
Part Three
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Syllabus, Chapter 5:

Building a Bayesian Network
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The construction of a Bayesian network (BN)

Construction of a BN for an application domain involves three
different tasks:

• to identify the ( random ) variables and their values;
• to construct the digraph of the network;
• to assess the ( conditional ) probability distributions

required for the variables’ assessment functions.

Methodologies hardly exist, mostly just best practices!

• a systems-engineering approach is warranted, involving all
stakeholders;
• allow for an iterative process involving testing and evaluation

as well.
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The trade-off in construction

The construction of a BN requires a careful trade-off between

• the desire for a rich and detailed model;
• the costs of construction and maintenance;
• the run-time complexity of probabilistic inference.
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Establishing variables and their values

Establishing the variables and their values for a BN amounts to

• identifying the important domain variables and values from

• an introductory study of the domain literature and/or
available datasets;
• interviews with one or more domain experts;

• modelling the identified domain variables:

domain variables are captured as random variables in
such a way that their values are
• mutually exclusive;
• collectively exhaustive;

• giving an unambiguous description of the modelled variables
and values.
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Modelling domain variables

Single-valued domain variables are relatively easy to capture
as random variables.

Assuming a Bayesian network with discrete variables only:

• single-valued discrete variables can be modelled directly;
• single-valued continuous cannot be modelled directly: the

range of values should be discretised;

Multi-valued domain variables cannot be directly captured as
random variables.
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Single-valued variables

The value range of a single-valued variable with a large range
of ordered values can be divided into intervals.

• To discretise a continuous variable, its value range must be
divided into intervals.

Example: For a variable Fever we can distinguish the
intervals [36; 37), [37; 38), [38; 39) and [39; 40]. �

• For a discrete variable pragmatical reasons can exist to
divide its value range into intervals.

Example: For a variable Age we can distinguish the intervals
[0; 50), [50; 65), [65; 70), [70; 75), [75; 80) and [80; 120]. �

Each single interval of domain values is considered a single
value of the corresponding discrete random variable.
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Modelling Multi-valued variables

If a variable is multi-valued then this often indicates that it is
composed of various other variables.

• a multi-valued domain variable can sometimes be
modelled as a single single-valued random variable;
• a multi-valued variable is usually modelled as a collection

of single-valued random variables.
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Multi-valued variables, an example

Consider the domain variable BloodCount that adopts one or
more of the values normal, lymphocytosis, lymphocytopenia,
leucocytosis, and leucocytopenia; possible combinations are:

{normal} {lymphocytosis, leucocytosis}
{leucocytosis} {lymphocytosis, leucocytopenia}
{lymphocytosis} {lymphocytopenia, leucocytosis}
{leucocytopenia} {lymphocytopenia, leucocytopenia}
{lymphocytopenia}

• the variable can be modelled as a single random variable
with the nine possible combinations of its values;

• the variable can be modelled by two random variables:
– the variable LymphocyteCount with the three values
normal, lymphocytosis, lymphocytopenia;

– the variable LeucocyteCount with the three values
normal, leucocytosis, leucocytopenia. �
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A trade-off in modelling domain variables

The difference between variables and values is not always
clear; the choice of representation can have a large impact.

Example: Consider modelling the depth of invasion of an
oesophageal tumour

• as the single variable Invasion, with seven values: T1, T2,
T3, diaphragm, mediastinum, trachea, and heart
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A trade-off in modelling domain variables

The difference between variables and values is not always
clear; the choice of representation can have a large impact.

Example: Consider modelling the depth of invasion of an
oesophageal tumour as a single variable:

Length CircumfLocation

Invasion

CT-organs Lymph.
metas.

Haema.
metas.

Shape

Fistula Broncho-
scopyNecrosis

9

324
91
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A trade-off in modelling domain variables

The difference between variables and values is not always
clear; the choice of representation can have a large impact.

Example: Consider modelling the depth of invasion of an
oesophageal tumour

• as the single variable Invasion
• as a combination of the two variables Invasion Wall (with

four values: T1, T2, T3 and T4) and Invasion Organs (with
five values: none, diaphragm, mediastinum, trachea and
heart, where T1 ∨ T2 ∨ T3 is equivalent to none)
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A trade-off in modelling domain variables

The difference between variables and values is not always
clear; the choice of representation can have a large impact.

Example: Consider modelling the depth of invasion of an
oesophageal tumour with two variables:

Length Circumf.Shape

Invasion
wall

Invasion
organs Necrosis Lymph.

metas.
Haema.
metas.

Location

CT-organs Broncho-
scopy Fistula

9

54

48 24

30
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A trade-off in modelling domain variables

The difference between variables and values is not always
clear; the choice of representation can have a large impact.

Example: Consider modelling the depth of invasion of an
oesophageal tumour

• as the single variable Invasion
• as a combination of the two variables Invasion Wall and

Invasion Organs

The number of non-redundant (free) assessments required in
the second representation is less than 40% of that required in
the first representation!
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The level of detail

The level of detail of modelling heavily depends on the purpose
of the constructed system.

Example:

Compare the variables
CardioVascular condition
and Pulmonary condition
to the level of represen-
tation detail of invasion
and the process of me-
tastasis of the tumour

Age

Pulmonary
condition

CardioVasc
condition

Lung
function testECG

Recent
heart fail.

Physical
condition

Weight-
loss

Haema.
metastases

Lymphatic
metastases
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An unambiguous description of: Location

Definition: The variable Location models the longitudinal position
in the oesophagus of the center of the primary tumour, relative to the
location of the stomach.

