Syllabus, Chapter 3:

Independences and Graphical Representations

A qualitative notion of independence

Observation:

People are capable of making statements about independences among variables without having to perform numerical calculations.

Conclusion:

In human reasoning behaviour, the qualitative notion of independence is more fundamental than the quantitative notion of independence.

The (probabilistic) independence relation of a joint distribution

<u>Definition</u>: Let V be a set of random variables and let Pr be a joint probability distribution on V.

The independence relation I_{\Pr} of \Pr is a set $I_{\Pr} \subseteq \mathcal{P}(\mathbf{V}) \times \mathcal{P}(\mathbf{V}) \times \mathcal{P}(\mathbf{V})$, defined for all $\mathbf{X}, \mathbf{Y}, \mathbf{Z} \subseteq \mathbf{V}$ by

 $(\boldsymbol{X}, \boldsymbol{Z}, \boldsymbol{Y}) \in I_{\Pr}$ if and only if $\Pr(\boldsymbol{X} \mid \boldsymbol{Y} \land \boldsymbol{Z}) = \Pr(\boldsymbol{X} \mid \boldsymbol{Z})$

Remarks:

- $(X, Z, Y) \in I_{\Pr}$ will be written as $I_{\Pr}(X, Z, Y)$; $(X, Z, Y) \notin I_{\Pr}$ will be written as $\neg I_{\Pr}(X, Z, Y)$;
- a statement $I_{Pr}(X, Z, Y)$ is called an independence statement for the joint distribution Pr.

Properties of I_{Pr} : symmetry

<u>Lemma</u>: $I_{Pr}(\boldsymbol{X}, \boldsymbol{Z}, \boldsymbol{Y})$ if and only if $I_{Pr}(\boldsymbol{Y}, \boldsymbol{Z}, \boldsymbol{X})$

<u>Proof</u>: [NB This is an exercise from the Syllabus. In proofs you should also explain your steps, like done in the lectures.]

 $I_{\Pr}(\boldsymbol{X}, \boldsymbol{Z}, \boldsymbol{Y}) \iff \Pr(\boldsymbol{X} \mid \boldsymbol{Y} \land \boldsymbol{Z}) = \Pr(\boldsymbol{X} \mid \boldsymbol{Z})$ $\iff \frac{\Pr(\boldsymbol{X} \land \boldsymbol{Y} \land \boldsymbol{Z})}{\Pr(\boldsymbol{Y} \land \boldsymbol{Z})} = \frac{\Pr(\boldsymbol{X} \land \boldsymbol{Z})}{\Pr(\boldsymbol{Z})}$ $\iff \frac{\Pr(\boldsymbol{X} \land \boldsymbol{Y} \land \boldsymbol{Z})}{\Pr(\boldsymbol{X} \land \boldsymbol{Z})} = \frac{\Pr(\boldsymbol{Y} \land \boldsymbol{Z})}{\Pr(\boldsymbol{Z})}$ $\iff \Pr(\boldsymbol{Y} \mid \boldsymbol{X} \land \boldsymbol{Z}) = \Pr(\boldsymbol{Y} \mid \boldsymbol{Z})$ $\iff I_{\Pr}(\boldsymbol{Y}, \boldsymbol{Z}, \boldsymbol{X})$

Properties of I_{Pr} : decomposition

Lemma: $I_{\Pr}(\boldsymbol{X}, \boldsymbol{Z}, \boldsymbol{Y} \cup \boldsymbol{W}) \Rightarrow I_{\Pr}(\boldsymbol{X}, \boldsymbol{Z}, \boldsymbol{Y}) \land I_{\Pr}(\boldsymbol{X}, \boldsymbol{Z}, \boldsymbol{W})$

<u>Proof</u>: (sketch) (Note: for $U = Y \cup W$, $c_U = c_Y \wedge c_W$!) Suppose that

 $Pr(\mathbf{X} \mid \mathbf{Y} \land \mathbf{W} \land \mathbf{Z}) = Pr(\mathbf{X} \mid \mathbf{Z}).$ Then, by definition,

