach V; € Vg : Pr(V; | ¢y,) = a-7n(Vi) - AM(V;)

Proof:
Follows directly from the previous lemma and definitions.

Note: if ¢y, = T then actually no normalisation is required.

147

The causal message parameter defined

Definition:
Consider B = (G, T') with SCG G = (Vg, Ag) and joint Pr.

Let V; € V¢ have child V, €0 (V;)

e the function 7y’ : {v;, ~v;} — [0, 1] is defined by
W“%(V) Pr(V | v g)
(V Vi)

and called the causal (message) parameter from V; to V.

148

The diagnostic message parameter defined
Definition:
Consider B = (G, T') with SCG G = (Vg, Ag) and joint Pr.
Let V; € Vi have parent V; € p(V;);
e the function \;? : {v;, —v;} — [0,1] is defined by
N(Vy) =Prev,_ | V)
(Vj,Vi)

and called the diagnostic (message) parameter from V; to V.

149

Computing compound causal parameters in SCGs

Lemma:

Let B = (G,I") be as before. Consider a node V; € V and its

parents p(V;) = {Vi,,..., Vi, .}, m > 1.
Then
Vi.
w(V) = Y Vil con) ™y, (ev;,)
Cp(V;) Jj=l.m

Note that each ¢y, used in the product should be consistent
with the c,(y;) from the summand!

150

151

Computing compound causal parameters in SCGs

Proof:
Let Pr be the joint distribution defined by B. Then

T(V) = Pr(Vi| Gye) = Pr(Vi| Sy, A AT,)
vy i) Vi Vi)
:ZPrV\(p(‘ /\CV+ /\.../\CVG+) -
(V ;) (Vi Vi)
Cp(V;)
. PI“(CP(\,Q) A...\cy N)
Gviy V) Vip Vi)
= > Pr(Vilcoun)- I Prlev, lav,)
“vi, V)
Cp(V;) Jj=1..m
V.
= Z Vil cpviy) - H Ty, (CVij)
Cp(V;) J=1,..m

where c,v;) = /\j:l m Vi, u

152

Computing 7 in directed trees

Lemma:

Consider B = (G, T") with directed tree G.

Consider a node V; € V; and its parent p(V;) = {V,}.
Then

T(Vi) =Y (Vi | evy) - myi (ev;)

Cy.
v

Proof:

See the proof for the general case where G is a singly
connected graph. Take into account that V; now only has a
single parent V.

153

Computing causal message parameters in SCGs

Lemma:

Consider B = (G,I') with SCG G = (V. Ag).
Let V; € V be an uninstantiated node with m > 1 children
o(Vi)=A{Vy,..., Vi, }.

Then

m (Vi) =a-7(Vi)- [M (V)

J k
k=1,...,m, k#j

where « is a normalisation constant.

154

155

Computing causal message parameters in SCGs

Proof: Let Pr be the joint distribution defined by B. Then

w0 P2,)
= o Pr(Ey,, V)PV
Vi:Viy)
= o -Pr(ey- Ay, A(\ov._)| Vi)-Pr(Vi)
’ oy G(VivVik)
= o Pr(cy+ | Vi) [iy Pr(cy, _ | Vi) - Pr(V})
: (Vi:Viy)
= a-Pr(Vi| &) [Ty Prlv, | Vi)
(VisViy)

= a - 7(Vi) Iy A, (Vi)

156

Computing compound diagnostic parameters in SCGs
Lemma:
Let B = (G,T') be as before.

Consider an uninstantiated node V; € Vi with m > 1 children
U(‘/;) = {‘/;17 R ‘/;m}'

Then

157

Computing compound diagnostic parameters in SCGs

Proof: Let Pr be the joint distribution defined by 5. Then

= PI’(’(;V'Vi/\Ev_ A...Agv_ H/l)
(VisViy) Vi Vi)

= PI”(EJVG7 | ‘/;) L PI(EVG, | V;)
(VisVig) VisVip,)

158

Computing diagnostic message parameters in SCGs

Lemma:

Let B = (G,I") be as before. Consider a node V; € V with
n > 1parents p(V;) ={V;,,...,V;.}. Then

m:cp(vi)\{vjk} I=1,...,n,l#k
where « is a normalisation constant.

Note that each ¢y, used in the product should be consistent
with the = from the summand!

Proof: See syllabus. u

159

Computing \- messages in directed trees

Lemma:

Let B = (G,T") be a Bayesian network with directed tree G.
Consider a node V; € Vi and its parent p(V;) = {V;}.
Then

M (V) =" Mew) - Aew,

Vi)

160

Computing \-messages in directed trees
Proof: Let Pr be the joint distribution defined by 5. Then
f DEF ~
N (V) = PrEy- | 1)

7

= Pr(cy- [viAV)) - Pr(v [V)
+ Pr(ey- [~ AV;) - Pr(-w [V)

= Pr(ey- | v) - Pr(v; | V))
+ Pr(cy- | —v) - Pr(—w; | V))

= Avi) - y(vi | V) + M=) - y(—wi | V)

= > Aew) ey,

V) .