Causes: The location of the primary tumour has no direct causes,
but is strongly correlated to its histological type.

Values: The variable Location can adopt one of the values
proximal, mid and distal:

• proximal: the tumour’s center is in the upper 1
3 of the oesophagus;

• mid: the tumour’s center is in the middle 1
3 of the oesophagus;

• distal: the tumour’s center is in the lower 1
3 of the oesophagus.

Probabilistic information: For the variable Location are
specified 3 probabilities: Pr(Location)
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The construction of the digraph

• the digraph of a Bayesian network can be constructed by
hand, with the help of domain expert(s);

experts
network

• the digraph of a Bayesian network can be constructed
automatically from a suitable up-to-date dataset.

cm

database
network
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Constructing the digraph by hand

For the construction of the digraph of a Bayesian network by
hand, the notion of causality is used as a heuristic guiding
principle:

“What could cause this effect ?”
“What manifestations could this cause have ?”

The elicited causal relationships are directed from cause to
effect.

Since causality is merely a guiding principle, the resulting
independences need to be verified explicitly !
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Causal anecdote

Bayesian network models for the management of ventilator-associated pneumonia (S. Visscher, PhD Thesis, UU, 2008)
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Fine-tuning the digraph: correlations

By using causality as a guiding principle, correlations are hard
to capture.

Domain experts often have trouble indicating a direction for
such a non-causal relation.

Possible solutions:

• introduce an intermediate variable to capture a common
cause;
• assign a direction to the correlation based on independence.
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Fine-tuning the digraph: indirect arcs

By using causality as a guiding principle, superfluous arcs may
arise.

Domain experts sometimes have trouble indicating the
difference between indirect and direct causes and effects.

The independences can be reviewed by means of case
descriptions.

Example: Length

Circumference

Passage

�

“Suppose that, for a patient
with a circular tumour, you
have made an assessment
of his ability to swallow food.
Can additional knowledge of
the tumour’s length change
your assessment ?”
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Fine-tuning the digraph: cycles

By using causality as a guiding principle, cycles may arise.

• the cycle can be the consequence of an erroneous arc;
• the cycle can model a feedback process in the domain of

application.

Any cycle needs to be broken, for example by

• deleting an appropriate arc, based upon domain knowledge;
• reversing an appropriate arc (not violating independences !);
• explicitly modelling the evolution of time of the underlying

process.
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An example cycle from a feedback process

Cirrhosis
yes
no

Liver architecture

Portal hypertension
yes
no

Portasystemic shunting

Portasystemic collaterals

Congestive splenomegaly

Portal blood flow

Splenomegaly
yes
no

Functional splenomegaly Systemic antigens

Liver clearance capacity

Liver cell mass

Liver synthesis capacity
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An example cycle from a feedback process

A possible solution
for breaking the cycle:

Cirrhosis
yes
no

Liver architecture

Portal hypertension
yes
no

Portasystemic shunting

Portasystemic collaterals

Congestive splenomegaly

Splenomegaly
yes
no

Functional splenomegaly Systemic antigens

Liver clearance capacity

Liver cell mass

Liver synthesis capacity
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Experiences with handcrafting the digraph

Although handcrafting the digraph of a Bayesian network can
take considerable time, it is doable:

• domain experts are allowed to express their knowledge and
experience in either causal or diagnostic direction;
• domain experts tend to feel comfortable with digraphs as

representations of their knowledge and experience;
• in various domains reusable components are available.
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Algorithms for automated graph construction

Consider a set of variables V . The digraph of a BN can be
automatically constructed from a dataset D by (possibly a
combination of):

• constraint-based approaches
• perform (conditional) independence tests on data
• add arcs to G to match these independences
• score and search-based approaches
• search in model space; e.g. the space of possible DAGs
• measure match between model and data distributions

In both cases we need to create graphs, extract probabilistic
information from data, and decide on the quality of the match.

These algorithms are often called structure learning algorithms
and are typically iterative.
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A dataset

Definition:

Let V be a set of domain variables. A dataset D over V is a
multi-set of cases, which are configurations cV of V .

D can be used for learning a Bayesian network B = (G,Γ) if:

• the variables and values in D are (easily) translated to the
variables and values of the network under construction;
• every case in D specifies a value for each variable;
• the cases in D are generated independently;
• D reflects a time-independent process;
• D contains sufficient and reliable information.

The information in a dataset describes a joint probability
distribution PrD(V ) over its variables; this is an approximation
of the true distribution Pr(V ).

253



A CI structure learning algorithm (brief)

A conditional independence (CI) algorithm for learning a DAG
from a dataset D:

Order the variables under consideration: V1, . . . , Vn;
For i = 2 to n do

find a minimal set δ(Vi) ⊆ {V1, . . . , Vi−1} such that
ID({Vi}, δ(Vi), {V1, . . . , Vi−1} \ δ(Vi));

ρ(Vi)← δ(Vi);

Benefit: guaranteed acyclic
Drawback: structure, and hence compactness, depends
heavily on chosen ordering

254



Assessing probabilities from data

Let V = {V1, . . . , Vn}, n ≥ 1, be a set of discrete random
variables and let D be a dataset over V with N cases.

Any probability from PrD can be obtained from D by frequency
counting.

For example, consider a variable Vi ∈ V and a subset of
variables W ⊆ V \ {Vi}. Then, e.g.

