
Syllabus, Chapter 4:

The Bayesian Network
Framework

93

The network formalism, informal

A Bayesian network combines two types of domain knowledge
to represent a joint probability distribution:
• qualitative knowledge: a (minimal) directed I-map for the

independence relation that exists on the variables of the
domain;
• quantitative knowledge: a set of local conditional probability

distributions.

94

A Bayesian network
Definition:
A Bayesian network is a pair B = (G,Γ) such that

• G = (VG,AG) is a DAG with arcs AG and nodes VG = V ,
representing a set of random variables V = {V1, . . . , Vn},
n ≥ 1;

• Γ = {γVi
| Vi ∈ V } is a set of non-negative functions

γVi
: {cVi

} × {cρ(Vi)} → [0, 1]

such that for each configuration cρ(Vi) of the set ρ(Vi) of
parents of Vi in G, we have that

∑

cVi

γVi
(cVi
| cρ(Vi)) = 1 for i = 1, . . . n

These functions are called the assessment functions for G;
their values are referred to as network- or model-parameters.

95

An Example

Consider the following piece of ‘medical knowledge’:
“A metastatic carcinoma can cause a brain tumour and is
also a possible explanation for an increased concentration of
calcium in the blood. Both a brain tumour and an increased
calcium concentration can result in a patient falling into a
coma. A brain tumour can cause severe headaches.”

The independences between the variables are represented in
the following DAG G:

Carcinoma

Brain
tumour

Calcium
concentr.

ComaHeadache

96

An example – continued
Reconsider the following DAG G, and assume each V ∈ V to
be binary-valued.

Carcinoma

Brain
tumour

Calcium
concentr.

ComaHeadache

With G we associate a set of
assessment functions
Γ = {γCar, γB, γCal, γH , γCo}.

For the function γCar the following function values are specified:

γCar(carc) = 0.2, γCar(¬ carc) = 0.8

For the function γB the following function values are specified:

γB(tum | carc) = 0.2, γB(tum | ¬ carc) = 0.05
γB(¬ tum | carc) = 0.8, γB(¬ tum | ¬ carc) = 0.95

97

An example – continued
Reconsider the following DAG G, and assume each V ∈ V to
be binary-valued.

Carcinoma

Brain
tumour

Calcium
concentr.

ComaHeadache

With G we associate a set of
assessment functions
Γ = {γCar, γB, γCal, γH , γCo}.

For the function γCal the following function values are specified:

γCal(cal conc | carc) = 0.8 γCal(cal conc | ¬ carc) = 0.1
γCal(¬cal conc | carc) = 0.2 γCal(¬cal conc | ¬carc) = 0.9

For the function γH the following function values are specified:

γH(headache | tum) = 0.8 γH(headache | ¬ tum) = 0.6
γH(¬headache | tum) = 0.2 γH(¬headache | ¬ tum) = 0.4

98

An example – continued
Reconsider the following DAG G, and assume each V ∈ V to
be binary-valued.

Carcinoma

Brain
tumour

Calcium
concentr.

ComaHeadache

With G we associate a set of
assessment functions
Γ = {γCar, γB, γCal, γH , γCo}.

For the function γCo the following function values are specified:

γCo(co | tum∧cal conc) = 0.9 γCo(co |¬ tum∧cal conc)= 0.8
γCo(co | tum∧¬ cal conc)= 0.7 γCo(co |¬ tum∧¬ cal conc)= 0.05
γCo(¬co | tum∧cal conc)= 0.1 γCo(¬co |¬ tum∧cal conc)= 0.2
γCo(¬co | tum∧¬ cal conc)= 0.3 γCo(¬co |¬ tum∧¬ cal conc)= 0.95

The pair B = (G,Γ) is a Bayesian network.
99

A probabilistic interpretation

Proposition:
Let B = (G,Γ) be a Bayesian network with G = (VG,AG) and
nodes VG = V , representing a set of random variables
V = {V1, . . . , Vn}, n ≥ 1. Then

Pr(V) =
n∏

i=1

γVi
(Vi | ρ(Vi))

defines a joint probability distribution Pr on V such that G is a
directed I-map for the independence relation I Pr of Pr.

Pr is called the joint distribution defined by B and is said to
respect the independences portrayed in G.

NB we will often omit the subscript in γ if no confusion is possible.

100

An example

Consider the Bayesian network B:

V1

V2 V3

V4V5

γ(v1) = 0.8

γ(v2 | v1) = 0.9
γ(v2 | ¬v1) = 0.3

γ(v3 | v1) = 0.2
γ(v3 | ¬v1) = 0.6

γ(v4 | v2 ∧ v3) = 0.1
γ(v4 | ¬v2 ∧ v3) = 0.2
γ(v4 | v2 ∧ ¬v3) = 0.6
γ(v4 | ¬v2 ∧ ¬v3) = 0.1

γ(v5 | v2) = 0.4
γ(v5 | ¬v2) = 0.5

Let Pr be the joint distribution defined by B. Then, for example

Pr(v1 ∧ v2 ∧ v3 ∧ v4 ∧ v5) =

= γ(v5 | v2)·γ(v4 | v2∧v3)·γ(v3 | v1)·γ(v2 | v1)·γ(v1) =

= 0.4 · 0.1 · 0.2 · 0.9 · 0.8 = 0.00576

Note: Pr is described by only 11 (free) model-parameters
instead of 31 numbers using a straightforward representation.

101

A probabilistic interpretation

Proof: (sketch)

Acyclic digraph G allows a total ordering ιG : VG ↔ {1, . . . , n}
such that ιG(Vi) < ιG(Vj) if there is a directed path from Vi to
Vj, i 6= j, in G.

Example:
V1

V2 V3

V4V5

1

2 3

45

102

A probabilistic interpretation: proof continued

Take ordering ιG as an ordering on the random variables
V1, . . . Vn as well.

Let P be an arbitrary joint distribution on V such that G is a
directed I-map for the independences in P .

Now apply the chain rule using ιG.

Example:

P (V1 ∧ . . . ∧ V5) =

P (V5 | V1 ∧ . . . ∧ V4) · P (V4 | V1 ∧ V2 ∧ V3) ·
·P (V3 | V1 ∧ V2) · P (V2 | V1) · P (V1)

103

A probabilistic interpretation: proof continued

Example:
V1

V2 V3

V4V5

1

2 3

45

P (V1 ∧ . . . ∧ V5) = P (V5 | V1 ∧ . . . ∧ V4) · P (V4 | V1 ∧ V2 ∧ V3) ·
·P (V3 | V1 ∧ V2) · P (V2 | V1) · P (V1)

Each Vj is conditioned on just those Vi with ιG(Vi) < ιG(Vj).
Use the fact that G is an I-map for P .