161

Pearl’s BP inference algorithm: computation rules

ForV, e Vg with p(V;) ={V,,,...,V;.}, (Vi) ={Vi,,.... Vi, }:

Pr(V; | ey) = a-n(V;) - AM(V;) (data fusion)
nL
m(V;) = Z Y(Vi | o)) - HWVik(Cij)
o (V) k=1
= H)\“f (V3) dummy!
Wx‘;l (Vi) H dummy!
’ k=1,k#j
‘/3 n ‘
A (Vi) =a” Y Aew)| > (e, 50 11 ™ (ev,))
°v; = (VOV} I=1i#k

with normalisation constants o, o/, and o”.

162

Special cases: root nodes

Consider a node W € Vi with p(17) = 0.

The compound causal parameter for 1V is defined by
(W) = Pr(W|cw+)

Pr(W | T) (since W+ = ()

= Pr(W)

= (W)

163

Special cases: leaf nhodes

Consider a node V with o (1) = ().
The compound diagnostic parameter for V' is defined as

e if node V is uninstantiated, then

DEF

AV) = Pr(ey- | V)
= Pr(T|V) (V- ={V} V uninst.)
= 1

e if node V is instantiated to ¢y, then

AV) PET Pr(ey- | V)

= Pr(EV | V) (O‘(V) - @)
1 for Cy = gV
} 0 for Cy 7é EV

164

Special cases: uninstantiated (sub)graphs
(Compound) Identity property

Consider a node V' € Vg for which ¢y~ = T(rue).

e The compound diagnostic parameter for V' then equals:

AV) PET pr(@y- | V)
= P(T|V) (ev-=T)
= 1
e [f in addition ¢y = T for parent V,, of V, then
G vp.v)
Vp DEF ~
W) B Py, (1) =1

Both properties trivially hold for all nodes in the prior network.

165

Special cases: uninstantiated (sub)graphs
Causal parameter equivalence

Consider a node V' € V and its child V.
o Ifcy- = EG&VM then 7y (V) = =n(V).

Proof: ¢y- =¢ - implies that ¢y, = T and ¢~- =
oof: ¢y CG(v,vk> plies that ¢y a ch(v,W T for

each child V; of V, i # k. Therefore Ay (V) = 1 (Identity
property). Hence,

(V) = a-x(V)- [M.(V)

i=1,i#k
m

=ar(V)- J[[1 = =v) =

i=1,i#k

The property trivially holds for all nodes in the prior network.

166

Pearl’s BP algorithm: a tree example

Start: Pr(V;)) =a-7n(V;)- A(V;),i=1,...,5.

Aey,) = 1forall ¢y, and V. (Identity property)

No normalisation is required and Pr(V;) = n(V}).

167

An example (2)

v(v1) =0.7
(v 1—]}1))1 :: .(%.8
y(v3 | va
v(vs | w2 vy) = 0.8
=0
(V1) =~(W) (special case: root).

Node V; computes:

Pr(vy) = w(vy)) = ~v(n) = 0.7
Pr(-v;) = w(-wv) = ~(-v) = 0.3

Node V; computes for node V5:
77“2(‘/1) =7m(V1) (causal parameter equivalence)

168

An example (3)

Node V; computes:

7(v2)

Y(va | v1) - Wx‘g (v1) + 7y (v2 | ~v1) - Wx‘g(ﬁvl)
Y(va [1) - (V1) +y(v2 | —01) - w(=01)
=05-07+04-03=047

Pr(vy)

Pr(—ws) = m(—ws) = 0.5- 0.7+ 0.6 - 0.3 = 0.53

169

An example (4)

Node V; computes for node V3 and node V;:

m(Va) = mP(Va) = m(Va)

170

An example (5)

Node V3 computes:
Pr(vs) = 7(v3)
= y(v3 | va) - 7\‘2(?]2) +y(v3 | ~vg) - W\%(ﬁvﬂ
=y(v3 | v2) - w(v2) +y(v3 | —v2) - T(—02)
=0.2-04740.3-0.53 =0.253

Pr(-w3) = m(-ws) = 0.8 - 0.47 4 0.7 - 0.53 = 0.747

171

An example (6)

In a similar way, we find that

Pr(vy) = 0.376, Pr(—wv4) = 0.624
Pr(vs) = 0.310, Pr(—ws) = 0.690

172

Pearl’s BP algorithm: example in a SCG

~v(v2) = 0.1 ~v(v3) =04
y(—wg) = 0.9 @ @ ws) =0.6

Y(vy | va Avg) =0.8 v(—v1 | va Awvg) =0.2
Y(vy | g A ’Ugg =0.9 Y(—w1 | —we A U3; =0.
Yy(vy | v2 A —ws3) = 0.5 Yy(—vy | v2 A —w3) = 0.5
y(v1 | ~v2 A —w3) = 0.6 y(=v1 | e A —wz) =04

Assignment: compute Pr(V}) = a - 7(Vh) - A(V1).