 $\Pr(\boldsymbol{X} \wedge \boldsymbol{Y} \wedge \boldsymbol{W} \wedge \boldsymbol{Z}) = \Pr(\boldsymbol{Y} \wedge \boldsymbol{W} \wedge \boldsymbol{Z}) \cdot \frac{\Pr(\boldsymbol{X} \wedge \boldsymbol{Z})}{\Pr(\boldsymbol{Z})}$

For $\Pr(\boldsymbol{X} \mid \boldsymbol{Y} \land \boldsymbol{Z})$ we find that

$$\Pr(\boldsymbol{X} \mid \boldsymbol{Y} \land \boldsymbol{Z}) = \frac{\Pr(\boldsymbol{X} \land \boldsymbol{Y} \land \boldsymbol{Z})}{\Pr(\boldsymbol{Y} \land \boldsymbol{Z})}$$
$$= \frac{\sum_{c_{\boldsymbol{W}}} \Pr(\boldsymbol{X} \land \boldsymbol{Y} \land \boldsymbol{Z} \land c_{\boldsymbol{W}})}{\Pr(\boldsymbol{Y} \land \boldsymbol{Z})}$$
$$= \frac{\Pr(\boldsymbol{X} \land \boldsymbol{Z})}{\Pr(\boldsymbol{Z})} = \Pr(\boldsymbol{X} \mid \boldsymbol{Z})$$

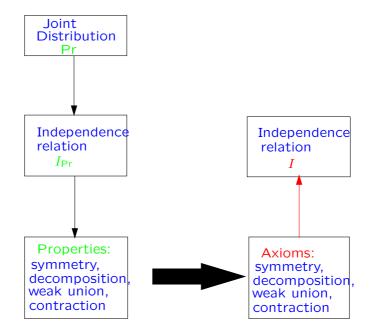
Properties of I_{Pr} : weak union, contraction

Lemma:

- if $I_{\Pr}(\boldsymbol{X}, \boldsymbol{Z}, \boldsymbol{Y} \cup \boldsymbol{W})$ then $I_{\Pr}(\boldsymbol{X}, \boldsymbol{Z} \cup \boldsymbol{W}, \boldsymbol{Y})$ (weak union);
- if $I_{\Pr}(X, Z, W)$ and $I_{\Pr}(X, Z \cup W, Y)$ then $I_{\Pr}(X, Z, Y \cup W)$ (contraction)
- (for strictly positive \Pr also the intersection property holds; see syllabus)

Proof: left as exercise 3.1.

The definition of the independence relation



The (qualitative) independence relation I

Definition:

Let V be a set of random variables and let $X, Y, Z, W \subseteq V$.

An independence relation I on V is a ternary relation $I \subseteq \mathcal{P}(V) \times \mathcal{P}(V) \times \mathcal{P}(V)$ that satisfies the following properties:

- if $I(\mathbf{X}, \mathbf{Z}, \mathbf{Y})$ then $I(\mathbf{Y}, \mathbf{Z}, \mathbf{X})$;
- if $I(\mathbf{X}, \mathbf{Z}, \mathbf{Y} \cup \mathbf{W})$ then $I(\mathbf{X}, \mathbf{Z}, \mathbf{Y})$ and $I(\mathbf{X}, \mathbf{Z}, \mathbf{W})$;
- if $I(\mathbf{X}, \mathbf{Z}, \mathbf{Y} \cup \mathbf{W})$ then $I(\mathbf{X}, \mathbf{Z} \cup \mathbf{W}, \mathbf{Y})$;
- if $I(\mathbf{X}, \mathbf{Z}, \mathbf{W})$ and $I(\mathbf{X}, \mathbf{Z} \cup \mathbf{W}, \mathbf{Y})$ then $I(\mathbf{X}, \mathbf{Z}, \mathbf{Y} \cup \mathbf{W})$.

The first property is called the symmetry *axiom*; the second is called the decomposition axiom; the third is referred to as the weak union axiom; the last one is called contraction.

