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Abstract

In close collaboration with two experts, we are
building a Bayesian network for the early detec-
tion of classical swine fever in pigs. Although
our network will ultimately be tailored to detect-
ing the disease in pig herds, we decided to begin
with modelling the pathogenesis of the disease in
the individual animal. Having modelled the pat-
terns of classical swine fever observed in individ-
uals, we now are in the process of rendering our
network applicable to herds. Upon doing so, we
are confronted with various intriguing modelling
issues. As an example, we focus in this paper on
the issue of modelling diverging knowledge that
pertains to the different types of pig in a herd.

1 Introduction

Bayesian networks are being successfully applied in a wide
range of domains, for a variety of problems. Most notably,
networks are being developed for the medical domain, for
solving diagnostic problems. In the medical domain, di-
agnosis is aimed at detecting disease in an individual pa-
tient. Bayesian networks for clinical diagnosis therefore
typically model the onset and progression of a disease in
an individual. Over the last decade in fact, considerable
experience has been gained in modelling the pathogenesis
of disease [1].

Although the veterinary domain at first sight is closely re-
lated to the medical domain of human disease, veterinary
applications of Bayesian networks are still quite rare, al-
though recently some networks have been proposed, for
example for diagnosing bovine diseases [2] and for estab-
lishing the severity of a specific infection in swine [3]. A
major difference in diagnosis in the veterinary field com-
pared to that in the human medical domain, is that the de-
tection of disease is focused on herds rather than on indi-
vidual animals, especially when infectious diseases in farm
animals are concerned. Developing a Bayesian network for

the veterinary domain therefore demands that upon mod-
elling the pathogenesis of an infectious disease, its onset
and progression within a herd needs to be taken into ac-
count. While considerable experience has been gained with
building Bayesian networks for the detection of disease in
individuals, modelling the knowledge involved in detecting
diseases in a population has so far received little attention.

In close collaboration with two experts from the Central
Institute of Animal Disease Control in the Netherlands, we
are developing a Bayesian network for the early detection
of classical swine fever in pig herds. Classical swine fever
is an infectious viral disease of pigs, which has serious
socio-economical consequences upon an outbreak. As the
disease has a potential for rapid spread, it is imperative that
its occurrence is detected in the early stages. The Bayesian
network under construction is aimed at supporting veteri-
nary practitioners in the diagnosis of the disease when vis-
iting pig farms with disease problems of unknown cause.

Although our network for classical swine fever will ulti-
mately be tailored to detecting the disease in pig herds, we
decided to begin with modelling the pathogenesis of the
disease in individual animals. By doing so, we could care-
fully model the details of the onset and progression of the
disease within an animal, without being concerned with is-
sues related to the transmission of the disease. In addi-
tion, we could build upon our experience with modelling
the pathogenesis of human disease in individual patients.
Having modelled the patterns of classical swine fever ob-
served in individual animals, we now are in the process of
rendering our network applicable to herds. Upon doing so,
we are confronted with various intriguing modelling issues.

In this paper, we address one of the modelling issues that
we have encountered so far upon tailoring our network for
classical swine fever to pig herds. We will focus more
specifically on the issue of modelling diverging knowledge
that pertains to the different types of pig in a herd. Upon
studying the pathogenesis of the disease, we noted that the
progression of the disease and the clinical signs to be ob-
served, differ among the various types of pig in a herd.
More in particular, in inseminated sows the disease may
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lead to an intra-uterine infection, which may give rise to an
early abortion or to a litter with a relatively large number
of stillborn or trembling piglets. It will be evident that the
part of the network that pertains to the reproductive cycle
should be taken to apply to sows only. To model this di-
verging knowledge, we enhanced the meanings of the vari-
ables that capture issues related to the reproductive cycle
in sows, by including a meta-level value that serves to rep-
resent applicability of the variable. To provide for correct
probabilistic reasoning, we formulated associated parame-
ter probabilities such that the variables involved partake in
the reasoning processes only for sows.

The paper is organised as follows. In Section 2, we briefly
introduce the domain of classical swine fever and the net-
work that we developed so far. In Section 3, we elaborate
on both the added value and the restrictions that originate
from combining knowledge of the disease in individual an-
imals and at the population level for the purpose of early
detection. In Section 4, we focus on the modelling of di-
verging knowledge for different types of pig. The paper
ends with our concluding observations in Section 5.