Example: P (V1 ∧ . . . ∧ V5) = P (V5 | V2) · P (V4 | V2 ∧ V3) ·
·P (V3 | V1) · P (V2 | V1) · P (V1)

We have that P (V1 ∧ . . . ∧ Vn) =
∏

Vi ∈V

P (Vi | ρ(Vi))

104

A probabilistic interpretation: proof continued

With graph G is associated a set Γ of assessment functions
γ(Vi | ρ(Vi)). If we choose Pr(Vi | ρ(Vi)) = γ(Vi | ρ(Vi)), then

Pr(V1 ∧ . . . ∧ Vn) =
∏

Vi ∈V

γ(Vi | ρ(Vi))

defines a unique joint distribution on V that respects the
independences in G.

Example: The joint distribution Pr defined by

Pr(V1 ∧ . . . ∧ V5) = γ(V5 | V2) · γ(V4 | V2 ∧ V3) ·
· γ(V3 | V1) · γ(V2 | V1) · γ(V1)

respects the independences in G.

�
105

Consequences of probabilistic interpretation

• Bayesian network B is a very compact representation of a
multivariate joint distribution Pr(V), from which we can
compute:
• any prior or marginal probability Pr(cW) for W ⊆ V ;
• any posterior or conditional probability Pr(cW | cE) for
W ,E ⊂ V ;

• the independences stated in I Pr are respected by B and
read from graph G by means of the d-separation criterion
⇒ blocking sets Z now have an intuitive meaning:

take Z = E upon observing evidence for E ⊂ V .

106

An example

Let B = (G,Γ) and Pr be as before.

V1

V2 V3

V4V5

γ(v1) = 0.8

γ(v2 | v1) = 0.9
γ(v2 | ¬v1) = 0.3

γ(v3 | v1) = 0.2
γ(v3 | ¬v1) = 0.6

γ(v4 | v2 ∧ v3) = 0.1
γ(v4 | ¬v2 ∧ v3) = 0.2
γ(v4 | v2 ∧ ¬v3) = 0.6
γ(v4 | ¬v2 ∧ ¬v3) = 0.1

γ(v5 | v2) = 0.4
γ(v5 | ¬v2) = 0.5

How can we compute Pr(v1 ∧ v3 ∧ v4 ∧ v5) ?

Pr(v1 ∧ v2 ∧ v3 ∧ v4 ∧ v5) = 0.00576

Pr(v1 ∧ ¬ v2 ∧ v3 ∧ v4 ∧ v5) = 0.0016

Pr(v1 ∧ v3 ∧ v4 ∧ v5) =

= Pr(v1 ∧ v2 ∧ v3 ∧ v4 ∧ v5) + Pr(v1 ∧ ¬v2 ∧ v3 ∧ v4 ∧ v5)
= 0.00576 + 0.0016 = 0.00736

107

Exact inference algorithms

Efficiently compute marginal and conditional probabilities from
the distribution defined by a network.

The best-known algorithms serve to compute univariate
distributions over Vi ∈ V , i.e. Pr(Vi) or Pr(Vi | cE):

• Belief propagation (BP) (J. Pearl (1986). Fusion, propagation and
structuring in belief networks, Artificial Intelligence, 29);
• Join-tree propagation (S.L. Lauritzen, D.J. Spiegelhalter (1988).

Local computations with probabilities on graphical structures and their
application to expert systems, Journal of the Royal Statistical Society
(Series B), 50);
• Variable elimination (N.L. Zhang, D. Poole (1994). A simple approach

to Bayesian network computations, 7th Canadian Conference on AI).

The algorithms are quite different in terms of the underlying
ideas and their complexity.

108

Approximate inference algorithms

Estimate probabilities from the distribution defined by a
network.

• Loopy belief propagation
• Sampling-based approaches
• Monte Carlo techniques, e.g. MCMC
• accurate with enough samples
• sampling can be computationally demanding

• Deterministic approaches
• e.g. variational approaches, such as VI
• use analytical approximations to the posterior
• can scale well

109

Variable elimination (VE): idea and complexity

Let V = {V1, V2, V3, V4}. Consider the computation of

Pr(v4) =
∑

c{V1,V2,V3}

Pr(cV1)·Pr(cV2 | cV3)·Pr(cV3 | cV1)·Pr(v4 | cV3)

• avoid computing large factors: move summations inside
the factorisation;
• efficiency depends on size (w(idth)) of largest computed

factor, which depends on order of elimination:
∑

cV1

Pr(cV1) ·
∑

cV3

Pr(cV3 | cV1) · Pr(v4 | cV3) ·
∑

cV2

Pr(cV2 | cV3)

Complexity for individual Pr(Vi | cE): O(|V | · exp(w))

• singly connected graphs: w = k for k = maxVi
|ρG(Vi)|

• multiply connected graphs: w ≥ k can be as large as |V |.
110

Join-tree propagation: idea and complexity

Idea of Join-tree propagation:

1) moralise and triangulate G;
2) identify cliques and organise these into a join tree;
3) translate Γ into clique potentials;
4) update clique potentials by message passing between

cliques in the tree.

Efficiency depends on size of largest clique (→ width w).

Complexity for all Pr(Vi | cE) simultaneously: O(|V | · exp(w))

111

Pearl’s computational architecture

In Pearl’s algorithm the graph of a Bayesian network is used as
a computational architecture:

• each node in the graph is an autonomous object;
• each object has a local memory that stores the

assessment functions of the associated node;
• each object has available a local processor that can do

(simple) probabilistic computations;
• each arc in the graph is a (bi-directional) communication

channel, through which connected objects can send each
other messages.

112

A computational architecture

1234

4321

-
4
1

∑ ∑ ∑ ∑2
2
1

3
1
1

4
-
1

∑ 1
3
1

Message-passing and simple local computations:
now we all know with how many we are!

113

A computational architecture

34

43

∑ -
4
1

3

∑1

1

∑
1
1

3 2 3 2
∑

-
1

4 3

If we observe a local change:
start message-passing to update computations.

114

Understanding Pearl: single arc (1)

Consider Bayesian network B with the following graph:

V1

V2

γ(V1)

γ(V2 | V1)

Let Pr be the joint distribution defined by B.
We consider the situation without evidence.

• What does V1 need to compute the probabilities Pr(V1)?
• What does V2 need to compute the probabilities Pr(V2)?

115

Understanding Pearl: single arc (2)

V1

V2

γ(v1), γ(¬v1)

γ(v2 | v1), γ(¬v2 | v1)

γ(v2 | ¬v1), γ(¬v2 | ¬v1)

Let Pr be the joint distribution
defined by B.

We consider the situation
without evidence.

• node V1 can determine the probabilities for its own values:

Pr(v1) = γ(v1), Pr(¬v1) = γ(¬v1)

• node V2 cannot determine Pr(V2), but does know all four
conditional probabilities: Pr(V2 | V1) = γ(V2 | V1)

V2 can compute its probabilities given information from V1:

Pr(v2) = Pr(v2 | v1) · Pr(v1) + Pr(v2 | ¬v1) · Pr(¬v1)
Pr(¬v2) = Pr(¬v2 | v1) · Pr(v1) + Pr(¬v2 | ¬v1) · Pr(¬v1)

116

Understanding Pearl: directed path (1)

V1

V2

V3

γ(V1)

γ(V2 | V1)

γ(V3 | V2)

We consider the situation without evidence.
• What does V1 need to compute the probabilities Pr(V1)?
• What does V2 need to compute the probabilities Pr(V2)?
• What does V3 need to compute the probabilities Pr(V3)?