AMv1) = A(—vy) =1 (Compound identity property)

No normalisation is required.

173

An example (2)

~v(v2) = 0.1 v(vs) = 0.4
y(—v2) = 0.9 @ @ —\U3) =0.6

v(v1 | va Awg) =0.8 v(—v1 | va Awvg) =0.2

Yy(vy | "v2 Awvs) =0.9 vy(—vy | 7vg Avg) =0.1
Yy(v1 | v2 A —ws3) = 0.5 (=1 | v2 A —w3) = 0.5
y(vy | ~ve A —w3) = 0.6 ~v(=wy | —wg A _\’Ug) 0.4

Node V; computes:

Pr(v) = m(v1) = v(v1 [va Aws) - W\‘;f (v2) 'Wx‘;f(vzs) +
+y(vy | —vg Awg) - w“ff(—'vg) . 71'5:1)’ (v3) +
+v(vy | vo A —w3) - 71"‘2 (vg) - W“;f(—'vg) +
+ (v | =02 A —w3) 'W\‘jf(ﬂh) : W\‘;f(_‘v?))
=08-01-04+4+09-0.9-0.4+
4+05-01-064+06-0.9-0.6=0.71
Pr(—w;) =0.29 [

174

Instantiated nodes

Let B = (G,T') be a BN with SCG G; let Pr be as before.

Consider an instantiated node V' € V, for which evidence
V' = true is obtained.
e For the compound diagnostic parameter

A A{v,—wv} — [0, 1] for V we have that

Av) = Pr(cy- |v) (definition)
Pr(EV_\{V} AU | U)
= 7

(unless o (V) = 0 in which case \(v) = 1)

A—w) = Pr(cy- |) (definition)
= Pr(EV_\{V} AU | _|U)
=0

The case with evidence V = false is similar.

175

Entering evidence

Consider a fragment of a BN graph G:

Suppose evidence is obtained
for node V.

Entering evidence is modelled
by extending G with a ‘dummy’
child D for V.

The dummy node sends the diagnostic parameter \Y, to V' with
Ap(v) =1, A (—v) =0 for evidence V' = true

A (v) =0, A (—v) =1 for evidence V' = false

176

Entering evidence: a tree example

Ul) = 0.

Evidence V; = false is entered.

Assignment: compute Pr ™ (V).
Start: Pr' (Vi) =a-n(V;)- A(Vi),i=1,...,5.
Fori=2,...,5, we have that \(cy;) = 1. (explain why!)

For those nodes we have Pr(V;) = «(V;)®

SBeware: if we don’t normalise at the end, we cannot postpone
normalisation along the way!

177

An example with evidence V| = false (2)

Node V; now computes:

Prﬁ’m <'U1> = - ﬂ-(fvl) . >\<U1) = O
Prﬁm (_|U1) = - 7T(_‘U1) .)\(—|U1) = - 03

Normalisation gives: Pr ' (v;) =0, Pr “(-w) =1

Node V; computes for node V5:
mA(Vi) = a-w(Va) - AYL (V) - A (Vi) = 0 for —wy, 1 for vy

178

An example with evidence V| = false (3)

Node V, computes:

Pr(vy) = m(vy)
= vy [01) -t (v1) + (w2 | —on) - 7yl ()
=05-04+04-1=04

Pr o (—05) = (=vs) = 0.5- 0+ 0.6 - 1 = 0.6

Node V;, computes for node Vj: w%(VQ) =m(Va) (explain why!)

179

An example with evidence V| = false (4)

= y(v3 | v2) - 77\‘2(@2) +y(vs | ~vy) - Wx‘//';(_‘vz)
= (v [v2) - m(v2) +y(vs | 02) - T(—w2)
=02-04+03-0.6=0.26

Prvt (—wg) = 0.8 - 0.4 + 0.7- 0.6 = 0.74

180

An example with evidence V| = false (5)

In a similar way, we find that

Pr™" (v;) = 0.32, Pr™(—w,) = 0.68
Pr™" (v5) = 0.80, Pr ™ (-ws) = 0.20

181

Another piece of evidence: tree example

Y(vs | v1) =0.1
v(vyg | v2) = 0.8

Y(vg [—v2) =0

The additional evidence V5 = true is entered.
Assignment: compute Pr " (V).

Start: Pr (V) =a-7(V;) - A(V;),i=1,...,5.