Lemma:

Let *I* be an independence relation on a set of random variables *V*. We have that for all $X, Y, Z, W \subseteq V$:

if $I(\mathbf{X}, \mathbf{Z}, \mathbf{Y})$ and $I(\mathbf{X} \cup \mathbf{Z}, \mathbf{Y}, \mathbf{W})$ then $I(\mathbf{X}, \mathbf{Z}, \mathbf{W})$

Proof:

We observe that

 $I(\boldsymbol{X} \cup \boldsymbol{Z}, \boldsymbol{Y}, \boldsymbol{W}) \Rightarrow_{\text{symm}} I(\boldsymbol{W}, \boldsymbol{Y}, \boldsymbol{X} \cup \boldsymbol{Z}) \Rightarrow_{\text{weakunion}}$

 $\Rightarrow I(\boldsymbol{W}, \boldsymbol{Y} \cup \boldsymbol{Z}, \boldsymbol{X}) \Rightarrow_{\text{symm}} I(\boldsymbol{X}, \boldsymbol{Y} \cup \boldsymbol{Z}, \boldsymbol{W})$

From $I(\mathbf{X}, \mathbf{Z}, \mathbf{Y})$, $I(\mathbf{X}, \mathbf{Y} \cup \mathbf{Z}, \mathbf{W})$ and the contraction axiom we have that $I(\mathbf{X}, \mathbf{Z}, \mathbf{W} \cup \mathbf{Y})$; decomposition now gives $I(\mathbf{X}, \mathbf{Z}, \mathbf{W})$.

Representing independences

Different ways exist of representing an independence relation:

- explicitly list all independence statements of the relation;
- explicitly list only the independence statements of a suitable subset of the relation (the 'basis') — all other statements are implicitly represented by means of the axioms;
- code the independence relation in a graph;

• . . .

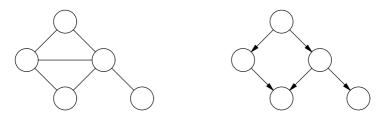
Consider $V = \{V_1, V_2, V_3, V_4\}$ and independence relation *I* on *V*:

 $I(\{V_1\}, \emptyset, \{V_4\})$ $I(\{V_2\}, \emptyset, \{V_4\})$ $I(\{V_3\}, \emptyset, \{V_4\})$ $I(\{V_4\}, \emptyset, \{V_1\})$ $I(\{V_4\}, \emptyset, \{V_2\})$ $I(\{V_4\}, \emptyset, \{V_3\})$ $I(\{V_1, V_2\}, \emptyset, \{V_4\})$ $I(\{V_1, V_3\}, \emptyset, \{V_4\})$ $I(\{V_2, V_3\}, \emptyset, \{V_4\})$ $I(\{V_4\}, \emptyset, \{V_1, V_2\})$ $I(\{V_4\}, \emptyset, \{V_1, V_3\})$ $I(\{V_4\}, \emptyset, \{V_2, V_3\})$ $I({V_1, V_2, V_3}, \emptyset, {V_4})$ $I({V_4}, \emptyset, {V_1, V_2, V_3})$ $I(\{V_1\}, \emptyset, \{V_2\})$

 $I(\{V_2\}, \emptyset, \{V_1\})$ $I(\{V_1, V_4\}, \emptyset, \{V_2\})$ $I(\{V_2, V_4\}, \emptyset, \{V_1\})$ $I(\{V_2\}, \emptyset, \{V_1, V_4\})$ $I(\{V_1\}, \emptyset, \{V_2, V_4\})$ $I(\{V_2\},\{V_1\},\{V_4\})$ $I(\{V_3\},\{V_1\},\{V_4\})$ $I(\{V_2, V_3\}, \{V_1\}, \{V_4\})$ $I({V_4}, {V_1, V_2}, {V_3})$ $I(\{V_2\},\{V_1,V_3\},\{V_4\})$ $I({V_4}, {V_1, V_3}, {V_2})$ $I({V_1}, {V_2, V_3}, {V_4})$ $I({V_4}, {V_2, V_3}, {V_1})$ $I({V_4}, {V_3}, {V_1, V_2})$ $I(\{V_4\},\{V_3\},\{V_1\})$

