
Probabilistic Reasoning
course slides to accompany syllabus

2023-2024

c© L.C. van der Gaag, S. Renooij

UU – ICS Master Programmes:
Computing Science
Artificial Intelligence

Data Science

1



Part One

2



Probabilistic reasoning

Lecturer: Silja Renooij (s.renooij@uu.nl)
Matthijs Vákár (m.i.l.vakar@uu.nl)

Prerequisites: probability theory & graph theory

Literature: syllabus, papers, slides & studymanual

Additional see course website:
info: http://www.cs.uu.nl/docs/vakken/prob/
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Practical information

Course form:

• lectures
• exercises (formative self assessment)

(tip: discuss exercises together)

Grading:

• practical assignments (partially formative; qualitative)
(description + deadlines on Blackboard)
• written exam (summative)
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Syllabus, Chapter 1:

Introduction
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Reasoning under uncertainty

In numerous application areas of knowledge-based
decision-support systems we have

• uncertainty concerning the general domain knowledge;
• problem-specific information that is often uncertain,

incomplete and even contradictory.

A decision-support system should be capable of dealing with
these types of knowledge.
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Application of probability theory

Consider a joint probability distribution Pr on a set of discrete
random variables V = {V1, . . . , Vn}. Then, in general:

• representing Pr requires exponential space

consider e.g. n = 2 binary-valued variables, or n = 40; what if
they have 5 values each? (and how do you get the numbers?)

• calculating a probability from Pr by conditioning and
marginalisation requires exponential time

consider e.g. computing Pr(V1 = true) from Pr(V ), or
Pr(V1 = true | V2 = true)

This cannot be improved without additional knowledge about
the probability distribution.
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Diagnosis problem: pioneering in the 1960s

Let H = {h1, . . . , hn}, n ≥ 1, be a set of hypotheses, and let
E = {e1, . . . , em},m ≥ 1, be a set of relevant findings
(evidence).

Determine the ’best’ diagnosis given findings e ⊆ E.

The approach: Compute for each h ⊆H the probability

Pr(h | e) =
Pr(e | h) Pr(h)

Pr(e)

Drawback: An exponential number of probabilities need to be
computed; storage is also exponential.
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Pioneering in the 1960s

Determine the diagnosis given findings e ⊆ E.

The approach: Assume hi ∈H mutually exclusive, and
collectively exhaustive: ∪ni=1{hi} = Ω.

Then, compute for each hi ∈H:

Pr(hi | e) =
Pr(e | hi) Pr(hi)

Pr(e)
=

Pr(e | hi) Pr(hi)∑n
k=1 Pr(e | hk) Pr(hk)

Drawback: We compute only n− 1 probabilities, but
computation still requires an exponential number of
probabilities.

9



Pioneering in the 1960s

Determine the diagnosis given findings e = {ep, . . . , eq},
1 ≤ p, q ≤ m.

The approach: Assume in addition that all findings e1, . . . , em
are conditionally independent given hi, i = 1, . . . , n. Then:

Pr(hi | e) =
Pr(ep, . . . , eq | hi) Pr(hi)∑n

k=1 Pr(ep, . . . , eq | hk) Pr(hk)

=
Pr(ep | hi) · . . . · Pr(eq | hi) Pr(hi)∑n

k=1 Pr(ep | hk) · . . . · Pr(eq | hk) Pr(hk)

Benefit: Only m · n conditional probabilities and n− 1 prior
probabilities are required for the computation.
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GLADYS

GLADYS (GLASGOW DYSPEPSIA SYSTEM) is a system for
diagnosing dyspepsia.

The global structure of the system:
Interview

Differential
diagnosis

Therapy
selection

Probabilistic
component

developed with
data collected from
± 1200 patients.

D.J. Spiegelhalter, R.P. Knill-Jones (1984). Statistical and knowledge-based approaches to clinical decision-support systems
with an application in gastroenterology, Journal of the Royal Statistical Society (Series A), vol. 147, pp. 35-77.
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Symptoms and diseases

Context: patients with an Ulcer. Question: which type?

duodenal ulcer gastric ulcer
(n = 248) (n = 43)

Sex: male 169 17
female 79 26

Age: < 26 43 1
26 - 40 82 5
41 - 55 87 19
> 55 36 18

Daily pain: yes 21 11
no 214 27

Effect food worsens 44 11
on pain: no effect 82 9

relieves 104 17
probability 0.85 0.15
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The idea

Let Pr be a joint distribution on the diagnosis search space
including hypothesis h and observed findings e.