PrD(cVi) =
N(cVi)

N
, and

PrD(cVi | cW )=
PrD(cVi ∧ cW )

PrD(cW )
=
N(cVi ∧ cW )/N

N(cW )/N
=
N(cVi ∧ cW )

N(cW )

where N(c) is the number of cases consistent with c.
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Establishing assessment functions for B

Let V be a set of discrete random variables, let D be a dataset
over V with N cases and let G be a DAG with VG = V .

For G, a corresponding set Γ = {γVi | Vi ∈ VG} of assessment
functions is obtained from D, by frequency counting. That is,

γ(cVi | cρ(Vi)) = PrD(cVi | cρ(Vi)) and
γ(cVi) = PrD(cVi) if ρ(Vi) = ∅

for each variable Vi ∈ V , every configuration cVi of Vi and all
configurations cρ(Vi) of the parent set ρ(Vi) of Vi in G.
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Assessing γVi: an example (1)

Consider the following dataset
D and graph G:

V1

V2 V3

V4
¬v1 ∧ ¬v2 ∧ v3 ∧ ¬v4 X
v1 ∧ v2 ∧ ¬v3 ∧ ¬v4
v1 ∧ v2 ∧ v3 ∧ ¬v4
¬v1 ∧ ¬v2 ∧ v3 ∧ v4 X
v1 ∧ v2 ∧ ¬v3 ∧ ¬v4
v1 ∧ v2 ∧ ¬v3 ∧ ¬v4
v1 ∧ v2 ∧ ¬v3 ∧ v4
¬v1 ∧ ¬v2 ∧ v3 ∧ ¬v4 X

v1 ∧ v2 ∧ ¬v3 ∧ ¬v4
¬v1 ∧ v2 ∧ v3 ∧ ¬v4 X
¬v1 ∧ v2 ∧ v3 ∧ ¬v4 X
v1 ∧ v2 ∧ v3 ∧ ¬v4
v1 ∧ v2 ∧ v3 ∧ ¬v4
¬v1 ∧ v2 ∧ v3 ∧ ¬v4 X
v1 ∧ v2 ∧ ¬v3 ∧ v4

The values of γV1 are assessed as follows:

γ(¬v1) =
N(¬v1)
N

=
6

15
= 0.4 and γ(v1) =

N(v1)

N
= . . .
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Assessing γVi: an example (2)

Consider the following dataset
D and graph G:

V1

V2 V3

V4
¬v1 ∧ ¬v2 ∧ v3 ∧ ¬v4 X
v1 ∧ v2 ∧ ¬v3 ∧ ¬v4
v1 ∧ v2 ∧ v3 ∧ ¬v4
¬v1 ∧ ¬v2 ∧ v3 ∧ v4 X
v1 ∧ v2 ∧ ¬v3 ∧ ¬v4
v1 ∧ v2 ∧ ¬v3 ∧ ¬v4
v1 ∧ v2 ∧ ¬v3 ∧ v4
¬v1 ∧ ¬v2 ∧ v3 ∧ ¬v4 X

v1 ∧ v2 ∧ ¬v3 ∧ ¬v4
¬v1 ∧ v2 ∧ v3 ∧ ¬v4 XX
¬v1 ∧ v2 ∧ v3 ∧ ¬v4 XX
v1 ∧ v2 ∧ v3 ∧ ¬v4
v1 ∧ v2 ∧ v3 ∧ ¬v4
¬v1 ∧ v2 ∧ v3 ∧ ¬v4 XX
v1 ∧ v2 ∧ ¬v3 ∧ v4

The values of γV2 are assessed as follows:

γ(v2 | ¬v1) =
N(¬v1 ∧ v2)
N(¬v1)

=
3

6
= 0.5, etc.. . .
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A metric algorithm for structure learning

An (unsupervised metric) algorithm for automated construction
of a BN B from a dataset D consists of two components:

• a quality measure: indicates how good the learned model B
“explains” the data, i.e. does PrB match PrD?

We consider the MDL quality measure. The measure
requires a complete network with probabilities; these
are obtained by frequency counting.

• a search procedure: a heuristic for finding a network with the
highest quality given the dataset

We consider the B search heuristic (a hill-climber).
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The quality of a graph given the data

Definition: (‘MDL quality measure’)
Let D be a dataset with N cases over variables V .

Let P be a joint distribution over the set of all DAGs G with
node set VG = V .

The quality of G given D, notation: Q(G,D), is defined as

Q(G,D) = logP (G)−N ·H(G,D)− 1

2
K · logN

where

H(G,D) = −
∑
Vi∈V

∑
cVi

∑
cρ(Vi)

(
N(cVi ∧ cρ(Vi))

N

)
·log

(
N(cVi ∧ cρ(Vi))
N(cρ(Vi))

)

and K =
∑
Vi∈V

2|ρ(Vi)| for binary-valued variables.
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The entropy term H(G,D)

Let Pr be the joint distribution defined by B with DAG G with
VG = V , and Γ is obtained from D. Then,

logP ′(D | B) = log
∏
cV ∈D

Pr(cV ) = log
∏
cV ∈D

∏
Vi∈V

γ(cVi | cρ(Vi)) =

= log
∏
Vi∈V

∏
cVi

∏
cρ(Vi)

γVi(cVi | cρ(Vi))N(cVi∧cρ(Vi)) =

= log
∏
Vi∈V

∏
cVi

∏
cρ(Vi)

(
N(cVi ∧ cρ(Vi))
N(cρ(Vi))

)N(cVi∧cρ(Vi))

= N ·
∑
Vi∈V

∑
cVi

∑
cρ(Vi)

(
N(cVi ∧ cρ(Vi))

N

)
· log

(
N(cVi ∧ cρ(Vi))
N(cρ(Vi))

)
= −N ·H(G,D)
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Computing quality Q(G,D): an example (1)

Consider the same dataset D as
before and the following graph G.