Which parameters can be re-used? Which need updating?

182

Another example (2)

For nodes V; with i = 4,5, A(¢y;) = 1 and thus Pr(V;) = n(V}).

The probabilities for V; remain unchanged:
Prov%(v)) =0, Prv%(—w) =1

The probabilities for node V5 remain unchanged.

Therefore

Prob%(vs) = Pr*t(—ws) = 0.8, Pr " (—w;) = 0.2

183

Another example (3)

Node V3 computes:

Prt(vs) = a-m(vs) - Mvz) = - m(vz) =a-0.26-1

Prov"(—wg) = o - m(—ws) - AM(—w3) =0
After normalisation: Pr™""(v3) = 1, Pr " (—w3) =0

Node V3 computes for node V5: A“fg’(vg) = Z% A(V3) - v(ey, | Vo)

184

Another example (4)

Node V; computes:

Prov%(vy) = a-m(vg) - AM(vg) = - w(wg))\“2(1)2))\54(212)
=a-m(vy) - y(vs |ve) =a-04-0.2=a-0.08

Prb% (—wg) = a - w(—wy) - A(—wg) = a - w(—wy) - /\“g(ﬂvg) AV (—wg)
=a-m(—wy) - y(vs | ~v3) =a-0.6-0.3=a-0.18

Normalisation gives: Pr “***(vy) = 0.31, Pr “»**(—wq) = 0.69

185

Another example (5)

Y(vs | v1) =0.1
v(vy | v2) = 0.8

Y(vg | —v2) =0
Node V; computes for node V:
My (Va) = a - m(Ve) - A2 (Va) = 0.31 and 0.69
Node V; computes:
Pr%(vy) = m(va) = v(vs | v2) 'W“fi(vz) +(vg | ~v2) - w“fi(ﬁw)
)

-y (v2) +0=0.8-0.31 = 0.248

Pr % (=) = 0.2-0.31 + 1.0 - 0.69 = 0.752 L

186

Entering evidence: example in a SCG

v(v2) = 0.1
v(=v2) = 0.9

(1)1"02/\’[)3)—08 "}/(_|’U1|’02/\’U3)—02

Y (U1 _"02/\1)3 =0.9 Y\ U1 _|U2/\1)3 =0.1
(v | va A —wg) = 0.5 Yy(—v1 | v2a A —w3) = 0.5
Y(vy | w2 A —ws) = 0.6 y(—vy | v A ﬂvd) 0.4

Evidence V, = true is entered.

Assignment: compute Pr”'(15) = a - (V) - A(V3).

(Vo) = ~(V3) (special case : root)

AMV2) = A2 (V2)

187

An example with evidence V| = true (2)

~v(v2) = 0.1
v(—v9) = 0.9

Y(v1 | va Avg) =0.8 v(—w1 | va Avg) = 0.2

Yy(v1 | "v2 Awvs) =0.9 Yy(—vy | 7va Avg) =0.1
Y(v1 | vo A —w3) = 0.5 Y(—v1 | v2 A —v3) = 0.5
y(v1 | ~ve A —w3) = 0.6 ~y(—wvy | e A _‘Ug) 0.4

Node V5 receives from node V;:

)‘1‘2(?)2) = A(v1) - [y(v1 | v2 Aws) - W\‘?(Uz) +
V(o1 [vy A —ws) -y (—ws)] +
A=) - [y(—or | va Aws) - T2 (vs) +
Y(wy [vy A —wg) - T2 (—ws)] =
=0.8-04+0.5-0.6=0.62
A2 (=w9) = 0.9 0.4+ 0.6 - 0.6 = 0.72

[Note: normalisation postponed to data fusion step!]

An example with evidence V| = true (3)

v(v2) = 0.1 v(v3) =04

v(-v2) = 0.9 Y(—ws) = 0.6
v(vy | va Avg) = 0.8 v(—v1 | v2 Awvg) =0.2
~y(vy | —ve A 1133 =0.9 ~v(=wy | —wg A 03; =0.1
Y(v1 | v2 A —w3) = 0.5 Y(—v1 | v2 A —v3) = 0.5
~Y(vy | =g A —w3) = 0.6 y(—wy | ~we A —w3) =04

Node V; computes:

Prt(vg) = a-m(vy) - AMvg) = a - y(vg) -)\“;f (vg) =
=a-0.1-0.62 =0.0602«
Pri (—vg) = o - 0.9 - 0.72 = 0.648

Normalisation gives: Pr"* (vy) ~0.087, Pr"' (—wvy) ~0.913

189

Pearl: some complexity issues

Consider a Bayesian network B with SCG G with n > 1 nodes.