117

Understanding Pearl: directed path (2)

V1

V2

V3

γ(v1), γ(¬v1)

γ(v2 | v1), γ(¬v2 | v1)

γ(v2 | ¬v1), γ(¬v2 | ¬v1)

γ(v3 | v2), γ(¬v3 | v2)

γ(v3 | ¬v2), γ(¬v3 | ¬v2)

We consider the situation
without evidence.

Given information from V1,
node V2 can compute
Pr(v2) and Pr(¬v2).

Node V2 now sends node V3 the required information; node V3
computes:

Pr(v3) = Pr(v3 | v2) · Pr(v2) + Pr(v3 | ¬v2) · Pr(¬v2)
= γ(v3 | v2) · Pr(v2) + γ(v3 | ¬v2) · Pr(¬v2)

Pr(¬v3) = γ(¬v3 | v2) · Pr(v2) + γ(¬v3 | ¬v2) · Pr(¬v2)

118

Introduction to causal message parameters

V1

V2

γ(v1), γ(¬v1)

γ(v2 | v1), γ(¬v2 | v1)

γ(v2 | ¬v1), γ(¬v2 | ¬v1)

πV1

V2
↓

Node V1 sends a message
enabling V2 to compute the
probabilities for its values.

This message contains a function πV1
V2

: {v1,¬v1} → [0, 1] for
which

∑

cV1

πV1
V2

(cV1) = 1

πV1
V2

is called the causal (message) parameter from V1 to V2.

119

Causal message parameters: an example

V1

V2

V3

γ(v1) = 0.7, γ(¬v1) = 0.3

γ(v2 | v1) = 0.2, γ(¬v2 | v1) = 0.8

γ(v2 | ¬v1) = 0.5, γ(¬v2 | ¬v1) = 0.5

γ(v3 | v2) = 0.6, γ(¬v3 | v2) = 0.4

γ(v3 | ¬v2) = 0.1, γ(¬v3 | ¬v2) = 0.9

πV1

V2
↓

πV2

V3
↓

Node V1:
• receives no

messages
• computes and

sends to V2: πV1
V2

with πV1
V2

(v1) = γ(v1) = 0.7; πV1
V2

(¬v1) = 0.3

Node V1 computes Pr(V1):

Pr(v1) = πV1
V2

(v1) = 0.7; Pr(¬v1) = 0.3

120

Causal message parameters: an example (cntd)

V1

V2

V3

γ(v1) = 0.7, γ(¬v1) = 0.3

γ(v2 | v1) = 0.2, γ(¬v2 | v1) = 0.8

γ(v2 | ¬v1) = 0.5, γ(¬v2 | ¬v1) = 0.5

γ(v3 | v2) = 0.6, γ(¬v3 | v2) = 0.4

γ(v3 | ¬v2) = 0.1, γ(¬v3 | ¬v2) = 0.9

πV1

V2
↓

πV2

V3
↓

Node V2:
• receives πV1

V2
from V1

• computes and
sends to V3: πV2

V3

with πV2
V3

(v2) = Pr(v2 | v1) · Pr(v1) + Pr(v2 | ¬v1) · Pr(¬v1)
= γ(v2 | v1) · πV1

V2
(v1) + γ(v2 | ¬v1) · πV1

V2
(¬v1)

= 0.2 · 0.7 + 0.5 · 0.3 = 0.29

πV2
V3

(¬v2) = 0.8 · 0.7 + 0.5 · 0.3 = 0.71

Node V2 computes Pr(V2):

Pr(v2) = πV2
V3

(v2) = 0.29; Pr(¬v2) = 0.71

121

Causal message parameters: an example (cntd)

V1

V2

V3

γ(v1) = 0.7, γ(¬v1) = 0.3

γ(v2 | v1) = 0.2, γ(¬v2 | v1) = 0.8

γ(v2 | ¬v1) = 0.5, γ(¬v2 | ¬v1) = 0.5

γ(v3 | v2) = 0.6, γ(¬v3 | v2) = 0.4

γ(v3 | ¬v2) = 0.1, γ(¬v3 | ¬v2) = 0.9

πV1

V2
↓

πV2

V3
↓

Node V3:
• receives πV2

V3
from V2

• sends no
messages

Node V3 computes Pr(V3):

Pr(v3) = γ(v3 | v2) · πV2
V3

(v2) + γ(v3 | ¬v2) · πV2
V3

(¬v2)
= 0.6 · 0.29 + 0.1 · 0.71 = 0.245

Pr(¬v3) = 0.4 · 0.29 + 0.9 · 0.71 = 0.755

�
122

Understanding Pearl: simple chains

We consider the following networks without observations.

V1

V2

V3

γ(v1 | v2), γ(¬v1 | v2)

γ(v1 | ¬v2), γ(¬v1 | ¬v2)

γ(v2), γ(¬v2)

γ(v3 | v2), γ(¬v3 | v2)

γ(v3 | ¬v2), γ(¬v3 | ¬v2)

V1

V2

V3

γ(v1), γ(¬v1)

γ(v2 | v1 ∧ v3), γ(v2 | v1 ∧ ¬v3)

γ(v2 | ¬v1 ∧ v3), γ(v2 | ¬v1 ∧ ¬v3)

...

γ(v3), γ(¬v3)

For each network: what information would Vi, i = 1, 2, 3, need
to compute Pr(Vi)? (consider d-separation and independence)

123

Understanding Pearl with evidence (1)

Consider B = (G,Γ) with evidence V1 = true (v1):

V1

V2

γ(v1), γ(¬v1)

γ(v2 | v1), γ(¬v2 | v1)

γ(v2 | ¬v1), γ(¬v2 | ¬v1)

πV1

V2
↓

Node V1 updates its probabili-
ties and causal parameter:

πV1
V2

(v1) = Prv1(v1)

= Pr(v1 | v1) = 1

πV1
V2

(¬v1) = Prv1(¬v1) = 0

Given the updated information from V1, node V2 updates the
probabilities for its own values:

Prv1(v2) = γ(v2 | v1) · πV1
V2

(v1) + γ(v2 | ¬v1) · πV1
V2

(¬v1)
= γ(v2 | v1)

Prv1(¬v2) = γ(¬v2 | v1) · πV1
V2

(v1) + γ(¬v2 | ¬v1) · πV1
V2

(¬v1)
= γ(¬v2 | v1)

Note that the function γ(V1) remains unchanged!
124

Understanding Pearl with evidence (2a)

V1

V2

γ(v1), γ(¬v1)

γ(v2 | v1), γ(¬v2 | v1)

γ(v2 | ¬v1), γ(¬v2 | ¬v1)

Suppose we have evidence V2 = true for node V2.