We first compute −N ·H(G,D):

V1

V2 V3

V4

For V1:

N(v1) log
N(v1)

N
+N(¬v1) log

N(¬v1)
N

= 9·log
9

15
+6·log

6

15
= −4.384

(if we use the 10 log for easy computation)
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Computing quality Q(G,D): an example (2)

Consider the same dataset D as
before and the following graph G.

We first compute −N ·H(G,D):

V1

V2 V3

V4

−4.384

For V2:

N(v2 ∧ v1) log
N(v2 ∧ v1)
N(v1)

+N(¬v2 ∧ v1) log
N(¬v2 ∧ v1)

N(v1)
+

+N(v2 ∧ ¬v1) log
N(v2 ∧ ¬v1)
N(¬v1)

+N(¬v2 ∧ ¬v1) log
N(¬v2 ∧ ¬v1)

N(¬v1)
=

= 9 log
9

9
+ 0 log

0

9
+ 3 log

3

6
+ 3 log

3

6
= −1.806 (using 10 log)

By convention 0 log 0
a = 0: zero counts shouldn’t contribute; moreover

lim
x→0

x log x = 0
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Computing quality Q(G,D): an example (3)

Consider the same dataset D as
before and the following graph G.

We first compute −N ·H(G,D):

V1

V2 V3

V4

−4.384

−1.806

For V3:

N(v3 ∧ v1) log
N(v3 ∧ v1)
N(v1)

+N(¬v3 ∧ v1) log
N(¬v3 ∧ v1)

N(v1)
+

+N(v3 ∧ ¬v1) log
N(v3 ∧ ¬v1)
N(¬v1)

+N(¬v3 ∧ ¬v1) log
N(¬v3 ∧ ¬v1)

N(¬v1)
=

= 3 log
3

9
+ 6 log

6

9
+ 6 log

6

6
+ 0 log

0

6
= −2.49
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Computing quality Q(G,D): an example (4)

Consider the same dataset D as
before and the following graph G.

We first compute −N ·H(G,D):

V1

V2 V3

V4

−4.384

−1.806

−2.488For V4:

N(v4∧v2∧v3)logN(v4∧v2∧v3)
N(v2∧v3) +N(¬v4∧v2∧v3)logN(¬v4∧v2∧v3)

N(v2∧v3)

+ N(v4∧¬v2∧v3)logN(v4∧¬v2∧v3)
N(¬v2∧v3) +N(¬v4∧¬v2∧v3)logN(¬v4∧¬v2∧v3)

N(¬v2∧v3)

+ N(v4∧v2∧¬v3)logN(v4∧v2∧¬v3)
N(v2∧¬v3) +N(¬v4∧v2∧¬v3)logN(¬v4∧v2∧¬v3)

N(v2∧¬v3)

+ N(v4∧¬v2∧¬v3)logN(v4∧¬v2∧¬v3)
N(¬v2∧¬v3) +N(¬v4∧¬v2∧¬v3)logN(¬v4∧¬v2∧¬v3)

N(¬v2∧¬v3)

= 0 log 0
6

+ 6 log 6
6

+ 2 log 2
3

+ 1 log 1
3

+ 2 log 2
6

+ 4 log 4
6

+ 0 log 0
0

+ 0 log 0
0︸ ︷︷ ︸ = −2.488

= 0 by convention ( lim
x→0

x log
x

x
= 0)
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Computing quality Q(G,D): an example (5)

Consider the same dataset D as
before and the following graph G.

We first compute −N ·H(G,D):

V1

V2 V3

V4

−4.384

−1.806

−2.488

−2.488

−N ·H(G,D) = −4.384− 1.806− 2.488− 2.488 = −11.167

(if we again use the 10 log for easy computation)
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Computing quality Q(G,D): an example (6)

Consider the same dataset D as
before and the following graph G.

V1

V2 V3

V4

We have that

• −N ·H(G,D) = −11.167

• −1
2
K · logN = −1

2
· (1 + 2 + 2 + 4) · log 15 = −5.292

Suppose that P is a uniform distribution with logP (G) = C.
Then

Q(G,D) = C − 16.459

�
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Comparing graphs: an example

Consider the same dataset D as before. Consider the
following graphs and their quality with respect to D:

V1

V2 V3

V4

C − 16.459

V1

V2 V3

V4

C − 17.324

V1

V2 V3

V4 C − 17.636

V1 V2 V3 V4

C − 16.941

Among these graphs, the top left one best fits the data.
268



Which graph is best? The interaction among the terms

Reconsider the quality of acyclic digraph G given dataset D:

Q(G,D) = logP (G)−N ·H(G,D)− 1

2
K · logN

Assuming uniform P , the following interactions exist among the
different terms of Q(G,D): NB: x-axis captures density of G

0
G

IR−

Q(G,D)

−1
2
Klog. N

−NH. (G,D)

logP(G)

269



Finding the best graph: a search procedure

The search procedure of the learning algorithm is a heuristic
for finding a DAG with the highest quality given the data.