 $I(\{V_4\},\{V_1\},\{V_2\})$ $I(\{V_4\},\{V_1\},\{V_3\})$ $I({V_4}, {V_1}, {V_2, V_3})$ $I(\{V_1\},\{V_2\},\{V_4\})$ $I(\{V_3\},\{V_2\},\{V_4\})$ $I({V_1, V_3}, {V_2}, {V_4})$ $I(\{V_4\},\{V_2\},\{V_1\})$ $I(\{V_4\},\{V_2\},\{V_3\})$ $I({V_4}, {V_2}, {V_1, V_3})$ $I(\{V_1\},\{V_3\},\{V_4\})$ $I(\{V_2\},\{V_3\},\{V_4\})$ $I({V_1, V_2}, {V_3}, {V_4})$ $I(\{V_1\},\{V_4\},\{V_2\})$ $I(\{V_2\},\{V_4\},\{V_1\})$ $I({V_3}, {V_1, V_2}, {V_4})$

Coding an independence relation with a graph

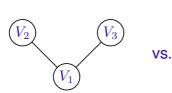


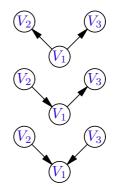
The global idea of coding an independence relation I on V in graph G:

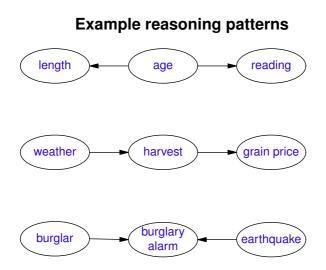
- each variable $V_i \in V$ corresponds to a node $V_i \in V_G$;
- (combinations of) edges/arcs define a graphical notion of (d-)separation;
- there exists a mapping between (d-)separation and relation I

Graphs as a language

The directed graph provides a more expressive language than the undirected graph:







- do arcs capture causality? not necessarily
- do reasoning patterns really differ? last differs from first two
- what if we drop the direction of the arcs? last one incomplete

"Intercausal" interaction

Consider an experiment with two coins and a bell: the bell sounds iff the two coins have the same outcome after a toss.

Consider: variable C_1 : the outcome of tossing coin one; variable C_2 : the outcome of tossing coin two; variable B: whether or not the bell sounds; independence relation I for this experiment.

We have, among others, that

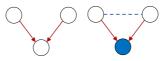
 $\begin{array}{ll} I(\{C_1\}, \emptyset, \{C_2\}) & \neg I(\{C_1\}, \{B\}, \{C_2\}) \\ I(\{C_1\}, \emptyset, \{B\}) & \neg I(\{C_1\}, \{C_2\}, \{B\}) \\ I(\{C_2\}, \emptyset, \{B\}) & \neg I(\{C_2\}, \{C_1\}, \{B\}) \end{array}$

This independence relation is an example of an independence relation with an induced dependency.

Directed versus undirected graph language

Arc directions encode the possibility of induced dependencies:

• a head-to-head node captures the possible occurrence of an "intercausal" interaction between its parents:



Note:

An acyclic(!) directed graph without head-to-head nodes encodes the same independences as its underlying undirected graph:

Undirected graphs: separation and (in)dependence

The lectures and the examination focus on directed graphical models. However, the concept of separation in undirected graphs is easier than the concept of d-separation in directed graphs, so you may want to study undirected graphs first. Both course syllabus and these slides (with accompanying video) provide the necessary information and exercises for that.

[➡] Skip to directed graphs

The separation criterion: introduction

Definition:

Let $G = (V_G, E_G)$ be an undirected graph with edges E_G and nodes $V_G = \{V_1, \ldots, V_n\}, n > 1$.

Let *s* be a path in *G* from a node V_i to a node V_j .

The path *s* is blocked by a set of nodes $Z \subseteq V_G$, if at least one node from *Z* is *on* the path *s*.

If s is not blocked by Z, the path is called active given Z.