• What does V1 need to compute the probabilities Prv2(V1)?
• What does V2 need to compute the probabilities Prv2(V2)?

125

Understanding Pearl with evidence (2b)

Consider B = (G,Γ) with evidence V2 = true :

V1

V2

γ(v1), γ(¬v1)

γ(v2 | v1), γ(¬v2 | v1)

γ(v2 | ¬v1), γ(¬v2 | ¬v1)

Node V1 cannot update its
probabilities using its own
knowledge; it requires in-
formation from V2! What in-
formation does V1 require?

Consider the following properties:

Prv2(v1) =
Pr(v2 | v1) · Pr(v1)

Pr(v2)
∝ Pr(v2 | v1) · Pr(v1)

Prv2(¬v1) =
Pr(v2 | ¬v1) · Pr(¬v1)

Pr(v2)
∝ Pr(v2 | ¬v1) · Pr(¬v1)

126

Introduction to diagnostic message parameters

V1

V2

γ(v1), γ(¬v1)

γ(v2 | v1), γ(¬v2 | v1)

γ(v2 | ¬v1), γ(¬v2 | ¬v1)

λV1

V2
↑

Node V2 sends a message
enabling V1 to update the
probabilities for its values.

This message contains a function λV1
V2

: {v1,¬v1} → [0, 1]
defined on each value of V1.

The message basically tells V1 what node V2 knows about V1;
in general:

∑

cV1

λV1
V2

(cV1) 6= 1

λV1
V2

is called the diagnostic (message) parameter from V2 to V1.
127

Diagnostic message parameters: an example

Consider B = (G,Γ) with evidence V2 = true:

V1

V2

γ(v1) = 0.8, γ(¬v1) = 0.2

γ(v2 | v1) = 0.4, γ(¬v2 | v1) = 0.6

γ(v2 | ¬v1) = 0.9, γ(¬v2 | ¬v1) = 0.1

λV1

V2
↑

Node V2:

• computes and sends to V1: diagnostic parameter λV1
V2

with

λV1
V2

(v1) = Pr(v2 | v1) = γ(v2 | v1) = 0.4

λV1
V2

(¬v1) = γ(v2 | ¬v1) = 0.9

Note that
∑

cV1
λ(cV1) = 1.3 > 1!

128

Diagnostic message parameters: an example (cntd)

V1

V2

γ(v1) = 0.8, γ(¬v1) = 0.2

γ(v2 | v1) = 0.4, γ(¬v2 | v1) = 0.6

γ(v2 | ¬v1) = 0.9, γ(¬v2 | ¬v1) = 0.1

λV1

V2
↑ Node V1 receives

from V2: λV1
V2

Node V1 computes:

Prv2(v1) = α · Pr(v2 | v1) · Pr(v1)

= α · λV1
V2

(v1) · γ(v1) = α · 0.4 · 0.8 = α · 0.32

Prv2(¬v1) = α · λV1
V2

(¬v1) · γ(¬v1) = α · 0.9 · 0.2 = α · 0.18

Node V1 now normalises its probabilities using

Prv2(v1) + Prv2(¬v1) = 1 : α · 0.32 + α · 0.18 = 1 =⇒ α = 2

resulting in Prv2(v1) = 0.64 Prv2(¬v1) = 0.36 �
129

Understanding Pearl: directed path with evidence

V1

V2

V3

γ(v1), γ(¬v1)

γ(v2 | v1), γ(¬v2 | v1)

γ(v2 | ¬v1), γ(¬v2 | ¬v1)

γ(v3 | v2), γ(¬v3 | v2)

γ(v3 | ¬v2), γ(¬v3 | ¬v2)

Suppose we have evidence V3 = true for node V3.

• What does V1 need to compute the probabilities Prv3(V1)?
• What does V2 need to compute the probabilities Prv3(V2)?
• What does V3 need to compute the probabilities Prv3(V3)?

What if node V1, node V2, or both have evidence instead?
130

Pearl on directed paths – An example (1)

Consider B = (G,Γ) with evidence V3 = true:

V1

V2

V3

γ(v1), γ(¬v1)

γ(v2 | v1), γ(¬v2 | v1)

γ(v2 | ¬v1), γ(¬v2 | ¬v1)

γ(v3 | v2), γ(¬v3 | v2)

γ(v3 | ¬v2), γ(¬v3 | ¬v2)

Node V1:
• receives λV1

V2
(V1)

• computes and sends to V2:
πV1
V2

(V1) = γ(V1)

Node V1 computes

Prv3(v1) = α · Pr(v3 | v1) · Pr(v1) = α · λV1
V2

(v1) · γ(v1)

Prv3(¬v1) = α · Pr(v3 | ¬v1) · Pr(¬v1) = α · λV1
V2

(¬v1) · γ(¬v1)

131

Pearl on directed paths – An example (2)

V1

V2

V3

γ(v1), γ(¬v1)

γ(v2 | v1), γ(¬v2 | v1)

γ(v2 | ¬v1), γ(¬v2 | ¬v1)

γ(v3 | v2), γ(¬v3 | v2)

γ(v3 | ¬v2), γ(¬v3 | ¬v2)

Node V2:
• receives πV1

V2
(V1) and λV2

V3
(V2)

• computes and sends to V3:
πV2
V3

(V2)

• computes and sends to V1:
λV1
V2

(V1)

with λV1
V2

(v1) = Pr(v3 | v1)
= Pr(v3 | v2) · Pr(v2 | v1) + Pr(v3 | ¬v2) · Pr(¬v2 | v1)
= λV2

V3
(v2) · γ(v2 | v1) + λV2

V3
(¬v2) · γ(¬v2 | v1)

λV1
V2

(¬v1) = Pr(v3 | ¬v1) = . . .

The node then computes Prv3(V2). . .

132

Pearl on directed paths – An example (3)

V1

V2

V3

γ(v1), γ(¬v1)

γ(v2 | v1), γ(¬v2 | v1)

γ(v2 | ¬v1), γ(¬v2 | ¬v1)

γ(v3 | v2), γ(¬v3 | v2)

γ(v3 | ¬v2), γ(¬v3 | ¬v2)

Node V3:
• receives causal parameter πV2

V3
(V2)

• computes and sends to V2: λV2
V3

(V2) with

λV2
V3

(v2) = Pr(v3 | v2) = γ(v3 | v2)
λV2
V3

(¬v2) = Pr(v3 | ¬v2) = γ(v3 | ¬v2)

• computes Prv3(V3) �
133

Understanding Pearl: simple chain with evidence

Suppose we have evidence V3 = true in the following networks:

V1

V2

V3

γ(v1 | v2), γ(¬v1 | v2)

γ(v1 | ¬v2), γ(¬v1 | ¬v2)

γ(v2), γ(¬v2)

γ(v3 | v2), γ(¬v3 | v2)

γ(v3 | ¬v2), γ(¬v3 | ¬v2)

V1

V2

V3

γ(v1), γ(¬v1)

γ(v2 | v1 ∧ v3), γ(v2 | v1 ∧ ¬v3)
γ(v2 | ¬v1 ∧ v3), γ(v2 | ¬v1 ∧ ¬v3)
...