The prior odds for h, and posterior odds for h given e, are
defined by

O(h) =
Pr(h)

1− Pr(h)
=

Pr(h)

Pr(¬h)
, and O(h | e) =

Pr(h | e)

Pr(¬h | e)

Assume that all findings ei ∈ e are conditionally independent
given h, then

O(h | e) =
Pr(e | h) · Pr(h)

Pr(e | ¬h) · Pr(¬h)
=

∏
i

Pr(ei | h)

Pr(ei | ¬h)
·O(h)

Now consider the following transformation: 10 · lnO(h | e). . .
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The idea (cntd)

Applying the transformation 10 · ln to

O(h | e) =
∏
i

λi ·O(h), where λi =
Pr(ei | h)

Pr(ei | ¬h)

results in a score s:

s = 10 · lnO(h | e) = 10 · lnO(h)+
∑
i

10 · lnλi = w0 +
∑
i

wi

where wi is a weight for finding ei.

The probability Pr(h | e) is now computed from

Pr(h | e) =
O(h | e)

1 +O(h | e)
=

e
s
10

1 + e
s
10

=
1

1 + e−
s
10
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A scoring system

h: duodenal ulcer (du) ¬h: gastric ulcer (gu)
(n = 248) (n = 43)

male (m) 169 17
female (f) 79 26

Calculation of probabilities, likelihood ratios and weights:

Pr(m | du) =
169

248
∼ 0.68, Pr(m | gu) ∼ 0.40 ⇒

λm =
Pr(m | du)

Pr(m | gu)
=

0.68

0.40
∼ 1.7 =⇒ wm = 10 · lnλm ∼ 5

Pr(f | du) =
79

248
∼ 0.32, Pr(f | gu) ∼ 0.60 ⇒

λf =
Pr(f | du)

Pr(f | gu)
=

0.32

0.60
∼ 0.53 =⇒ wf = 10 · lnλf ∼ −6
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Symptoms and their weights

duodenal ulcer gastric ulcer weight
(n = 248) (n = 43)

Sex: male 169 17 5
female 79 26 −6

Age: < 26 43 1 18
26 - 40 82 5 10
41 - 55 87 19 −2
> 55 36 18 −10

Daily pain: yes 21 11 −12
no 214 27 3

Effect food worsens 44 11 −4
on pain: no effect 82 9 4

relieves 104 17 0
prior 0.85 0.15 17
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An example diagnosis

A 30 year old woman reports to the clinic. She has pain in the
abdominal area, but not on a daily basis; the pain worsens as
soon as she eats.

Calculation of the score:

• the initial score: +17
• the patient is female: − 6
• her age is 30: +10
• she is in pain, but not every day: + 3
• food intake worsens the pain: − 4

+20

Given that the patient has one of the two diseases, duodenal
ulcer and gastric ulcer, she has with probability

(1 + e−
20
10 )−1 ≈ 1.14−1 ≈ 0.88

a duodenal ulcer and a gastric ulcer with probability 0.12.
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Reviewing ‘Idiot’s Bayes’

The naive Bayes approach is

• mathematically correct, and
• computationally easy.

However

• underlying assumptions usually unacceptable;
• and, at the time, for larger applications

• number of hypotheses often large→ undoable to compute
each Pr(hi | e);

• often not enough information for reliable probability
assessments.
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History: diagnosis in the 1970s

HY POTHESES :

FINDINGS :

h1 h2 hi hn

e1 e2 ej em

Pr(hn | e2 ∧ em)

The most likely hypothesis given observed findings is
determined as follows:

• prune the search space using heuristic rules;
• approximate the missing probabilities required,

for example with:

Pr(ei ∧ ej) = min{Pr(ei),Pr(ej)};

• select the hypothesis with the highest probability.
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Reviewing the quasi-probabilistic models

The quasi-probabilistic models are

• computationally easy, and
• easy to use,

even for larger applications.