number of number of acyclic
nodes digraphs

1 1
2 3
3 25
4 543
5 29, 281
6 3, 781, 503
7 1, 138, 779, 265
8 783, 702, 329, 343
9 1, 213, 442, 454, 842, 881
10 4, 175, 098, 976, 430, 598, 143
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B search: the basic idea

The search procedure starts with a graph without arcs to which
it adds appropriate arcs:

• compute for every possible arc that can be added, the
increase in quality of the graph;
• choose the arc that results in the largest increase in quality

and add this arc to the graph.

network

?

database

?

network

Repeat until an increase in quality can no longer be achieved.
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The B search heuristic

PROCEDURE CONSTRUCT-DIGRAPH (V , D, G):

FOR EACH Vi ∈ V DO

ρ(Vi) := ∅
OD;
REPEAT

FOR EACH PAIR Vi, Vj ∈ V SUCH THAT ADDITION OF

THE ARC (Vi, Vj) TO G DOES NOT INTRODUCE A CYCLE DO

diff(Vi, Vj) := q(Vj ,ρ(Vj) ∪ {Vi},D)− q(Vj ,ρ(Vj),D)
OD;
SELECT THE PAIR Vi, Vj ∈ V FOR WHICH diff(Vi, Vj) IS MAXIMAL;
IF diff(Vi, Vj) > 0
THEN ρ(Vj) := ρ(Vj) ∪ {Vi}
FI

UNTIL diff(Vi, Vj) ≤ 0.
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B search diff(Vi, Vj): an example (1)

Consider the same dataset D as before and suppose (!) that
the search procedure has constructed the following graph:

V1

V2 V3

V4

For which of the following arcs does the search procedure
compute the increase in quality ?

(V1, V2) (V2, V1) (V4, V2)

(V1, V4) (V4, V1) (V3, V1)

(V2, V3) (V3, V2) (V4, V3)
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The quality of a node

Definition: Let V , D, N and G be as before.

The quality of a node Vi ∈ VG given D, notation:
q(Vi,ρ(Vi),D), is defined as

q(Vi,ρ(Vi),D) =
∑
cVi

∑
cρ(Vi)

N(cVi ∧ cρ(Vi)) · log

(
N(cVi ∧ cρ(Vi))
N(cρ(Vi))

)

− 1

2
· 2|ρ(Vi)| · logN

Lemma: (without proof)

Q(G,D) = logP (G) +
∑
Vi∈VG

q(Vi,ρ(Vi),D)
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B search diff(Vi, Vj): an example (2)

Consider the same dataset D as before and suppose (!) that
the search procedure has constructed the following graph:

V1

V2 V3

V4

We consider the increase in quality for arc (V2, V3):

diff(V2, V3) = q(V3, {V1, V2},D)− q(V3, {V1},D)
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B search diff(Vi, Vj): an example (3)

V1

V2 V3

V4

q(V3, {V1, V2},D) =

=N(v3∧v1∧v2)logN(v3∧v1∧v2)
N(v1∧v2) +N(v3∧v1∧v2)logN(v3∧v1∧v2)

N(v1∧v2)

+N(v3∧v1∧v2)logN(v3∧v1∧v2)
N(v1∧v2) +N(v3∧v1∧v2)logN(v3∧v1∧v2)

N(v1∧v2)

+N(v3∧v1∧v2)logN(v3∧v1∧v2)
N(v1∧v2) +N(v3∧v1∧v2)logN(v3∧v1∧v2)

N(v1∧v2)

+N(v3∧v1∧v2)logN(v3∧v1∧v2)
N(v1∧v2) +N(v3∧v1∧v2)logN(v3∧v1∧v2)

N(v1∧v2)

− 1
2
· 4 logN = −4.84
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B search diff(Vi, Vj): an example (4)

V1

V2 V3

V4

q(V3, {V1},D) =

= N(v3 ∧ v1) log N(v3∧v1)
N(v1)

+N(v3 ∧ v1) log N(v3∧v1)
N(v1)

+N(v3 ∧ v1) log N(v3∧v1)
N(v1)

+N(v3 ∧ v1) log N(v3∧v1)
N(v1)

− 1
2
· 2 logN = −3.66
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B search diff(Vi, Vj): an example (5)

V1

V2 V3

V4

We consider the increase in quality for arc (V2, V3):

diff(V2, V3) = q(V3, {V1, V2},D)− q(V3, {V1},D)

= −4.84−−3.66 = −1.18

The increase in quality for arc (V2, V3) is negative; the arc will
therefore not be selected by the search procedure.
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B search diff(Vi, Vj): an example (6)

V1

V2 V3

V4

We consider the increase in quality for the arc (V1, V2):

diff(V1, V2) = q(V2, {V1},D)− q(V2, ∅,D)
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B search diff(Vi, Vj): an example (7)

V1

V2 V3

V4

q(V2, {V1},D) =

= N(v2 ∧ v1) log N(v2∧v1)
N(v1)

+N(v2 ∧ v1) log N(v2∧v1)
N(v1)

+N(v2 ∧ v1) log N(v2∧v1)
N(v1)

+N(v2 ∧ v1) log N(v2∧v1)
N(v1)

− 1
2
· 2 · logN = −2.98

q(V2, ∅,D) =

= N(v2) log N(v2)
N

+N(v2) log N(v2)
N
− 1

2
· logN

= −3.85
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B search diff(Vi, Vj): an example (8)

V1

V2 V3

V4

We consider the increase in quality for the arc (V1, V2):

diff(V1, V2) = q(V2, {V1},D)− q(V2, ∅,D)

= −2.98−−3.85 = 0.87

The increase in quality for arc (V1, V2) is positive; the arc may
be selected by the search procedure, but only if it has the
largest increase of all options.
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Evaluation

Is the presented metric algorithm any good?