The separation criterion

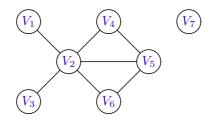
Definition:

Let $G = (V_G, E_G)$ be an undirected graph. Let $X, Y, Z \subseteq V_G$ be sets of nodes in G.

The set Z separates the set X from Y in G— Notation: $\langle X | Z | Y \rangle_G$ — if *every simple* path in G from a node in X to a node in Y is *blocked* by Z.

Remarks:

- the above notion is known as the separation criterion for undirected graphs;
- if there is no path between the nodes X and Y in a graph G, then ⟨X | ∅ | Y⟩_G.



Which of the following separation statements are valid?

- **a)** $\langle \{V_1\} \mid \{V_2\} \mid \{V_3, V_6\} \rangle_G$
- **b)** $\langle \{V_4\} \mid \{V_2, V_5\} \mid \{V_6\} \rangle_G$
- $\mathsf{C}) \quad \langle \{V_4\} \mid \{V_1, V_2, V_5\} \mid \{V_6\} \rangle_G \quad \mathsf{g}) \quad \langle \{V_1\} \mid \{V_5\} \mid \{V_2\} \rangle_G$
- $\mathsf{d}) \quad \langle \{V_1\} \mid \{V_4\} \mid \{V_5\} \rangle_G$

 $\begin{array}{ll} \textbf{e} & \langle \{V_1, V_5, V_6\} \mid \emptyset \mid \{V_7\} \rangle_G \\ \textbf{f} & \langle \{V_2\} \mid \{V_5\} \mid \{V_7\} \rangle_G \\ \textbf{g} & \langle \{V_1\} \mid \{V_5\} \mid \{V_2\} \rangle_G \end{array}$

Answer: all except d) and g)

Independence relations and undirected graphs

Definition: Let *I* be an independence relation on a set of random variables *V*. Let $G = (V_G, E_G)$ be an undirected graph with $V_G = V$.

• graph G is called a dependency map (D-map) for I if for all $X, Y, Z \subseteq V$ we have:

if $I(\boldsymbol{X}, \boldsymbol{Z}, \boldsymbol{Y})$ then $\langle \boldsymbol{X} \mid \boldsymbol{Z} \mid \boldsymbol{Y} \rangle_{G}$;

• graph *G* is called an independency map (I-map) for *I* if for all $X, Y, Z \subseteq V$ we have:

if $\langle \boldsymbol{X} \mid \boldsymbol{Z} \mid \boldsymbol{Y} \rangle_{G}$ then $I(\boldsymbol{X}, \boldsymbol{Z}, \boldsymbol{Y});$

• graph *G* is called a perfect map (P-map) for *I* if *G* is both a dependency map and an independency map for *I*.

undirected D-maps: what can they tell?

Let I be an independence relation and G an undirected graph.

Consider a D-map for *I*, then

 V_1 and V_2 neighbours² $\implies V_1, V_2$ dependent

 V_1 and V_2 non-neighbours \implies ?? V_1 and V_2 can be:

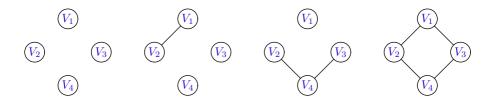
dependent, independent, or conditionally independent

²i.e. directly connected by an edge

Consider the independence relation I on $V = \{V_1, \ldots, V_4\}$, defined by

 $I(\{V_1\}, \{V_2, V_3\}, \{V_4\})$ and $I(\{V_2\}, \{V_1, V_4\}, \{V_3\})$

Which of the following undirected graphs are examples of D-maps for I ?



See Exercise 3.5 (Syllabus) III : JAMSUN

Undirected I-maps: what can they tell?

Let I be an independence relation and G an undirected graph.

Consider an I-map for I, then

 V_1 and V_2 non-neighbours $\implies V_1, V_2$ (condit.) independent

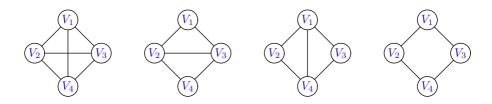
 V_1 and V_2 neighbours $\implies ?? V_1$ and V_2 can be dependent.