2 The network for classical swine fever

Classical swine fever is a viral disease of pigs with a poten-
tial for rapid spread. The virus causing the disease is trans-
mitted mainly by direct contact between pigs, yet transmis-
sion by for example farmers or vehicles is also known to oc-
cur. When a pig is infected, the virus first invades the lym-
phatic system. It subsequently affects the blood vessels and
the immune system, which may give rise to bleedings and
diminished resistance to secondary infections. The virus
will ultimately affect several organs and the pig will die.
As a consequence of the infection, a pig will show differ-
ent disease symptoms, among which are fever, inflamma-
tion of the eyes, neurological disorders, and haemorrhages
of the skin.

Classical swine fever is quite common in parts of Europe
and Africa, and in many countries of Asia and of Central
and South America. Extensive measures have been taken
within the European pig husbandry to prevent the introduc-
tion and spread of the virus. Unfortunately, however, each
year several outbreaks occur. Since an outbreak of the dis-
ease has a major impact on international trade of animals
and animal products, veterinarians are obliged by law to
report any suspicion of classical swine fever in a pig herd.

Clinical symptoms seen by the farmer or by the veterinarian
are usually the first indications of the presence of classical
swine fever in a herd. Unfortunately, the symptoms of the
disease are rather atypical and are shared to a large extent
by common airways and gastro-intestinal infections. As a
consequence, the disease can remain undetected for weeks
and may spread to many herds. In the 1997/1998 epidemic
in the Netherlands, for example, it was estimated that the

disease remained undetected for six weeks and that, by that
time, already 39 herds were infected [4]. This major out-
break had serious economical consequences. A total of 12

million pigs had to be killed and the costs involved were
estimated to be 2.3 billion US dollars.

Because of the major socio-economical consequences that
an outbreak may have, reducing the time between first in-
fection of a herd and first detection is of major importance.
The shorter this high-risk period, the more restricted the
epidemic may be. We feel that improving the clinical diag-
nosis of the disease, that is, its detection based upon clinical
signs seen at the farm, is an important step towards short-
ening the high-risk period. In close collaboration with two
experts from the Central Institute of Animal Disease Con-
trol in the Netherlands, we are building a Bayesian network
that is tailored to early detection of the disease; the network
is aimed at usage by veterinary practitioners in the field.

Our network is still under development and currently in-
cludes 42 variables for which over 2400 parameter proba-
bilities have been assessed. The variables in the network
model the risk factors and the pathogenesis of the disease,
but more specifically the network also models the clinical
signs to be observed in a pig herd to provide for diagno-
sis at a farm site. In the one and a half years since the
beginning of the construction of the network, we held one
unstructured interview in which the experts were asked to
describe the domain and 11 structured interviews in which
the experts were asked detailed questions. In six of these
structured interviews, the probabilities required for the net-
work were obtained using standardised forms with ques-
tions accompanied by a probability scale containing words
and numbers [5]. In all sessions, both experts were present
and consensus was always reached.

3 From the individual to the herd

To provide for the diagnosis of classical swine fever, a
Bayesian network should include not just knowledge about
the pathogenesis of the disease in individual animals, but
also knowledge about its progression in a herd. We briefly
describe the sequence of events during an outbreak and
comment on the modelling issues that arise upon capturing
the knowledge involved.

The first pigs that are infected with classical swine fever on
a farm will not immediately show clinical signs of the dis-
ease, as a consequence of an incubation period of 2 to 14

days. After the incubation period, these pigs will start to
develop clinical signs, but the severity of these signs and,
hence, their visibility will depend on many factors like the
strain of the virus and the pig’s immune status. At this stage
of the disease, the pigs are infectious and, since the virus
rapidly spreads in a susceptible pig population, the fraction
of infected pigs in the herd will increase over time. De-
pending on the attentiveness and experience of the farmer
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and possibly the veterinarian involved, signs of the disease
will sooner or later be noticed and a suspicion of classical
swine fever may be reported.