• our example dataset D was generated from the following
network:

V1

V2 V3

V4

γ(v1) = 0.8

γ(v2 | v1) = 0.9
γ(v2 | ¬v1) = 0.3

γ(v3 | v1) = 0.2
γ(v3 | ¬v1) = 0.6

γ(v4 | v2 ∧ ¬v3) = 0.6
γ(v4 | ¬v2 ∧ ¬v3) = 0.1

γ(v4 | v2 ∧ v3) = 0.1
γ(v4 | ¬v2 ∧ v3) = 0.2

• the MDL score is asymptotically correct: for best
MDL-scoring B, PrB will be arbitrarily close to the sampled
distribution, given sufficient independent samples.
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Some remarks (1)

• A learning algorithm can be used to obtain an initial graph,
which is then refined with the help of a domain expert;

database

initial network network

experts

• A learning algorithm can be used to construct parts of the
graph of a Bayesian network.
• There exist less greedy variants of the algorithm discussed.
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Some remarks (2)

When learning networks of general topology is infeasible, it can
be restricted to classes of networks with restricted topology,
such as

• Naive Bayes classifiers
• TAN and FAN classifiers
• . . .

Learning then typically involves feature selection and is often
accuracy-based (supervised). Discriminative learning is
preferred (optimisation of Pr(C | F ) rather than Pr(CF )) but
expensive.
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Parameter learning

Many structure learning algorithms learn a whole BN, including
network-parameters.

Given a network structure, different algorithms exist for
learning model-parameters θ from data.

• frequentistic approaches: θ is a fixed unknown constant
MLE θ̂ = arg maxθ logP (D | θ)

• Bayesian approach: θ is a random variable
Full: P (θ |D) = P (D|θ)·P (θ)

P (D)

MAP θ̂ = arg maxθ P (D | θ) · P (θ)

Suitability of these approaches depends on the available data.
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Data as a source of probabilistic information

Retrospective data do not always provide for assessing the
probabilities required for a Bayesian network:

• the collection strategies used may have
biased the data;
• the recorded variables and values may not match the

variables and values of the network;
• the data may include missing values;
• the data collection may be insufficiently large;
• . . .
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Sources of probabilistic information

In most domains of application, probabilistic information is
available from different sources:

• ( statistical ) data;
• literature;
• domain experts.

In practice, domain experts will often have to provide the
majority of the probabilities required.
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Literature

Probabilistic information from the literature seldom provides for
assessing the required probabilities:

• the background of the information is not given;
• the information is only partially specified;
• the reported probabilities pertain to variables that are not

directly related in the network;
• the information is non-numerical;
• . . .
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Reducing the burden

Contemporary Bayesian networks comprise tens or hundreds
of variables, requiring thousands of probabilities:

• changes to the
• definitions of the variables and values;
• graphical structure;

may help reduce the number of required probabilities;
• the use of
• domain models;
• canonical models;

may help reduce the number of probabilities to be assessed.
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The use of domain models: an example

Consider building a
Bayesian network for
Wilson’s disease, a
recessively inherited
disease of the liver:

Wilson’s disease genotype (= G)
homozygous (g1)
heterozygous (g2)
normal (g3)

Wilson’s disease (= D)
yes (d1)
no (d2)

Hepatic copper (= HC)
20− 50µg/g (hc1)
50− 250µg/g (hc2)≥ 250µg/g (hc3)

Age (= A)
0− 6 (a1)
6− 10 .
10− 16 .
16− 25 .
25− 40 .
≥ 40 (a6)

Serum caeruloplasmin (= SC)
< 200mg/l (sc1)

200− 300mg/l (sc2)≥ 300mg/l (sc3)

Wilsonian symptoms (= S)
yes (s1)
no (s2)

From the disease being recessively inherited, we have for the
variable ‘Wilson’s disease’ that

γ(d1 | g1) = 1 γ(d2 | g1) = 0

γ(d1 | g2) = 0 γ(d2 | g2) = 1

γ(d1 | g3) = 0 γ(d2 | g3) = 1
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The use of domain models: the example continued

Wilson’s disease genotype (= G)
homozygous (g1)
heterozygous (g2)
normal (g3)

Wilson’s disease (= D)
yes (d1)
no (d2)

Hepatic copper (= HC)
20− 50µg/g (hc1)
50− 250µg/g (hc2)≥ 250µg/g (hc3)

Age (= A)
0− 6 (a1)
6− 10 .
10− 16 .
16− 25 .
25− 40 .
≥ 40 (a6)

Serum caeruloplasmin (= SC)
< 200mg/l (sc1)

200− 300mg/l (sc2)≥ 300mg/l (sc3)

Wilsonian symptoms (= S)
yes (s1)
no (s2)

Consider the node ‘Wilson’s disease genotype’. By Mendel’s law:

Pr(g1) = Pr(g1) ·Pr(g1)+
1

2
·2 ·Pr(g1) ·Pr(g2)+

1

4
·Pr(g2) ·Pr(g2)

With Pr(g1) = Pr(d1) = 0.005, we now find

γ(g1) = 0.005, γ(g2) = 0.131, and γ(g3) = 0.864
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The use of canonical models

Consider the following
causal mechanism:

Burglar Earthquake

Alarm

The node Alarm requires the following probabilities:

γ(alarm | ¬burglar ∧ ¬earthq .) γ(alarm | burglar ∧ ¬earthq .)
γ(alarm | ¬burglar ∧ earthq .) γ(alarm | burglar ∧ earthq .)