> independent, or conditionally independent

Consider the independence relation I on $V = \{V_1, \ldots, V_4\}$, defined by

 $I(\{V_1\}, \{V_2, V_3\}, \{V_4\})$ and $I(\{V_2\}, \{V_1, V_4\}, \{V_3\})$

Which of the following undirected graphs are examples of I-maps for *I* ?



(See Exercise 3.5) Ills : Jawsurg

Properties of *I*

Let I be an independence relation on a set of random variables V.

Lemma:

Every independence relation *I* has an undirected D-map.

Proof:

The undirected graph $G = (\mathbf{V}, \emptyset)$ is a D-map for *I*.

Lemma:

Every independence relation *I* has an undirected I-map.

Proof:

The undirected graph $G' = (V, V \times V)$ is an I-map for *I*.

Consider the independence relation I on $V = \{V_1, \ldots, V_4\}$, defined by

 $I(\{V_1\}, \{V_2, V_3\}, \{V_4\})$ and $I(\{V_2\}, \{V_1, V_4\}, \{V_3\})$

The following undirected graph is a perfect map for *I*:

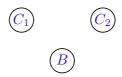


Is this P-map for I unique?

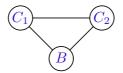
Does every I have a P-map?

Reconsider the experiment with the two coins and the bell.

• the following graph is the only D-map for the independence relation *I* of this experiment:



• the following graph is the only I-map for *I*:



• I does not have a perfect map !

Directed acyclic graphs: d-separation and (in)dependence

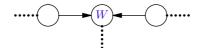
The d-separation criterion: introduction

<u>Definition</u>: Let $G = (V_G, A_G)$ be an acyclic directed graph (DAG), and let *s* be a chain in *G* between V_i and $V_j \in V_G$.

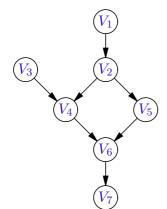
Chain *s* is blocked (or: in-active) by a set $\mathbb{Z} \subseteq V_G$ if *s* contains a node *W* for which one of the following holds:

• $W \in \mathbb{Z}$ and W has at most one incoming arc *on* chain *s*:

• $\sigma^*(W) \cap \mathbf{Z} = \emptyset$ and W has two incoming arcs *on* chain s:



Consider the following DAG and some of its chains:



1) V_4, V_2, V_5 from V_4 to V_5

- **2)** V_1, V_2, V_5, V_6, V_7 from V_1 to V_7
- **3)** V_3, V_4, V_6, V_5 from V_3 to V_5
- 4) V_2, V_4 from V_2 to V_4

Which chains are blocked by which of the following sets?

 $\emptyset, \{V_2\}, \{V_5\}, \{V_2, V_5\}, \\ \{V_4\}, \{V_6\}, \{V_4, V_6\}, \{V_7\}$

The d-separation criterion

Definition:

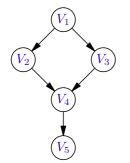
Let $G = (V_G, A_G)$ be an acyclic directed graph. Let $X, Y, Z \subseteq V_G$ be sets of nodes in *G*.

The set Z d-separates X from Y in G—notation: $\langle X | Z | Y \rangle_G^d$ —if *every simple chain* in G from a node in X to a node in Y is blocked by Z.

Remarks:

- The above notion is known as the d-separation criterion;
- $\langle X | \emptyset | Y \rangle_G^d$ indicates that all chains between X and Y, if any, contain a head-to-head node;
- if X and Y are not d-separated by Z, we say that they are d-connected given Z.