Suppose node V' has p parents and s children:

@\ /@ p(V)

@ O O

e Node V computes its compound causal parameter in O(2?)
time:

(V) =Y vV | o) - | IT = ew)

190

Complexity issues (2)

@\ @ p(V)

@ O O

e Computing the compound diagnostic parameter requires
O(s) time:

A node can therefore compute the probabilities of its own
values in O(s) + O(2?) time.

191

Complexity issues (3)

(@\ @ /@ p(V)

@ O O

e Computing a causal message parameter for a child Z;
requires constant time:

Pr(V)
Ay, (V)

J

my(V)=a-x(V)- [[\a(V)=

I=1,...,s,l#j

192

Complexity issues (4)

@ © O
@O O

e Computing a diagnostic message parameter for a parent W;
takes O(2?7) time:

aZx\Cv[Z (V| epunimy AW - [=0 CWl)]

Co(VI\{W;} I=1,...p,li

A node can compute the messages for all its neighbours in at
most O(s-1) +O(p - 2P) = O(p - 27) time.

If the number of parents per node is bounded by £, then full
inference requires at most O(n - k - 2%) time.

193

Inference in multiply connected digraphs

When applying Pearl’s algorithm to a Bayesian network with a
multiply connected digraph, the following problems result:

e the message passing does not necessarily reach an
equilibrium;

e even if an equilibrium is reached, the computed probabilities
are not necessarily correct.

These problems are due to the independences assumed by the
BP algorithm, which are invalid in the given Bayesian network.

(= approximation algorithm 'Loopy belief propagation’)

194

No equilibrium: an example

Consider B = (G, T") with multiply connected digraph G-

If node Vj is instantiated, then the message passing does not
necessarily reach an equilibrium.

195

Incorrect computations: an example (1)

@ Suppose that evidence Vi = true is
obtained and that we are interested
in Prt (V).

(V)
@g® Using marginalisation and indepen-

dence we find that Pr"' (V5) equals:

Prt(V) = D7 Pr(VsAcmg | v)

C{Vo,V3,Vy}

= Z Pr(Vs | C{VS,V4})'Z Pr(cy, | e,)-Pr(ey, | cv,)-Prey, | v1)

C{V3,Va} vy

Note the same value ¢y, in the product of the last three terms!

196

Incorrect computations: an example (2)

@ Suppose that evidence Vi = true is
obtained and that we are interested
‘ ’ in Pr (V3).
@ Pearl’s algorithm basically computes:
Prt (V) = | v3 Awvg) - Pr(vs | v1) - Pr(vy | v1)

Pr(V;
+ Pr(Vs | —vs Avy) - Pr(—wg | vy) - Pr(vy | v1)

+ Pr(Vs | vg A —vy) - Pr(vs | v1) - Pr(—vy | v1)

+ Pr(Vs | —vs A —wy) - Pr(—ws | v1) - Pr(—wg | v1)
and

Pr(Vi | v1) = Pr(Vs | vs) - Pr(vy | v1) + Pr(Vs | —vs) - Pr(—ws | vy)
Pr(Vy | vy) = Pr(Vy | vg) - Pr(vy | v1) + Pr(Vy | —vg) - Pr(—vg | v1)

197

Incorrect computations: an example (3)

)

Suppose that evidence Vi = true is

@ obtained and that we are interested in
o eI

Substitution of Pr(V5 | v;) and Pr(V} | v;) thus results in
incorrect terms, such as for example

Pr(vs | vs Avyg) - Pr(vs | va) - Pr(vg | v1) - Pr(vg | —w2) - Pr(—ws | vy)

198

Correct computations: an example

Suppose that evidence V; = true is obtained
@ and that we are interested in Pr" (V5).

This can be computed by conditioning on V5:

@ Prt(Vs) = Pr(Vs | va Awvy) - Pr(vy | v1) +
@.@ +Pr(Vs | —va Avq) - Pr(—vg | v1)
@ Pearl’s algorithm can correctly compute:
Pr (Vs | Va), e.9.:

Pr (Vs | v9)=Pr(Vs | v3 Avy) - Pr(vs | va Avy) - Pr(vg | va Avy) +

r(Vs | mus Avy) - Pr(—ws | vg Avy) - Pr(vg | v Avy) +
1“(‘/5 ’ U3 VAN _‘U4) : Pr(vg ’ (5WAN ’Ul) : PI‘(_|U4 ’ (5WAN Ul) +
r(Vs | —vs A —wy) - Pr(—ws | ve Avy) - Pr(—wg | va A vy)

DT

Compare: Pr’* (V) = Z Pr(Vs A cpvgvay | v1 A o)

C{V3,Va}

199

An example

©

When node V5 is instantiated, digraph G behaves as a SCG:

/é\"}%\

200

A solution: Cutset Conditioning

The idea behind cutset conditioning for computing Pr(V | ¢y,):

1. Select a loop cutset of G:

nodes L C V¢ such that instantiating L, makes the
digraph ‘behave’ as if it were singly connected;

2. Compute Pr(V | ¢y, A cr,,) for all possible loop cutset
configurations cr,,;

3. Marginalise out (= sum out) the loop cutset node(s) L.

201

A loop cutset

Definition: Let G = (V, Ag) be an acyclic digraph.
A set L; C Vi is called a loop cutset of G if:

every simple cyclic chain (loop) s in G contains a node X
such that:

— X € Lg,and
— X has at most one incoming arc on s.