γ(v3), γ(¬v3)

For each network: what does node Vi, i = 1, 2, 3, need to
compute the probabilities Prv3(Vi)?

134

The message parameters

Consider the BN graph as a computational
architecture:

causal and diagnostic message parameters
• are passed between objects (nodes)
• through communication channels (arcs).

The causal and diagnostic messages for the
same channel are computed independently.

Vj

Vi

Vk

π
Vj

Vi
↓

πVi

Vk
↓

↑ λVj

Vi

↑ λVi

Vk

135

Pearl’s algorithm (high-level)

Each Vi ∈ VG does the following:

• compute π(Vi) once messages from all parents (if any) are
received;
• compute λ(Vi) once messages from all children (if any) are

received;
• for each child Vij , compute and send message πVi

Vij
(Vi)

once messages from all other neighbours are received;
• for each parent Vjk , compute and send message λ

Vjk
Vi

(Vjk)
once messages from all other neighbours are received.

Message-passing starts at ’root’ and ’leaf’ nodes;
upon processing evidence, message-passing is initiated at
observed nodes.

136

The message-passing

After establishing all prior probabilities, the Bayesian network is
in a stable situation.

evidence λ

π

Once evidence is entered into the network, this stability is
disturbed.

137

The message-passing, continued

Evidence initiates message-passing throughout the network:

After each node in the
network is visited by the
message-passing algorithm,
the network returns to a new
stable situation.

138

Notation: partial configurations

Definition:

A random variable Vj ∈ V is called instantiated if evidence
Vj = true or Vj = false is obtained; otherwise Vj is called
uninstantiated.

Let E ⊆ V be the subset of instantiated variables. The
obtained configuration cE is called a partial configuration of V ,
written c̃V.

Example: Consider V = {V1, V2, V3}.
If no evidence is obtained (E = ∅) then: c̃V = T(rue)

If evidence V2 = false is obtained, then: c̃V = ¬v2 �

Note: with c̃V we can refer to evidence without specifying E.

139

Singly connected graphs (SCGs)

Definition: A directed graph G is called singly connected if the
underlying undirected graph of G is acyclic.

Example: The following graph is singly connected:

Vi

Lemma: Let G be a singly connected graph (SCG). Each
graph obtained from G by removing an arc, is not connected.

Definition: A (directed) tree is a SCG where each node has at
most one incoming arc.

140

Notation: lowergraphs and uppergraphs

Definition: Let G = (VG,AG) be a SCG and let G(Vi,Vj) be the
subgraph of G after removing the arc (Vi, Vj) ∈ AG:

G(Vi,Vj) = (VG,AG \ {(Vi, Vj)})

Now consider a node Vi ∈ VG:

For each node Vj ∈ ρ(Vi), let G+
(Vj ,Vi)

be the component of
G(Vj ,Vi) that contains Vj; G+

(Vj ,Vi)
is called an uppergraph of Vi.

For each node Vk ∈ σ(Vi), let G−(Vi,Vk)
be the component of

G(Vi,Vk) that contains Vk; G−(Vi,Vk)
is called a lowergraph of Vi.

141

An example

V1

V0

V2G+
(V1,V0)

G+
(V2,V0)

V3 V4G−
(V0,V3)

G−
(V0,V4)

Node V0 has:

– two uppergraphs
G+

(V1,V0)
and G+

(V2,V0)

– two lowergraphs
G−(V0,V3)

and G−(V0,V4)

For this graph we have, for example, that
I(VG+

(V1,V0)
, {V0}, VG−

(V0,V3)
)

I(VG−
(V0,V3)

, {V0}, VG−
(V0,V4)

)

I(VG+
(V1,V0)

, ∅, VG+
(V2,V0)

)

142

Computing probabilities in SCGs

Lemma:

Consider B = (G,Γ) with SCG G = (VG,AG), where
VG = V = {V1, . . . , Vn}, n ≥ 1; let Pr be the joint distribution
defined by B.

For Vi ∈ V , let V +
i =

⋃

Vj∈ρ(Vi)

VG+
(Vj,Vi)

and V −
i = V \ V +

i .

Then

Pr(Vi | c̃V) = α · Pr(c̃V −i
| Vi) · Pr(Vi | c̃V +

i
)

where c̃V = c̃V −i
∧ c̃V +

i
and α is a normalisation constant.

143

Computing probabilities in SCGs

Proof:

Pr(Vi | c̃V) = Pr(Vi | c̃V −i ∧ c̃V +
i

)

=
Pr(c̃V −i

| Vi) · Pr(c̃V +
i
| Vi) · Pr(Vi)

Pr(c̃V −i
∧ c̃V +

i
)

= Pr(c̃V −i
| Vi) · Pr(Vi | c̃V +

i
) ·

Pr(c̃V +
i

)

Pr(c̃V −i
∧ c̃V +

i
)

= α · Pr(c̃V −i
| Vi) · Pr(Vi | c̃V +

i
)

where α =
1

Pr(c̃V −i
| c̃V +

i
)
. �

144

Compound parameters: definition

Definition:

Consider B = (G,Γ) with SCG G = (VG,AG) and joint
distribution Pr. For Vi ∈ VG, let V +

i and V −
i be as before;

• the function π : {vi,¬vi} → [0, 1] for node Vi is defined by

π(Vi) = Pr(Vi | c̃V +
i

)

and is called the compound causal parameter for Vi;

• the function λ : {vi,¬vi} → [0, 1] for node Vi is defined by

λ(Vi) = Pr(c̃V −i
| Vi)

and is called the compound diagnostic parameter for Vi.

145

Computing probabilities in SCGs

Lemma: (‘Data Fusion’)

Consider B = (G,Γ) with SCG G = (VG,AG) and joint
distribution Pr. Then

for each Vi ∈ VG : Pr(Vi | c̃VG
) = α · π(Vi) · λ(Vi)

with compound causal parameter π, compound diagnostic
parameter λ, and normalisation constant α.

Proof:
Follows directly from the previous lemma and the definitions of
the compound parameters. �

146

The causal message parameter defined

Definition:

Consider B = (G,Γ) with SCG G = (VG,AG) and joint Pr.

Let Vi ∈ VG have child Vk∈σ(Vi)

• the function πVi
Vk

: {vi,¬vi} → [0, 1] is defined by

πVi
Vk

(Vi) = Pr(Vi | c̃V
G+
(Vi,Vk)

)

and called the causal (message) parameter from Vi to Vk.

Vi

Vk

V (G+
(Vi,Vk)

)

directed tree:
Vi

Vk

V +
k

147

The diagnostic message parameter defined

Definition:

Consider B = (G,Γ) with SCG G = (VG,AG) and joint Pr.