In the early diagnosis of a herd with disease problems of an
unknown cause, a veterinarian will at first focus her atten-
tion on individual pigs. A combination of clinical signs in a
single pig, such as fever and inflammation of the eyes, then
is more likely to give rise to a suspicion of classical swine
fever than if these signs are observed separately in different
pigs. Diagnostic reasoning therefore explicitly begins by
focusing on individual pigs. Upon finding a diseased pig,
however, the veterinarian will consider the other pigs in the
same pen. In case more pigs show signs of disease, an in-
fectious cause becomes a more and more likely explanation
of the observed findings. The additional information from
the pen thus is drawn into the diagnostic process. Similarly,
information from across pens, such as an increased number
of sows with stillborn piglets, can provide further evidence
of an infectious disease.

The progression of classical swine fever in an individual
pig is dynamic, that is, during the infection different clini-
cal signs are found to succeed one another. In an infected
pig, for example, constipation is usually followed by diar-
rhoea. Since in an infected herd the various pigs will typi-
cally be in different stages of the disease, a mixture of signs
will be observed. Moreover, due to the immunodepression
caused by the disease, opportunistic pathogens are likely to
cause secondary infections. The result is a highly confusing
clinical picture of signs. To contribute to the complexity of
the diagnosis, the veterinarian can only observe the pigs
during her visit to the herd and, although the farmer can in-
form her about the disease progression within the herd, the
provided information generally is not on individual pigs.

As outline above, diagnostic reasoning for the early detec-
tion of classical swine fever in a pig herd typically sets out
by considering individual animals and then proceeds to an
investigation of the pen and of the entire herd. A Bayesian
network that is aimed at supporting a veterinarian in her
reasoning tasks, therefore, should capture knowledge about
the onset and progression of the disease at three different
levels of scope. Moreover, since the clinical picture pre-
sented to the veterinarian is likely to be a mixture of various
simultaneous infections, the network cannot be restricted to
just the effects of classical swine fever: it should be able to
distinguish between the more common airways and gastro-
intestinal infections and the low-prevalence classical swine
fever. Ideally also the network should be able to handle
changing patterns of disease over time. To build a network
that meets these requirements clearly is a challenge to the
knowledge engineers involved.

Although our network will ultimately be tailored to the
early diagnosis of classical swine fever in herds, we de-
cided to begin with modelling the onset and progression

of the disease in individual animals. From the consider-
ations above, we have that diagnostic reasoning involves
at least reasoning about individual pigs, which requires a
model of the disease’s pathogenesis. By beginning the con-
struction of our network at the level of individual animals,
we could carefully model the intricate details of the pro-
gression of the disease, building upon our experience with
modelling the pathogenesis of human disease in individual
patients. We further decided to develop a static network.
Because veterinary routines do not monitor individual pigs
over time, the ability to reason about processes that change
with time, as provided by a dynamic network, would cur-
rently be of little use in practice.

4 Modelling diverging knowledge

Upon constructing our Bayesian network for classical
swine fever, we decided, as argued above, to begin with
modelling the onset and progression of the disease in in-
dividual pigs and use the resulting model for developing a
network for the early detection of the disease in pig herds.
Upon studying the pathogenesis of the disease, we noted
that the progression of the disease and the clinical signs
to be observed differ among the various types of pig in a
herd. More specifically, in inseminated sows the disease
may lead to an intra-uterine infection, which may give rise
to an early abortion or to a litter with a relatively large num-
ber of stillborn or trembling piglets.

4.1 Tailoring the graphical structure

Since a herd includes various different types of pig and our
ultimate aim is to construct a model for detecting classi-
cal swine fever in herds, we would like to construct our
network for the pathogenesis of the disease to apply to
any type of pig. In essence, the framework of relational
Bayesian networks can be used to capture the diverging
knowledge that pertains to the various types of individual
in a population among which the specifics of disease may
differ; the basic idea then is to capture the knowledge of
the various subpopulations in different networks [6]. When
modelling the progression of classical swine fever in sows
on the one hand and in boars, piglets and gilts on the other
hand, the resulting networks would be quite similar, how-
ever. The graphical structures of the networks would in fact
differ only in the part that pertains to the reproductive cycle
in sows, which includes just five variables. The only other
differences between the networks would be in the parame-
ter probabilities involved. For example, at a pig farm sows
and gilts are housed differently and as a consequence do
not have equal probabilities of becoming infected. Once
infected, however, the progression of the disease is quite
similar for all types of pig. Since the differences between
the networks for the various types of pig are so few, we de-
cided not to exploit the framework of relational Bayesian
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Figure 1: Part of the Bayesian network for classical swine fever.

networks because of the overhead it would generate. We
decided to model the pathogenesis of the disease for the
different types of pig in a single network instead.