NB a cyclic chain (loop) is not a cycle; a cycle is defined as a
cyclic path!

202

An example: loop cutsets

e How many loops does G contain ?
e Which of the following sets are loop cutsets of G' ?:

-0 — {V2, V7}
- {3} - {Vi, 7}
- {Vst v - {Vi, V2, V3} v

- {‘/17‘/:5}‘/ - {‘/17‘/47‘/57‘/67‘/7}\/

203

Pearl with cutset conditioning: an example (1)

Consider B = (G, T") with multiply connected digraph G:

Y(ve | v1) = 0.9
’ygvg —\11))1) =0.3
A (25
Vs | v A4 .
%)2 _\27))2 =0.5 Y(vg | =02 A —w3) = 0.1

We are interested in the probabilities Pr(v4) and Pr(—v,). We
choose L, = {V;}. Pearl’s algorithm is now applied twice:

Vi = true €1)) Vi = false

204

Pearl with cutset conditioning: example (2: general)

) DVi=true (D) D Vi = false

Pearl applied to (I) gives Pr(vy | v1) and Pr(—wy | v1);
Pearl applied to (II) gives Pr(vy | —v;) and Pr(—wy | —v).

The probabilities of interest are finally computed using
marginalisation (probability theory):

Pr(vy) = Pr(vy | vy)-Pr(vy) + Pr(vy | —v1)-Pr(—v)
Pr(—wy) = Pr(—wy | v1) - Pr(vy) + Pr(—wy | —vy) - Pr(—wy)

where Pr(v,) = 0.8, Pr(—w;) = 0.2 are the prior probabilities for
node V; (not conditioned on loop cutset configurations!)

205

Pearl with cutset conditioning: example (3: in detail)

SN
S
w
<
S
=
I
Il o
=1\
o

o
—

vy N\ Ug) =
U2 /\1)33

Il oo
=N\
—_

J
S
V)
>
J
S
wW
Il

Pearl applied to situation (I) where V; = true:
Pr(vy | v) =Pr(vy) = a-7m(vg) - Mvg) = 7(v4)
Pr(—wy | v1) = Pr (—wy) = m(—wy)

The compound causal parameter is computed:

m(vg) = y(vg | V2 Aws) - W“Z (vg) - ﬂ“//f(vg) +

(
Y(vg | —v9 A wg) - W“Z(—‘vg) . 7T“//Z (v3) +
v(vy | v2 A —w3) - W“Z(Ug) . W“Z‘(ﬁvg) +
v(vyg | 79 A —w3) - W“Z(_'UQ) . 7'('“//2(_'1]3) = ...

206

Pearl with cutset conditioning: example (4)

v(v1) =0.8
Y(vg |v1) =0.9 Y(vs |v1) =0.2
Y(vg | —v1) = 0.3 Y(vs | —v1) = 0.6
’UQ/\'Ug =0.1
Y(vg | ~V2 A V3 :02
Y U5 ’UQ): 4 Y(vg | V2 A T3 =0.6
Y(vs | =v2) = 0.5 Y(vg | 702 A —v3) = 0.1

m(vy) =0.1-09-0240.2-0.1-0.2+
+06-09-0840.1-0.1-0.8=0.462

Similarly, we find 7(—wv,) = 0.538

207

Pearl with cutset conditioning: example (5)

SN
S
w
<
S
=
I
Il o
=1\
o

o
—

vy N\ Ug) =
U2 /\1)33

Y=
[=YoN N
—

J
S
V)
>
J
S
wW
Il

Pearl applied to situation (II) where V| = false:
Pr(vy | =v1) = a-7m(vg) - AMvg) = w(vg)
Pr(—wy | —v1) = m(—wy)

where

m(va) = Y(vsa | v2 A vs) - 7\‘2 (v2) 'W\‘Z(Us) +
Y(vg | =02 Avg) - T2 (0g) - w2 (vs) +
V(v | vg A =wg) - 2 (v2) - Ty (—ws) +
(

Y(vg | =09 A —w3) -W“Z(ﬂvg) . W“Z’(_!U:J,) = ...