Let Vi ∈ VG have parent Vj∈ρ(Vi);

• the function λVj

Vi
: {vj,¬vj} → [0, 1] is defined by

λ
Vj

Vi
(Vj) = Pr(c̃V

G−
(Vj,Vi)

| Vj)

and called the diagnostic (message) parameter from Vi to Vj.

Vj

Vi

V (G−
(Vj ,Vi)

)

directed tree:

Vj

Vi

V −
i

148

Computing compound causal parameters in SCGs

Lemma:

Let B = (G,Γ) be as before. Consider a node Vi ∈ VG and its
parents ρ(Vi) = {Vi1 , . . . , Vim}, m ≥ 1.

Then

π(Vi) =
∑

cρ(Vi)

γ(Vi | cρ(Vi)) ·
∏

j=1,...,m

π
Vij

Vi
(cVij

)

where cρ(Vi) =
∧

j=1,...,m cVij

Note that each cVij
used in the product should be consistent

with the cρ(Vi) from the summand!

149

Vi1 Vim

Vi

. . .V (G+
(Vi1

,Vi)
) V (G+

(Vim ,Vi)

V +
i

150

Computing compound causal parameters in SCGs

Proof:

Let Pr be the joint distribution defined by B. Then

π(Vi)
DEF
= Pr(Vi | c̃V +

i
) = Pr(Vi | c̃V

G+
(Vi1

,Vi)

∧ . . . ∧ c̃V
G+
(Vim,Vi)

)

=
∑

cρ(Vi)

Pr(Vi | cρ(Vi) ∧ c̃VG+
(Vi1

,Vi)

∧. . .∧c̃V
G+
(Vim,Vi)

) ·

· Pr(cρ(Vi) | c̃VG+
(Vi1

,Vi)

∧ . . . ∧ c̃V
G+
(Vim,Vi)

)

=
∑

cρ(Vi)

Pr(Vi | cρ(Vi)) ·
∏

j=1,...,m

Pr(cVij
| c̃V

G+
(Vij

,Vi)

)

=
∑

cρ(Vi)

γ(Vi | cρ(Vi)) ·
∏

j=1,...,m

π
Vij

Vi
(cVij

)

where cρ(Vi) =
∧

j=1,...,m cVij
�

151

Computing π in directed trees

Lemma:

Consider B = (G,Γ) with directed tree G.

Consider a node Vi ∈ VG and its parent ρ(Vi) = {Vj}.

Then

π(Vi) =
∑

cVj

γ(Vi | cVj
) · πVj

Vi
(cVj

)

Proof:

See the proof for the general case where G is a singly
connected graph. Take into account that Vi now only has a
single parent Vj. �

152

Computing causal message parameters in SCGs

Lemma:

Consider B = (G,Γ) with SCG G = (VG,AG).
Let Vi ∈ VG be an uninstantiated node with m ≥ 1 children
σ(Vi) = {Vi1 , . . . , Vim}.

Then

πVi
Vij

(Vi) = α · π(Vi) ·
∏

k=1,...,m, k 6=j

λVi
Vik

(Vi)

where α is a normalisation constant.

153

154

Computing causal message parameters in SCGs

Proof:

Let Pr be the joint distribution defined by B. Then

πVi
Vij

(Vi)
DEF
= Pr(Vi | c̃V

G+
(Vi,Vij

)

)

= α′ · Pr(c̃V
G+
(Vi,Vij

)

| Vi) · Pr(Vi)

= α′ · Pr(c̃V +
i
∧ (
∧

k 6=j

c̃V
G−
(Vi,Vik

)

) | Vi) · Pr(Vi)

= α′ · Pr(c̃V +
i
| Vi) ·

∏
k 6=j Pr(c̃V

G−
(Vi,Vik

)

| Vi) · Pr(Vi)

= α · Pr(Vi | c̃V +
i

) ·
∏

k 6=j Pr(c̃V
G−
(Vi,Vik

)

| Vi)

= α · π(Vi) ·
∏

k 6=j λ
Vi
Vik

(Vi)

�

155

Computing compound diagnostic parameters in SCGs

Lemma:

Let B = (G,Γ) be as before.

Consider an uninstantiated node Vi ∈ VG with m ≥ 1 children
σ(Vi) = {Vi1 , . . . , Vim}.

Then

λ(Vi) =
∏

j=1,...,m

λVi
Vij

(Vi)

156

Computing compound diagnostic parameters in SCGs

Proof: Let Pr be the joint distribution defined by B. Then

λ(Vi)
DEF
= Pr(c̃V −i

| Vi)

= Pr(c̃V
G−
(Vi,Vi1

)

∧ . . . ∧ c̃V
G−
(Vi,Vim)

| Vi)

= Pr(c̃V
G−
(Vi,Vi1

)

| Vi) · . . . · Pr(c̃V
G−
(Vi,Vim)

| Vi)

= λVi
Vi1

(Vi) · . . . · λVi
Vim

(Vi)

=
∏

j=1,...,m

λVi
Vij

(Vi) �

157

Computing diagnostic message parameters in SCGs

Lemma:

Let B = (G,Γ) be as before. Consider a node Vi ∈ VG with
n ≥ 1 parents ρ(Vi) = {Vj1 , . . . , Vjn}. Then

λ
Vjk
Vi

(Vjk) = α·
∑

cVi

λ(cVi
)·

 ∑

x=cρ(Vi)\{Vjk}

(
γ(cVi

| x∧Vjk) ·
∏

l=1,...,n, l 6=k

π
Vjl
Vi

(cVjl
)
)]

where α is a normalisation constant.

Note that each cVjl
used in the product should be consistent

with the x from the summand!

Proof: See syllabus. �

158

Computing λ- messages in directed trees

Lemma:

Let B = (G,Γ) be a Bayesian network with directed tree G.

Consider a node Vi ∈ VG and its parent ρ(Vi) = {Vj}.

Then

λ
Vj

Vi
(Vj) =

∑

cVi

λ(cVi
) · γ(cVi

| Vj)

159

Computing λ-messages in directed trees

Proof: Let Pr be the joint distribution defined by B. Then

λ
Vj

Vi
(Vj)

DEF
= Pr(c̃V −i

| Vj)

= Pr(c̃V −i
| vi ∧ Vj) · Pr(vi | Vj)

+ Pr(c̃V −i
| ¬vi ∧ Vj) · Pr(¬vi | Vj)

= Pr(c̃V −i
| vi) · Pr(vi | Vj)

+ Pr(c̃V −i
| ¬vi) · Pr(¬vi | Vj)

= λ(vi) · γ(vi | Vj) + λ(¬vi) · γ(¬vi | Vj)

=
∑

cVi

λ(cVi
) · γ(cVi

| Vj) �

160

Pearl’s BP inference algorithm: computation rules

For Vi ∈ VG with ρ(Vi) = {Vj1 , . . . , Vjn}, σ(Vi) = {Vi1 , . . . , Vim}:

Pr(Vi | c̃V) = α · π(Vi) · λ(Vi) (data fusion)

π(Vi) =
∑

cρ(Vi)

γ(Vi | cρ(Vi)) ·
n∏

k=1

π
Vjk
Vi

(cVjk
)

λ(Vi) =
m∏

j=1

λVi
Vij

(Vi) dummy!