Upon modelling the knowledge about the onset and pro-
gression of classical swine fever in individual pigs, we had
to pay special attention to the differences in the pathogene-
sis of the disease for the various types of pig. Some of the
issues involved in modelling diverging knowledge in a sin-
gle network, are quite readily resolved. Most differences
in the probabilities of becoming infected with the disease,
for example, could be captured by including two additional
variables; these are the variable Pig type, modelling the var-
ious types of pig, and the variable Housing, which captures
whether pigs are housed individually, in a small group, or
in a large group. Correctly modelling the differences be-
tween sows and the other types of pig with regard to issues
of reproductivity, however, turned out to be more involved.

We consider within our network the part that pertains to
the reproductive cycle in sows. For ease of reference, Fig-
ure 1 shows part of our overall network; the part that per-
tains to the reproductive cycle in sows is shown within the
indicated box. As an example, we focus on the variable

Intra-uterine infection. As mentioned before, in sows an
infection by classical swine fever may give rise to an intra-
uterine infection. We distinguish between infections that
occur in the early stages of the pregnancy and infections
that occur later in the gestation period, since these tend to
give different problems; while an early infection results in
an abortion, an infection in the later stages of the pregnancy
will result in a relatively large number of stillborn or trem-
bling piglets in the litter. The values of the variable Intra-
uterine infection therefore are no, early and late.

It will be evident that the variable Intra-uterine infection
should be taken to apply to sows only. The knowledge that
the other types of pig will not develop an intra-uterine in-
fection, can in essence be expressed by the value no of the
variable. For boars, for example, the value then captures
the knowledge that a boar never has an intra-uterine infec-
tion. One of the representational problems associated with
taking the value no for capturing this knowledge, is that the
value no longer has a well-defined semantics. Where the
value no would indicate for a sow that she does not have
an intra-uterine infection while in essence she could have
one, the same value would indicate for a boar that he does
not have such an infection because he can never have one.
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The double meaning of the value no poses yet another, even
more important representational problem. While the value
no for a boar would not have any weight with respect to the
presence or absence of classical swine fever, the value no
for a sow would provide relevant diagnostic evidence: if a
sow does not show any signs of an intra-uterine infection,
then this is construed as a contra-indication against an in-
fection by the virus of classical swine fever. By assigning
a double meaning to the value no as indicated above, no
distinction can be made with respect to the value’s weight
in diagnostic reasoning for different types of pig.

Because of the representational problems outlined above,
we decided not to use the value no for capturing the knowl-
edge that except for sows the other types of pig will not
develop an intra-uterine infection. Instead we decided to
add the new value not applicable to the collection of val-
ues for the variable Intra-uterine infection. The additional
value in essence captures the knowledge that for other types
of pig than sows, the variable has no meaning. Note that
the value not applicable now differs from the values no,
early and late in that it captures meta-knowledge about the
variable. Similarly, we included the value not applicable
in the collections of values for the variables Reproductive
phase, Trembling piglets, Stillborn piglets and Milk pro-
duction. Note that the five thus extended variables consti-
tute the part of the network that pertains to the reproductive
cycle in sows.

4.2 Detailing the parameter probabilities

To provide for modelling the diverging knowledge about
the progression of classical swine fever in different types
of pig, we have so far redefined the meanings of the five
variables that represent issues related to reproductivity. To
correctly capture their new meanings, we now focus on the
parameter probabilities for these five variables. We note
that these parameter probabilities should serve to effec-
tively preclude the five variables from diagnostic reason-
ing whenever the network is being consulted for another
type of pig than a sow. For example, if the network is used
for establishing the presence or absence of classical swine
fever in a boar, each of the five variables should adopt the
value not applicable with certainty. These values, how-
ever, should not induce, just by themselves, a dependence
between for example the variables Primary other infection
and CSF viraemia. If the network is consulted for a sow,
on the other hand, the five variables should partake in the
reasoning process. Any evidence about problems with the
sow’s litter, for example, should then induce dependences
between the various possible explanations.