208

Pearl with cutset conditioning: example (6)

~v(v1) =0.8

Y(vg [v1) =0.9 Y(vs |v1) =0.2
721)2 -w1) = 0.3 v(vs —\7)1) =0.6
Vg | v2a Avg) = 0.1
1 7)11 —\27)2 /\%}33 =0.2
Y(vs | v2) =0.4 Y(vyg | v9 A —w3) = 0.6
y(vs | 02) = 0.5 Y(vg | =02 A —v3) = 0.1

m(vg) =0.1-0.3-0.6+0.2-0.7- 0.6+
+0.6-0.3-0.440.1-0.7-0.4 = 0.202

Similarly, we find 7(—v,) = 0.798

209

Pearl with cutset conditioning: example completed

Recall: we are interested in Pr(v,) and Pr(—wy).

Pearl’'s algorithm and loop cutset Lg = {V;}, gave us

Pr(vg|vi) = 0462 Pr(vs|-v1) = 0.202
Pr(—vy | v1) = 0.538 Pr(—wy | —v;) = 0.798

From the assessment functions we establish that

Pr(v;) = 0.8, Pr(—v;) =0.2

Resulting in (marginalisation):

Pr(vy) = Pr(vys | v1)-Pr(vy) + Pr(vy | —v1)-Pr(—v;)
=0.462-0.84+0.202-0.2 = 0.41

Pr(—wy) = Pr(—wy | v1) - Pr(vy) + Pr(—wg | —v1) - Pr(—v)
=0.538-0.84+0.798 - 0.2 = 0.59 |

210

Cutset conditioning with evidence ¢y,

Let L be a loop cutset for digraph . Then cutset conditioning
exploits that for all V; € V:
Pr(Vileve) = 22e,, Pr(Vil évy Acrg) -Prices | évg)

Pearl (from B) recursively

Recursion: step 1 for 1-st piece of evidence e;:

Pr(cr. | e1) = a-Pr(ey | er,.) -Pr(cr.)
———— N——

Pearl (from B) marginalisation (from Pr!)

Recursion: step j

Pr(cr, |er A...Nej) =a-Pr(ej | e, Ner Ao Nejq) -

-

Pearl (from B)
: }:)I"(CLG ‘ et /N... N ijl)

J/

-~

Stepj—1

211

An example: cutset conditioning with evidence

Use loop cutset {1/ }.
Initially we have loop

2ea| v 502 . .

: s [~0) =06 cytset configurations:
R E i’%?&’%gﬂ'&.z Pr(v;) = 0.8 and

%5‘5’ 32@?2):561.5 Jtos 221;9;231;3)::0'31 Pr(—w;) = 0.2.

Let’s process evidence V5 = false. Updated probabilities are
now established for the loop cutset configurations:

Pearl old
29 AH
Pr(v1) = a-Pr(-vz|v)-Pr(v;) =a-08-08=a-0.64

= 0.89

Pr*(—wv;) = a-Pr(-wvs | —v1) - Pr(—v) = a-0.4-0.2 = a- 0.08
= 0.11

212

An example (2)

We are interested in Pr*(v,).Pearl’s algorithm is applied twice:

¢9) ' Vi =true (D) Vi = false

- >

Pr(vy| vy A:U3> =0.55 Pr(vy] _"Ul‘/,_VUg) =0.25
Pr(—wy| vy A—w3) = 0.45 Pr(—ovy|—vi A—ws) = 0.75

Recall that Pr™"*(v;) = 0.89, Pr™**(—wv;) = 0.11. Now:

Pr%(vy) = Pr(vy | vy A —w3) - Pr(vy | —v3)
+ Pr(vy | =1 A —w3) - Pr(—vq | —ws3)
=0.55-089+4+0.25-0.11=0.52 N

213

Minimal and optimal loop cutsets
Definition: A loop cutset L for acyclic digraph G is called
e minimal: if no proper subset L C L is a loop cutset for G;

e optimal: if for all loop cutsets Ly, # L for G |Ly| > |Lg|.

Example: Consider the following acyclic digraph G-

Which of the following loop cutsets for G' are minimal, which
are optimal? {Vsjv'v', {Vi,Vs}v, {Vi,Vs}

214

Finding an optimal loop cutset

Lemma: The problem of finding an optimal loop cutset for an
acyclic digraph is NP-hard.

Proof: The property can be proven by reduction from the
“Minimal Vertex Cover”-Problem. For details, see
H.J. Suermondt, G.F. Cooper (1990). Probabilistic infe-
rence in multiply connected belief networks using loop
cutsets, International Journal of Approximate Reaso-
ning, vol. 4, pp. 283 — 306.