The underlying mechanisms that cause the alarm have
‘nothing to do with each other’→ hard to assess probabilities
in a straightforward manner.

A canonical approach requires just two assessments and
provides parameterized rules for computing the other ones.
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Disjunctive interaction, informally

Consider the following causal mechanism:

V1 Vm

V0

. . .

The variables V1, . . . , Vm, m ≥ 2, exhibit a disjunctive interaction
with respect to variable V0 if, for i = 1, . . . ,m, we have that:

• Vi = true causes V0 = true, with some ( non-zero ) probability;
• the probability with which Vi = true causes V0 = true does

not diminish due to the presence or absence of any other
causes.

The canonical model that describes a causal mechanism with
a disjunctive interaction is called a noisy-or gate.
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Disjunctive interaction, continued

The semantics of a disjunctive interaction can be depicted as

AND AND

AND

OR

I1

V1

Vi

Ii

Vm

Im

V0
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Disjunctive interaction, more formally

Consider the following causal mechanism:

V1 Vm

V0

. . .

The variables V1, . . . , Vm, m ≥ 2, exhibit a disjunctive interaction
with respect to the variable V0 iff the following properties hold:

• accountability: there are no other causes for V0 = true than
the modelled causes V1 = true, . . . , Vm = true, that is,
Pr(v0 | ¬v1 ∧ . . . ∧ ¬vm) = 0

• exception independence:
1) for each Vi, an inhibitor Ii can be defined such that

Pr(v0 | ¬v1 ∧ . . . ∧ ¬vi−1 ∧ (vi ∧ ii) ∧ ¬vi+1 ∧ . . . ∧ ¬vm) = 0

Pr(v0 | ¬v1 ∧ . . . ∧ ¬vi−1 ∧ (vi ∧ ¬ii) ∧ ¬vi+1 ∧ . . . ∧ ¬vm) = 1

2) the inhibitors Ii are mutually independent.
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An example

Burglar Earthquake

Alarm

Ib Ie

• the variable Ib describes a combination of
– the skill of the burglar, and . . .

• the variable Ie describes a combination of
– the type of earthquake, and . . .

• the variables Ib and Ie do not describe
– a power failure, or . . .

Does this causal mechanism represent a disjunctive
interaction?
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Probabilities for the noisy-or gate
V1 Vm

V0

. . .

For the variable V0, the noisy-or gate specifies:

• using the property of accountability:
γ(v0 | ¬v1 ∧ . . . ∧ ¬vm) = 0

• using the property of exception independence:
– γ(v0 | ¬v1 ∧ . . . ∧ ¬vi−1 ∧ vi ∧ ¬vi+1 ∧ . . . ∧ ¬vm) = 1− qai where

Pr(ii) = qai for inhibitor Ii of Vi;
– for each configuration c of {V1, . . . , Vm} with
Tc = {i | c contains vi}, Tc 6= ∅: γ(v0 | c) = 1−

∏
i ∈ Tc

qai

For variable V0 only m probabilities have to be assessed.
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An example noisy-or gate

Late
pruning

Late fert-
ilization

Late season
growth

Warm
fall

For the variable Late season growth, the following probabilities
are assessed:

γ(lsg | lp ∧ ¬lf ∧ ¬wf) = 0.8 Pr(ilp) = 0.2

γ(lsg | ¬lp ∧ lf ∧ ¬wf) = 0.8 =⇒ Pr(ilf ) = 0.2

γ(lsg | ¬lp ∧ ¬lf ∧ wf) = 0.6 Pr(iwf ) = 0.4
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An example noisy-or gate

γ(lsg | lp ∧ ¬lf ∧ ¬wf) = 0.8 Pr(ilp) = 0.2

γ(lsg | ¬lp ∧ lf ∧ ¬wf) = 0.8 =⇒ Pr(ilf ) = 0.2

γ(lsg | ¬lp ∧ ¬lf ∧ wf) = 0.6 Pr(iwf ) = 0.4

We then compute, for example,

γ(lsg | lp∧ lf ∧¬wf) = 1−Pr(ilp) ·Pr(ilf ) = 1− 0.2 · 0.2 = 0.96

Late pruning false true
Late fertilisation false true false true

false 0 0.8 0.8 0.96
Warm fall

true 0.6 0.92 0.92 0.98
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The example continued
Now compare:
• the probabilities obtained from the noisy-or gate:

Late pruning false true
Late fertilisation false true false true

false 0 0.8 0.8 0.96
Warm fall

true 0.6 0.92 0.92 0.98

• the probabilities assessed by domain experts:
Late pruning false true
Late fertilisation false true false true

false 0.1 0.8 0.8 0.9
Warm fall

true 0.6 0.9 0.9 1.0
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If accountability is violated

V1 Vm

V0

. . .

Suppose that exception independence holds, but accountability
does not, that is,

Pr(v0 | ¬v1 ∧ . . . ∧ ¬vm) = p with p > 0

• the noisy-or gate can be applied after including an additional
parent Vm+1 of V0 with

γ(v0 | ¬v1 ∧ . . . ∧ ¬vm ∧ ¬vm+1) = 0
γ(v0 | ¬v1 ∧ . . . ∧ ¬vm ∧ vm+1) = p

• the leaky noisy-or gate can be used.
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The leaky noisy-or gate

Consider the following causal mechanism with exception
independence:

V1 Vm

V0

. . .