As an example, we consider the parameter probabilities for
the variable Intra-uterine infection. We recall that, when
taken to pertain to a sow, this variable has the three values
no, early and late. The probability table for the variable

Table 1: The probability table for the variable Intra-uterine
infection given the variables Primary other infection and
CSF viraemia.

Intra-uterine Primary other CSF
infection infection viraemia
no none yes 0.25

no none no 1.00

no airways yes 0.2

no airways no 0.99

no gastro-intestinal yes 0.2

no gastro-intestinal no 0.99

no airways and gastro yes 0.14

no airways and gastro no 0.975

early none yes 0.634

early none no 0

early airways yes 0.676

early airways no 0.0084

early gastro-intestinal yes 0.676

early gastro-intestinal no 0.0084

early airways and gastro yes 0.73

early airways and gastro no 0.021

late none yes 0.116

late none no 0

late airways yes 0.124

late airways no 0.0016

late gastro-intestinal yes 0.124

late gastro-intestinal no 0.0016

late airways and gastro yes 0.13

late airways and gastro no 0.004

then includes 24 parameter probabilities; these parameter
probabilities have been assessed by our two experts and are
shown in Table 1 for ease of reference. When taken with
respect to all types of pig, the variable has an additional
incoming arc from the variable Pig type, which captures
the five different types of pig distinguished in our domain
of application; note that the additional arc provides for ex-
plicitly distinguishing between these five types in terms of
the probabilities involved. The variable moreover has the
additional value not applicable in its collection of possible
values. When taken for all types of pig, the probability ta-
ble for the variable includes 160 rather than 24 parameter
probabilities.

We observe that, by taking the variable Intra-uterine in-
fection to apply to all types of pig, many more parameter
probabilities are required for its probability table than for
the variable in its meaning for just sows. The domain ex-
perts, however, need not provide assessments for these ad-
ditionally required probabilities. Since the knowledge that
has been added does not involve any uncertainty, all ad-
ditional parameter probabilities equal either 0 or 1. The
assessments provided by the experts now are taken for the
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parameter probabilities that are conditioned on the pig be-
ing a sow. The parameter probabilities for the absence or
the presence of an early or a late intra-uterine infection in a
boar, for example, are taken to be equal to 0 given any com-
bination of values for the two possible causes of such an
infection. The probability of the value not applicable given
any such combination then equals 1.00. Note that the pa-
rameter probabilities with respect to a boar now match the
meaning that we intended for the variable and its values.

We recall that also the meanings of the variables Reproduc-
tion phase, Stillborn piglets, Trembling piglets and Milk
production have been extended to pertain to any type of
pig. For the probability tables for these variables, similar
observations hold as outlined above for the variable Intra-
uterine infection. Again, the probability tables are readily
extended without the need for the domain experts to sup-
ply new probability assessments. We would like to note
that, unlike the variable Intra-uterine infection, the other
four variables pertaining to the reproductive cycle in sows
do not require an additional incoming arc from the vari-
able Pig type. We observe that these variables all include
the variable Intra-uterine infection among their causes. If,
upon reasoning with the network, this latter variable adopts
the value not applicable with certainty, then this value is
transferred directly to the other four variables. For these
variables, it is no longer of interest whether the value orig-
inated from the pig being a boar, a piglet or a gilt.

To conclude, we address the reasoning behaviour of the part
of the network that pertains to the reproductive cycle in
sows. We recall that, if the network is consulted for any
other type of pig than a sow, the five variables under study
should not partake in diagnostic reasoning. If the network
is consulted for a sow, on the other hand, any evidence with
respect to the reproductive cycle should be taken into con-
sideration upon constructing a diagnosis.

We suppose that the part of the network shown in Figure 1
is consulted for a sow. We recall that the parameter prob-
abilities for the variable Intra-uterine infection shown in
Table 1 have been conditioned on the pig being a sow and,
hence, apply to the current consultation. We observe from
these parameter probabilities that both an early and a late
intra-uterine infection are more likely to result from an in-
fection with classical swine fever than from a common air-
ways or gastro-intestinal infection. If the sow shows evi-
dence of an intra-uterine infection, therefore, the probabil-
ity of a viraemia of classical swine fever being present will
increase. Also the probabilities of the presence of a com-
mon primary infection will increase, yet to a lesser extent.
The table further shows that at least one of the various types
of infection need be present for the intra-uterine infection to
occur. Given evidence of an intra-uterine infection, there-
fore, a dependence has arisen between the presence of a
viraemia of classical swine fever and the presence of a pri-
mary other infection. If we would find evidence that the