215

A heuristic algorithm (Suermondt & Cooper)

The following algorithm is a heuristic for finding an optimal loop
cutset for a given acyclic digraph G:

PROCEDURE LOOP-CUTSET(G, L¢):

WHILE THERE ARE NODES IN G DO
IF THERE IS A NODE V; € V5 WITH degree(V;) < 1
THEN SELECT NODE V}
ELSE DETERMINE ALL NODES K = {V € V¢ | indegree(V) < 1}
(THE CANDIDATES FOR THE LOOP CUTSET);
SELECT A CANDIDATE NODE V; € K WITH
degree(V;) > degree(V') FOR ALL OTHER V € K;
ADD NODE V; TO THE LOOP CUTSET Lg¢
FI;
DELETE NODE V; AND ITS INCIDENT ARCS FROM G
oD;
END

216

An example

(Recursively) deleting all nodes V; with degree(V;) < 1 gives ...

217

An example (2)

(Recursively) deleting all nodes V; with degree(V;) < 1 gives:

The following nodes are candidates for the loop cutset:
Vi, Vs, Vi, Vs, V. All have degree 2.

Suppose that node V, is selected and added to the loop
cutset. ..

218

An example (3)

After deleting node V; and recursively deleting all remaining V;

with degree(V;) < 1 we get: (%)
| %
@

The following nodes are candidates for the loop cutset:
V7, Vs, V.

Node V7 has highest degree (3) and is selected for the loop
cutset.

After deleting node V- and recursively deleting all remaining
nodes V; with degree(V;) < 1 the empty graph results.

The loop cutset found is {V}, V7 }. There are other possibilities!

219

Some properties of the heuristic algorithm

it always finds a loop cutset for a given acyclic digraph;

it does not always find an optimal loop cutset;
Example: Consider the following graph G:

() (7
G e
OER®
What is the optimal loop cutset for G ? Why won’t the

algorithm find this loop cutset ? B

it found an optimal loop cutset for 70% of the graphs
randomly generated in an experiment.

220

Some properties — continued

¢ the heuristic does not always find a minimal loop cutset.

Example: Reconsider graph G:

@%@é@ —> @%@

The algorithm could, for example, return the loop cutset
{V1, V3} for G; this loop cutset is not minimal. &

Note that this problem can be easily resolved afterwards.

221

Some properties — continued
e the heuristic can select nodes for the loop cutset that are not
on a cyclic chain.

Example:
Consider the following graph G, where G, ..., Gy, k >> 1,
are non-singly connected graphs:

The algorithm can select node V for addition to the loop
cutset. i

This can be similarly resolved.

222

Pearl: complexity issues

Consider a Bayesian network 5 = (G, I).

e Let G be a singly connected digraph with n nodes V; € V.

If [p(V;)] in G is bounded by a small constant, then
computing the probabilities for V; costs time linear in n.

e Let G be a multiply connected digraph with n nodes V; € V4
and let Ly be a loop cutset for G.

If Pearl’s algorithm is used in combination with loop cutset
conditioning, then all calculations are repeated 2/L<! times.

223

Summary Pearl: idea and complexity

Idea of Pearl extended with loop cutset conditioning:

© condition on loop cutset — multiply connected graph
behaves singly connected

® update probabilities by message-passing between nodes
(= ‘standard’ Pearl)

® marginalise out loop cutset

Complexity for all Pr(V; | cg) simultaneously:

e singly connected graphs: O(n - k - exp(k)), where
k= maxy, |pg(Vi)|

e multiply connected graphs: O(n - k - exp(k + 1)), where
I =[Lg]

224

Probabilistic inference: complexity issues

In general, probabilistic inference with an arbitrary Bayesian
network is NP-hard;
G.F. Cooper (1990). The computational complexity of pro-
babilistic inference using Bayesian belief networks, Artificial
Intelligence, vol. 42, pp. 393 — 405.

This even holds for approximation algorithms, such as e.g.
loopy propagation!

all existing algorithms for probabilistic inference have an
exponential worst-case complexity;

the existing algorithms for probabilistic inference have a
polynomial time complexity for certain types of Bayesian
network (~ the sparser the graph, the better).

225

Probabilistic models including continuous variables

Our definition of Bayesian network assumes all variables in
to be discrete.

e This typical assumption can be relaxed®.

e " for discrete variable — [for continuous variable.

e Exact inference is possible for a restricted family of
distributions (conjugate exponential, e.g. Gaussian);
methods are similar to those for discrete case.
(See slide 108)

e Otherwise only approximate inference is possible.
(See slide 109)

8More on hybrid BNs? See Coursera lecture, and Salmerén et al. ‘A
Review of Inference Algorithms for Hybrid Bayesian Networks’ in JAIR 2018

226

https://www.coursera.org/lecture/probabilistic-graphical-models/continuous-variables-wkNvM
https://www.researchgate.net/publication/327401527_A_Review_of_Inference_Algorithms_for_Hybrid_Bayesian_Networks
https://www.researchgate.net/publication/327401527_A_Review_of_Inference_Algorithms_for_Hybrid_Bayesian_Networks