Suppose that Pr(v0 | ¬v1 ∧ . . . ∧ ¬vm) = p, where p = 1− q0 > 0
is the leak probability. The leaky noisy-or gate specifies for V0:
• γ(v0 | ¬v1 ∧ . . . ∧ ¬vm) = p;
• γ(v0 | ¬v1 ∧ . . . ∧ ¬vi−1 ∧ vi ∧ ¬vi+1 ∧ . . . ∧ ¬vm) = 1− qli

where Pr(ii) = qli = q0 · qai for inhibitor Ii of Vi;
• for each configuration c with Tc 6= ∅, we have

γ(v0 | c) = 1− q0 ·
∏
i ∈ Tc

qai = 1− q0 ·
∏
i ∈ Tc

(
qli
q0

)
For variable V0 only m+ 1 probabilities need to be assessed.
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An example leaky noisy-or gate

Reconsider the late-pruning example:

γ(lsg | lp ∧ ¬lf ∧ ¬wf) = 0.8 Pr(ilp) = 0.2

γ(lsg | ¬lp ∧ lf ∧ ¬wf) = 0.8 =⇒ Pr(ilf ) = 0.2

γ(lsg | ¬lp ∧ ¬lf ∧ wf) = 0.6 Pr(iwf ) = 0.4

With a leak probability Pr(lsg | ¬lp ∧ ¬lf ∧ ¬wf) = 0.1, giving
q0 = 0.9, we compute

Late pruning false true
Late fertilisation false true false true

false 0.1 0.8 0.8 0.96
Warm fall

true 0.6 0.91 0.91 0.98
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Subjective probabilities

Probability assessment often requires the help of domain
experts→ assessments are based upon personal knowledge
and experience, i.e. subjective.

This can result in a number of problems:
• assessments are incoherent7:

– Pr(a) < Pr(a ∧ b);
– Pr(a) > Pr(b) and yet Pr(a | b) < Pr(b | a).

• assessments are biased as a result of various psychological
factors, and therefore uncalibrated8;
• the domain expert is not capable of expressing his

knowledge and experience in terms of numbers.

7assessments do not adhere to the postulates of probability theory
8assessments do not reflect true frequencies

305



Overconfidence and underconfidence

• overconfident assessor: compared with true frequencies,
assessments show a tendency towards the extremes;
• underconfident assessor: compared with true frequencies,

assessments show a tendency away from the extremes.
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Heuristics

Upon assessing probabilities for a certain outcome, people
tend to use simple cognitive heuristics:

• representativeness: the assessment is based upon the
similarity with a stereotype outcome;
• availability: the assessment is based upon the ease with

which similar outcomes are recalled;
• anchoring-and-adjusting: the probability is assessed by

adjusting an initially chosen anchor probability:
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Pitfalls

Using the representativeness heuristic can introduce biases:

• prior probabilities, or base rates, are insufficiently taken
into account;
• assessments are based upon insufficient samples;
• weights of the characteristics of the stereotype outcome

are insufficiently taken into consideration;
• . . .
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Pitfalls — cntd.

Using the availability heuristic can introduce biases:

• the ease of recall from memory is influenced by
• recency, rareness, and the past consequences for the

assessor;
• external stimuli:

Example
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Pitfalls — cntd.

Using the anchoring-and-adjusting heuristic can introduce
biases:

• the assessor does not choose an appropriate anchor;
• the assessor does not adjust the anchor to a sufficient

extent:
Example

• . . .
310



Probability assessment tools

For eliciting probabilities from experts, various tools are
available from the field of decision analysis:

• probability wheels;
• betting models;
• lottery models;
• probability scales.
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Probability wheels

A probability wheel is composed of two coloured faces and a
hand:

The expert is asked to adjust the area of the red face so that
the probability of the hand stopping there, equals the
probability of interest.

312



Betting models — an example

For their new soda, an expert from Colaco is asked to assess
the probability Pr(n) of a national success:

• the expert is offered two bets:

d

d̄

national success

national failure

national success

national failure

x euro

−y euro

−x euro

y euro

• if the expert is indifferent between d and d̄, then

x · Pr(n)− y · (1− Pr(n)) = y · (1− Pr(n))− x · Pr(n)

from which we find Pr(n) =
y

x+ y
.
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Lottery models — an example

For their new soda, an expert from Colaco is asked to assess
the probability Pr(n) of a national success:

• the expert is offered two lotteries:

d

d̄

national success

national failure

p(outcome)

p(not outcome)

Hawaiian trip

chocolate bar

Hawaiian trip

chocolate bar

• if the expert is indifferent between d and d̄, then
Pr(n) = p(outcome).

314



Obtaining many probabilities in little time: a tool

• probabilities are represented by fragments of text;
• each probability is accompanied by a verbal-numerical scale;
• probabilities are grouped to ensure consistency.

Conjunctivitis |Mucositis (1)

Consider a pig without an infection of the mucous.
How likely is it that this pig shows a conjunctivitis ?
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An iterative procedure for probability assessment

Repeat iteratively until satisfactory behaviour of the network is
attained:

• obtain initial probability assessments;
• investigate, for each probability, whether or not the output is

sensitive to its assessment;
• investigate, for each sensitive probability, whether or not its

assessment can be cost-effectively improved upon.
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