Consider the following DAG and d-separation statements:



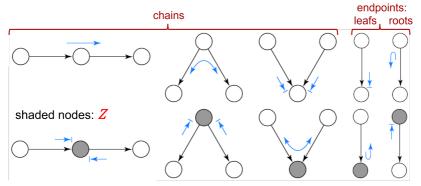
a) $\langle \{V_1\} | \{V_2, V_3\} | \{V_5\} \rangle_G^d$ b) $\langle \{V_1\} | \{V_4\} | \{V_5\} \rangle_G^d$ c) $\langle \{V_2\} | \{V_1\} | \{V_3\} \rangle_G^d$ d) $\langle \{V_2\} | \{V_1, V_5\} | \{V_3\} \rangle_G^d$ e) $\langle \{V_2\} | \emptyset | \{V_3\} \rangle_G^d$ f) $\langle \{V_1\} | \{V_3, V_4\} | \{V_2\} \rangle_G^d$

Which d-separation statements are valid in the graph ?

Answer: a,b,c

Bayes-Ball for determining d-separation

 $\langle X \mid Z \mid Y \rangle_G^d$? Drop bouncing balls at *X*, which bounce from node to node along chains, using the 10 rules of Bayes-ball:



- balls quite a chain at a stop →
- any node reached (visited) by a ball is on an active chain
- Y consists of all non-visited nodes

Independence relations and directed graphs

Definition:

Let *I* be an independence relation on a set of random variables *V*. Let $G = (V_G, A_G)$ be an acyclic directed graph with $V_G = V$.

• graph G is called a dependency map (D-map) for I if for every $X, Y, Z \subseteq V$ we have that:

if $I(\boldsymbol{X}, \boldsymbol{Z}, \boldsymbol{Y})$ then $\langle \boldsymbol{X} | \boldsymbol{Z} | \boldsymbol{Y} \rangle_{G}^{d}$;

• graph *G* is called an independency map (I-map) for *I* if for every $X, Y, Z \subseteq V$ we have that:

if $\langle \boldsymbol{X} | \boldsymbol{Z} | \boldsymbol{Y} \rangle_G^d$ then $I(\boldsymbol{X}, \boldsymbol{Z}, \boldsymbol{Y})$;

• graph *G* is called a perfect map (P-map) for *I* if *G* is both a D-map and an I-map for *I*.

Directed D-maps: what can they tell?

Let I be an independence relation and G a DAG.

Consider a D-map for *I*, then

 V_1 and V_2 neighbours³ $\implies V_1, V_2$ dependent

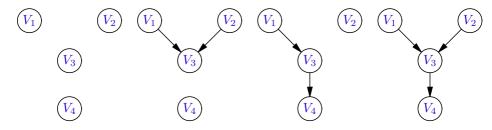
 V_1 and V_2 non-neighbours \implies ?? V_1 and V_2 can be: dependent, independent, conditionally dependent, orconditionally independent

³i.e. directly connected by an arc

Consider the independence relation I on $V = \{V_1, \ldots, V_4\}$ defined by

 $I(\{V_1\}, \emptyset, \{V_2\})$ and $I(\{V_1, V_2\}, \{V_3\}, \{V_4\})$

Which of the following DAGs are D-maps for I?



See Exercise 3.8 (Syllabus)

Directed I-maps: what can they tell ?

Let I be an independence relation and G a DAG.

Consider an I-map for I, then

 V_1 and V_2 non-neighbours $\implies V_1, V_2$ (cond.) independent, or possibly(!) induced: conditionally dependent

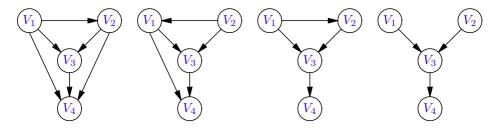
 V_1 and V_2 neighbours

 $\implies \ref{eq: V_1 and V_2 can be:}$ dependent, independent, conditionally dependent, or conditionally independent

Consider the independence relation I on $V = \{V_1, \ldots, V_4\}$ defined by

 $I(\{V_1\}, \emptyset, \{V_2\})$ and $I(\{V_1, V_2\}, \{V_3\}, \{V_4\})$

Which of the following DAGs are I-maps for I?

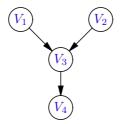


(See Exercise 3.8) (See Exercise 3.8)

Consider the independence relation I on $V = \{V_1, \ldots, V_4\}$ defined by

 $I(\{V_1\}, \emptyset, \{V_2\})$ and $I(\{V_1, V_2\}, \{V_3\}, \{V_4\})$

The following DAG is a perfect map for *I*:



Is this P-map for I unique ?