However, these models are

• mathematically incorrect, and
• even as an approximation model not convincing.
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The rehabilitation of probability theory in the 1980s

J. Pearl introduces what we now call probabilistic graphical
models (PGMs) :

• a graphical model to represent the knowledge in a
complex multi-variate domain
• graph encodes probabilistic independences
• joint probability distribution is factorized into smaller

functions
• knowledge representation is separated from reasoning
⇒ allows generic algorithms for
• inference (computing probabilities)
• learning
• . . .
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The Probabilistic Graphical Model framework

Probabilistic Graphical Model: a compact representation of a
joint probability distribution Pr over a set of random variables,
comprised of:
• qualitative knowledge of Pr: a graph representation of the

independences between the variables involved;
• quantitative knowledge of Pr: functions that capture part of

Pr ‘locally’ per group of variables.

Algorithms associated with the framework are often tailored to
• the type of graphical model: directed or undirected
• the type of random variables: discrete and/or continuous
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Probabilistic Graphical Models

J. Pearl introduced PGMs based on

• undirected graphs: Markov networks (Markov Random Fields)
• Gibbs random field: joint distribution is strictly positive
• Ising/Potts model (Physics): pairwise MRF with discrete

variables
• Applications in image processing, computer vision, . . .

• directed (acyclic) graphs: Bayesian networks (BNs)
• Naive Bayes: restricted topology, discrete or continuous

(Gaussian) variables
• Hidden Markov model (HMM): ‘Dynamic’ BN with restricted

topology, discrete variables
• Particle/Kalman Filter: HMM with continuous/Gaussian

variables
• Applications in medicine, biology, genetics, speech

recognition, spamfiltering,. . .
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Focus on Bayesian networks

PGMs are considered to be interpretable models. When used
as a modelling tool, directed models are often preferred.

Judea Pearl introduced several algorithms for inferring ’beliefs’
from those represented in a Bayesian network:

• first for trees and polytrees (singly connected graphs)
• then for multiply-connected graphs
• for the latter, the algorithm by Steffen Lauritzen & David

Spiegelhalter was the first to find wide-spread use.

Also see “Inference in Bayesian Networks: a Historical Perspective”, by
Adnan Darwiche
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An example: Classical Swine Fever (CSF)

The classical swine fever network is a decision-support system
for the early detection of classical swine fever (varkenspest).

• early detection of CSF is important, but hard;
• the network has been developed in cooperation with 2

veterinarians of the Central Veterinary Institute of
Wageningen UR;
• part of european EPIZONE project;
• veterinarians all over the country collected data with PDAs
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The Classical swine fever network: initial graphical
structure
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The Classical swine fever network: probability tables

Pr(Appetite | BodyTemp ∧Malaise)
28



Classical swine fever: prior probabilities

Faeces

Prim. Other
Infection

Reproduction
phase

Respiratory
problems
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Classical swine fever: diagnostic reasoning
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Classical swine fever: prognostic reasoning
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A Bayesian network: necessary ingredients

Definition:
A Bayesian network is a pair B = (G,Γ) such that

• G is an acyclic directed graph with nodes representing a set
of random variables V ;

• Γ = {γVi
| Vi ∈ V } is a set of assessment functions.

Property:

Pr(V ) =
∏

Vi ∈V
γVi

(Vi | ρ(Vi))

defines a joint probability distribution Pr on V such that G is a
directed I-map for the independence relation I Pr of Pr.
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About this course . . .

The following subjects will be addressed in this course:

• the syntactics and semantics of PGMs;
• for BNs and probabilistic models in general (latter through

Probabilistic Programming):
• algorithms for probabilistic inference (exact and

approximate);
• methods for constructing a probabilistic model for a domain

of application;
• methods for evaluating a discrete Bayesian network’s

performance and behaviour;
• (methods for controlling and explaining reasoning).
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Syllabus, Chapter 2:

Preliminaries
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(Discrete) Random variables

Let V = {V1, . . . , Vn}, n ≥ 1, be a set of random variables.
Each variable Vi ∈ V can take on one of m ≥ 2 values.

For ease of exposition we mostly consider ‘binary’ variables:
• Vi = true, denoted by vi;
• Vi = false, denoted by ¬vi (or by vi).