πVi
Vij

(Vi) = α′ · π(Vi) ·
m∏

k=1,k 6=j

λVi
Vik

(Vi) dummy!

λ
Vjk
Vi

(Vjk) = α′′ ·
∑

cVi

λ(cVi
)·

 ∑

x=cρ(Vi)\{Vjk}

(γ(cVi
| x∧Vjk)·

n∏

l=1,l 6=k

π
Vjl
Vi

(cVjl
))

]

with normalisation constants α, α′, and α′′.
161

Special cases: root nodes

Consider B = (G,Γ) with SCG G and joint distribution Pr.

Consider a node W ∈ VG with ρ(W) = ∅.
The compound causal parameter for W is defined by

π(W) = Pr(W | c̃W+) (definition)
= Pr(W | T) (W+ = ∅)
= Pr(W)
= γ(W)

162

Special cases: leaf nodes

Let B = (G,Γ) and Pr be as before.

Consider a node V with σ(V) = ∅.
The compound diagnostic parameter for V is defined as

• if node V is uninstantiated, then

λ(V) = Pr(c̃V − | V) (definition)
= Pr(T | V) (V − = {V }, V uninst.)
= 1

• if node V is instantiated, then

λ(V) = Pr(c̃V − | V) (definition)
= Pr(c̃V | V) (σ(V) = ∅)

=

}
1 for cV = c̃V
0 for cV 6= c̃V

163

Special cases: uninstantiated (sub)graphs

(Compound) Identity property

Consider a node V ∈ VG for which c̃V − = T(rue).

• The compound diagnostic parameter for V is defined as:

λ(V) = Pr(c̃V − | V) (definition)
= Pr(T | V) (c̃V − = T)
= 1

• If in addition c̃V
G−

(Vp,V)

= T for parent Vp of V , then

λ
Vp

V (Vp) = Pr(c̃V
G−

(Vp,V)

| Vp) = 1

Both properties trivially hold for all nodes in the prior network.

164

Special cases: uninstantiated (sub)graphs

Causal parameter equivalence

Consider a node V ∈ VG, with c̃V − = T(rue), and its child Vk.

The causal message parameter for V is computed from:

πV
Vk

(V) = α · π(V) ·
m∏

i=1,i 6=k

λVVi
(V)

Since c̃V − = T, we have that for each child Vi of V , λ(Vi) = 1
and also λVVi

(V) = 1. Hence,

πV
Vk

(V) = α · π(V) ·
m∏

i=1,i 6=k

1 = π(V)

165

Pearl’s BP algorithm: a tree example

V1

V2 V5

V4V3

γ(v1) = 0.7
γ(v2 | v1) = 0.5

γ(v2 | ¬v1) = 0.4 γ(v5 | v1) = 0.1
γ(v5 | ¬v1) = 0.8

γ(v4 | v2) = 0.8
γ(v4 | ¬v2) = 0

γ(v3 | v2) = 0.2
γ(v3 | ¬v2) = 0.3

Assignment: compute Pr(Vi), i = 1, . . . , 5.

Start: Pr(Vi) = α · π(Vi) · λ(Vi), i = 1, . . . , 5.

λ(cVi
) = 1 for all cVi

and Vi. (Identity property)

As a result, no normalisation is required and Pr(Vi) = π(Vi).

166

An example (2)

V1

V2 V5

V4V3

γ(v1) = 0.7
γ(v2 | v1) = 0.5

γ(v2 | ¬v1) = 0.4 γ(v5 | v1) = 0.1
γ(v5 | ¬v1) = 0.8

γ(v4 | v2) = 0.8
γ(v4 | ¬v2) = 0

γ(v3 | v2) = 0.2
γ(v3 | ¬v2) = 0.3

π(V1) = γ(V1) (special case: root).

Node V1 computes:

Pr(v1) = π(v1) = γ(v1) = 0.7
Pr(¬v1) = π(¬v1) = γ(¬v1) = 0.3

Node V1 computes for node V2:

πV1
V2

(V1) = π(V1) (causal parameter equivalence)

167

An example (3)

V1

V2 V5

V4V3

γ(v1) = 0.7
γ(v2 | v1) = 0.5

γ(v2 | ¬v1) = 0.4 γ(v5 | v1) = 0.1
γ(v5 | ¬v1) = 0.8

γ(v4 | v2) = 0.8
γ(v4 | ¬v2) = 0

γ(v3 | v2) = 0.2
γ(v3 | ¬v2) = 0.3

Node V2 computes:

Pr(v2) = π(v2)

= γ(v2 | v1) · πV1
V2

(v1) + γ(v2 | ¬v1) · πV1
V2

(¬v1)
= γ(v2 | v1) · π(v1) + γ(v2 | ¬v1) · π(¬v1)
= 0.5 · 0.7 + 0.4 · 0.3 = 0.47

Pr(¬v2) = π(¬v2) = 0.5 · 0.7 + 0.6 · 0.3 = 0.53

168

An example (4)

V1

V2 V5

V4V3

γ(v1) = 0.7
γ(v2 | v1) = 0.5

γ(v2 | ¬v1) = 0.4 γ(v5 | v1) = 0.1
γ(v5 | ¬v1) = 0.8

γ(v4 | v2) = 0.8
γ(v4 | ¬v2) = 0

γ(v3 | v2) = 0.2
γ(v3 | ¬v2) = 0.3

Node V2 computes for node V3 and node V4:

πV2
V3

(V2) = πV2
V4

(V2) = π(V2)

169

An example (5)

V1

V2 V5

V4V3

γ(v1) = 0.7
γ(v2 | v1) = 0.5

γ(v2 | ¬v1) = 0.4 γ(v5 | v1) = 0.1
γ(v5 | ¬v1) = 0.8

γ(v4 | v2) = 0.8
γ(v4 | ¬v2) = 0

γ(v3 | v2) = 0.2
γ(v3 | ¬v2) = 0.3

Node V3 computes:

Pr(v3) = π(v3)

= γ(v3 | v2) · πV2
V3

(v2) + γ(v3 | ¬v2) · πV2
V3

(¬v2)
= γ(v3 | v2) · π(v2) + γ(v3 | ¬v2) · π(¬v2)
= 0.2 · 0.47 + 0.3 · 0.53 = 0.253

Pr(¬v3) = π(¬v3) = 0.8 · 0.47 + 0.7 · 0.53 = 0.747

170

An example (6)

V1

V2 V5

V4V3

γ(v1) = 0.7
γ(v2 | v1) = 0.5

γ(v2 | ¬v1) = 0.4 γ(v5 | v1) = 0.1
γ(v5 | ¬v1) = 0.8

γ(v4 | v2) = 0.8
γ(v4 | ¬v2) = 0

γ(v3 | v2) = 0.2
γ(v3 | ¬v2) = 0.3

In a similar way, we find that

Pr(v4) = 0.376, Pr(¬v4) = 0.624

Pr(v5) = 0.310, Pr(¬v5) = 0.690

�

171

Pearl’s BP algorithm: example in a SCG

V1

V2 V3
γ(v2) = 0.1
γ(¬v2) = 0.9

γ(v3) = 0.4
γ(¬v3) = 0.6

γ(v1 | v2 ∧ v3) = 0.8
γ(v1 | ¬v2 ∧ v3) = 0.9
γ(v1 | v2 ∧ ¬v3) = 0.5
γ(v1 | ¬v2 ∧ ¬v3) = 0.6

γ(¬v1 | v2 ∧ v3) = 0.2
γ(¬v1 | ¬v2 ∧ v3) = 0.1
γ(¬v1 | v2 ∧ ¬v3) = 0.5
γ(¬v1 | ¬v2 ∧ ¬v3) = 0.4

Assignment: compute Pr(V1) = α · π(V1) · λ(V1).