Consider the independence relation I on $V = \{V_1, \ldots, V_4\}$ defined by

 $I(\{V_1\}, \{V_2, V_3\}, \{V_4\})$ and $I(\{V_2\}, \{V_1, V_4\}, \{V_3\})$

The relation I has an undirected P-map, but does not have a directed P-map. Consider for example the following DAG G:

 V_1

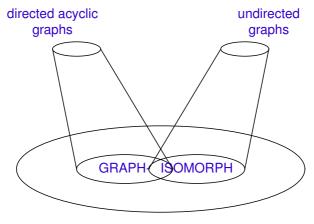
 V_4

 V_{2}

In graph *G* we have that $\langle \{V_1\} | \{V_2, V_3\} | \{V_4\} \rangle_G^d$, but also that $\langle \{V_2\} | \{V_1\} | \{V_3\} \rangle_G^d$!

 V_3

Independence relations and their graphical representation



independence relations

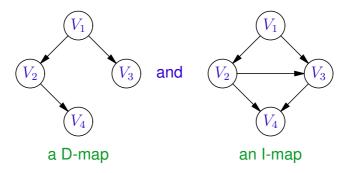
(Graph-isomorph: independence relation with perfect map.)

An I-map or a D-map?

Reconsider the independence relation I on $V = \{V_1, \ldots, V_4\}$ defined by

 $I(\{V_1\}, \{V_2, V_3\}, \{V_4\})$ and $I(\{V_2\}, \{V_1, V_4\}, \{V_3\})$

Compare the following two representations of independence relation *I*:



A minimal I-map

Definition: Let *I* be an independence relation on a set of random variables *V*. Let $G = (V_G, A_G)$ be a graph with $V_G = V$.

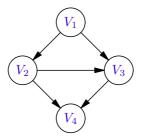
The graph G is called a minimal I-map for I if the following conditions hold:

- G is an I-map for I, and
- no proper subgraph of *G* is an I-map for *I*.

Consider the independence relation I on $V = \{V_1, \ldots, V_4\}$ defined by

 $I(\{V_1\}, \{V_2, V_3\}, \{V_4\})$ and $I(\{V_2\}, \{V_1, V_4\}, \{V_3\})$

The following DAG is a minimal I-map for *I*:



Is this minimal I-map for I unique ?

no

Directed or undirected ? (I)

Directed and undirected I-maps are related.

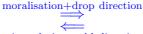
<u>Definition</u>: The moral graph of a DAG $G = (V_G, A_G)$ is the undirected graph obtained as follows:

- for each V_k ∈ V_G add an edge between each pair of unconnected parents V_i, V_j ∈ ρ_G(V_k);
- drop the directions of all arcs.

Definition: A graph is triangulated or chordal if any loop of length ≥ 4 contains a shortcut.

Proposition: Let *I* be an independence relation over *V*. Consider graphs $G = (V_G, A_G)$ and $G' = (V, E_{G'})$. Then,

G is an I-map for I



G' is an I-map for I

triangulation+add direction

Directed or undirected ? (II)

Consider the following properties (partly proven later):

• Let *G* be a directed acyclic graph. Then *G* is a directed I-map of $I_{Pr} \iff Pr$ can be written as

$$\Pr(\mathbf{V}) = \prod_{V_i} \Pr(V_i \mid \boldsymbol{\rho}_G(V_i))$$

• Let G be an undirected graph. Then G is an undirected I-map of $I_{Pr} \iff {}^{4}Pr$ can be written as

$$\Pr(\mathbf{V}) = K \cdot \prod_{C_i} \Phi(C_i) \quad \longleftarrow \quad \begin{array}{c} \text{what's the meaning of} \\ \text{these clique potentials?!?} \end{array}$$

for some normalisation factor K.

 $^{^4}$ \implies requires \Pr to be strictly positive