The set V spans a Boolean Algebra of logical propositions V:
• T(rue), F(alse) ∈ V;
• for all variables Vi ∈ V we have that vi ∈ V;
• for all x ∈ V we have that ¬x ∈ V;
• for all x, y ∈ V we have that x ∧ y ∈ V and x ∨ y ∈ V.

The elements of V obey the usual rules of propositional logic.
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The joint probability distribution

Definition:

Let V be the Boolean Algebra of propositions spanned by a set
of random variables V . Let Pr : V → [0, 1] be a function such
that

• Pr is positive: for each x ∈ V we have that Pr(x) ≥ 0 and,
more specifically, Pr(F) = 0;
• Pr is normed: Pr(T) = 1;
• Pr is additive: we have, for each x, y ∈ V with x ∧ y ≡ F,

that Pr(x ∨ y) = Pr(x) + Pr(y).

The function Pr is a joint probability distribution on V ; the
function value Pr(x) is the probability of x.
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Independence of propositions

Definition: Let V be the Boolean Algebra of propositions spanned
by a set of random variables V . Let Pr be a joint probability
distribution on V .

Propositions x, y ∈ V are called independent in Pr if

Pr(x ∧ y) = Pr(x) · Pr(y)

Propositions x, y ∈ V are called conditionally independent
given the proposition z ∈ V if we have that

Pr(x ∧ y | z) = Pr(x | z) · Pr(y | z)
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The two notions of independence (1)

• Consider two propositions x, y ∈ V such that x and y are
independent 1:

x

y

Pr(x) = 1
2
; Pr(y) = 1

4
;

Pr(x ∧ y) = 1
8

= Pr(x) · Pr(y)

Can z ∈ V exist such that x and y are dependent given z?
• Yes:

x

y

z
Pr(x | z) > 0; Pr(y | z) > 0;

Pr(x ∧ y | z) = 0
6= Pr(x | z) · Pr(y | z)

1The square has area 1, representing the total probability mass.
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The two notions of independence (2)

• Consider two propositions x, y ∈ V such that x and y are
dependent:

x

y

Pr(x) = 1
2
; Pr(y) = 1

5
;

Pr(x ∧ y) = 1
7

> Pr(x) · Pr(y)

Can z ∈ V exist such that x and y are conditionally
independent given z?
• Yes:

x

y

z
Pr(x | z) = 4

5
; Pr(y | z) = 1

2
;

Pr(x ∧ y | z) = 4
10

= Pr(x | z) · Pr(y | z)
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Configurations

Let V be spanned by random variables V and let W ⊆ V .

• proposition w ∈ V is called a configuration of W iff it is a
conjunction of value assignments to the variables from W ;
• cW is used to denote an arbitrary configuration of W ;
• W also indicates all possible configurations to the set W

(notation abuse!): W is then considered to be a template for
all possible configurations cW ;
• if W = ∅, then by convention cW = c∅ = T.

Example: Let W = {V1, V3, V7}, with W = V1 ∧ V3 ∧ V7 the
associated configuration template. Some configurations cW
captured by this template are:

V1 = true ∧ V3 = true ∧ V7 = false
v1 ∧ ¬v3 ∧ v7
¬v1 ∧ v3 ∧ ¬v7 �
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Conventions and notation

set (bold faced) singleton
variables/templates (capital) V V

values/configurations cV , v cV , v

• conjunctions are often left implicit: e.g. v1 v2 denotes v1 ∧ v2;
• note the following differences (!)

probabilities: Pr(cV ), Pr(cV ), Pr(v), Pr(v), Pr(v | cE)
distributions: Pr(V ), Pr(V ), Pr(V | e)
distribution sets: Pr(V |E), Pr(V |E)
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Independence of variables

Definition: Let V be a set of random variables and let
X,Y ,Z ⊆ V . Let Pr be a joint distribution on V .

X is called conditionally independent of Y given Z in Pr, if

Pr(X | Y ∧Z) = Pr(X | Z)

If this holds for Z = ∅ then X is (marginally) independent of Y .

Remarks:

• Note the template notation: equation should hold for all cX ,
cY and cZ !
• Pr(X | Y ∧Z) = Pr(X | Z)⇒

Pr(X ∧ Y | Z) = Pr(X | Z) · Pr(Y | Z) �

(See syllabus exercise 2.6)
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