sow does not suffer from any common primary infection,
for example, then the probability of a viraemia of classi-
cal swine fever being present would increase. We used our
Bayesian-network tool to empirically support these consid-
erations. After entering the evidence Pig type = sow and
Intra-uterine infection = early, we found that the proba-
bility of a viraemia of classical swine fever being present
equals 0.297. Subsequently entering the evidence Primary
other infection = none served to increase this probability to
1.00, as expected. We would like to note that since in prac-
tice it is very unlikely that the presence of an early intra-
uterine infection and the absence of any common primary
infection are observed with certainty, our example should
be taken as serving illustrative purposes only.

Now suppose that the part of the network from Figure 1 is
consulted for a boar. Upon entering the type of pig into the
network, the five variables capturing issues of reproductiv-
ity will be rendered not applicable. We observe that the
parameter probabilities for the value not applicable of the
variable Intra-uterine infection are equal to 1 for all combi-
nations of values for the variables Primary other infection
and CSF viraemia. The indirect evidence of the value not
applicable, therefore, does not allow for distinguishing be-
tween these combinations of values and, hence, does not
have any effect on the probabilities that are computed for
the variables Primary other infection and CSF viraemia. If
we would now find evidence that the boar does not suf-
fer from any common primary infection, for example, then
the probability of a viraemia of classical swine fever be-
ing present would not change. Once again, we used our
Bayesian-network tool to empirically support these consid-
erations. After entering the evidence Pig type = boar, we
found that the probability of a viraemia of classical swine
fever being present equals 0.0001. Subsequently entering
the evidence Primary other infection = none indeed did
not change this probability, thereby demonstrating that the
indirect evidence of the value not applicable for the vari-
able Intra-uterine infection did not induce a dependence
between the variables Primary other infection and CSF vi-
raemia. Note that evidence for, for example, the variable
Body temperature would induce such a dependence.

4.3 Summary

To summarise, we have addressed in this section the issue
of modelling diverging knowledge for different subpopula-
tions that have to be captured in a single Bayesian network.
More specifically, we have focused on knowledge that per-
tains to just a part of the overall population. To provide
for correctly modelling this knowledge, we enhanced the
meanings of the variables involved by including a meta-
level value capturing applicability. By including this meta-
level value, we forestalled the necessity of providing each
variable involved with an additional incoming arc in the
network’s structure to distinguish the subpopulation of in-
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terest from other individuals. By introducing the meta-level
value, we increased the probability tables for the variables
involved in size. However, since the added knowledge does
not involve any uncertainty, the additionally required prob-
abilities equal either 0 or 1 and do not need any further
assessment by domain experts. By assuring that the pa-
rameters probabilities for the meta-level value of a variable
are equal for all combinations of values for the variable’s
possible causes, the meta-level value is guaranteed not to
interfere with any reasoning process.

5 Discussion

In close collaboration with two experts, we are building a
Bayesian network for the early detection of classical swine
fever in pigs. Although our network will ultimately be tai-
lored to detecting the disease in pig herds, we decided to
begin with modelling the onset and progression of the dis-
ease in individual animals. Having modelled the patterns
of classical swine fever that are typically observed in indi-
vidual pigs, we now are in the process of extending our net-
work to apply to herds. We argued that, as a first step, we
had to render our network applicable to the various types of
pig distinguished in the domain. We presented a method for
including diverging knowledge about these different types
in our network. We feel that our method is generally ap-
plicable and can be used in any problem domain in which
such diverging knowledge has to be captured.

The projected extension of our network raises the question
whether we have to develop different networks for the var-
ious levels of scope or a single network in which knowl-
edge from the different levels are combined. Little practical
experience is available with either of the two approaches,
however. To the best of our knowledge, for example, just a
few Bayesian networks combine information of several in-
dividuals to obtain results about the entire population [7, 8].
For the near future, we envision studying the modelling so-
lutions used in these networks as well as the possibilities
and restrictions of using relational models. We feel that
the issue of combining knowledge from different levels of
scope deserves attention, not just for further developing our
network, but also for applications in other domains.
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