λ(v1) = λ(¬v1) = 1 (Identity property)

As a result, no normalisation is required.

172

An example (2)

V1

V2 V3
γ(v2) = 0.1
γ(¬v2) = 0.9

γ(v3) = 0.4
γ(¬v3) = 0.6

γ(v1 | v2 ∧ v3) = 0.8
γ(v1 | ¬v2 ∧ v3) = 0.9
γ(v1 | v2 ∧ ¬v3) = 0.5
γ(v1 | ¬v2 ∧ ¬v3) = 0.6

γ(¬v1 | v2 ∧ v3) = 0.2
γ(¬v1 | ¬v2 ∧ v3) = 0.1
γ(¬v1 | v2 ∧ ¬v3) = 0.5
γ(¬v1 | ¬v2 ∧ ¬v3) = 0.4

Node V1 computes:

Pr(v1) = π(v1) = γ(v1 | v2 ∧ v3) · πV2
V1

(v2) · πV3
V1

(v3) +

+ γ(v1 | ¬v2 ∧ v3) · πV2
V1

(¬v2) · πV3
V1

(v3) +

+ γ(v1 | v2 ∧ ¬v3) · πV2
V1

(v2) · πV3
V1

(¬v3) +

+ γ(v1 | ¬v2 ∧ ¬v3) · πV2
V1

(¬v2) · πV3
V1

(¬v3)
= 0.8 · 0.1 · 0.4 + 0.9 · 0.9 · 0.4+

+ 0.5 · 0.1 · 0.6 + 0.6 · 0.9 · 0.6 = 0.71

Pr(¬v1) = 0.29 �

173

Instantiated nodes

Let B = (G,Γ) be a BN with SCG G; let Pr be as before.

Consider an instantiated node V ∈ VG, for which evidence
V = true is obtained.
• For the compound diagnostic parameter
λ : {v,¬v} → [0, 1] for V we have that

λ(v) = Pr(c̃V − | v) (definition)
= Pr(c̃V −\{V } ∧ v | v)

= ??
(unless σ(V) = ∅ in which case λ(v) = 1)

λ(¬v) = Pr(c̃V − | ¬v) (definition)
= Pr(c̃V −\{V } ∧ v | ¬v)

= 0

The case with evidence V = false is similar.
174

Entering evidence

Consider a fragment of a BN graph G:

V

D

λVD

Suppose evidence is obtained
for node V .

Entering evidence is modelled
by extending G with a ‘dummy’
child D for V .

The dummy node sends the diagnostic parameter λVD to V with

λVD(v) = 1, λVD(¬v) = 0 for evidence V = true

λVD(v) = 0, λVD(¬v) = 1 for evidence V = false

175

Entering evidence: a tree example

V1

V2 V5

V4V3

γ(v1) = 0.7
γ(v2 | v1) = 0.5

γ(v2 | ¬v1) = 0.4 γ(v5 | v1) = 0.1
γ(v5 | ¬v1) = 0.8

γ(v4 | v2) = 0.8
γ(v4 | ¬v2) = 0

γ(v3 | v2) = 0.2
γ(v3 | ¬v2) = 0.3

Evidence V1 = false is entered.

Assignment: compute Pr¬v1(Vi).

Start: Pr¬v1(Vi) = α · π(Vi) · λ(Vi), i = 1, . . . , 5.

For i = 2, . . . , 5, we have that λ(cVi
) = 1. (explain why!)

For those nodes we thus have Pr(Vi) = π(Vi).

176

An example with evidence V1 = false (2)

V1

V2 V5

V4V3

γ(v1) = 0.7
γ(v2 | v1) = 0.5

γ(v2 | ¬v1) = 0.4 γ(v5 | v1) = 0.1
γ(v5 | ¬v1) = 0.8

γ(v4 | v2) = 0.8
γ(v4 | ¬v2) = 0

γ(v3 | v2) = 0.2
γ(v3 | ¬v2) = 0.3

Node V1 now computes:

Pr¬v1(v1) = α · π(v1) · λ(v1) = 0
Pr¬v1(¬v1) = α · π(¬v1) · λ(¬v1) = α · 0.3

Normalisation gives: Pr¬v1(v1) = 0, Pr¬v1(¬v1) = 1

Node V1 computes for node V2:

πV1
V2

(V1) = α · π(V1) · λV1
V5

(V1) · λV1
D (V1) ⇒ 0 for ¬v1, 1 for v1

177

An example with evidence V1 = false (3)

V1

V2 V5

V4V3

γ(v1) = 0.7
γ(v2 | v1) = 0.5

γ(v2 | ¬v1) = 0.4 γ(v5 | v1) = 0.1
γ(v5 | ¬v1) = 0.8

γ(v4 | v2) = 0.8
γ(v4 | ¬v2) = 0

γ(v3 | v2) = 0.2
γ(v3 | ¬v2) = 0.3

Node V2 computes:

Pr¬v1(v2) = π(v2)

= γ(v2 | v1) · πV1
V2

(v1) + γ(v2 | ¬v1) · πV1
V2

(¬v1)
= 0.5 · 0 + 0.4 · 1 = 0.4

Pr¬v1(¬v2) = π(¬v2) = 0.5 · 0 + 0.6 · 1 = 0.6

Node V2 computes for node V3: πV2
V3

(V2) = π(V2) (explain why!)

178

An example with evidence V1 = false (4)

V1

V2 V5

V4V3

γ(v1) = 0.7
γ(v2 | v1) = 0.5

γ(v2 | ¬v1) = 0.4 γ(v5 | v1) = 0.1
γ(v5 | ¬v1) = 0.8

γ(v4 | v2) = 0.8
γ(v4 | ¬v2) = 0

γ(v3 | v2) = 0.2
γ(v3 | ¬v2) = 0.3

Node V3 computes:

Pr¬v1(v3) = π(v3)

= γ(v3 | v2) · πV2
V3

(v2) + γ(v3 | ¬v2) · πV2
V3

(¬v2)
= γ(v3 | v2) · π(v2) + γ(v3 | ¬v2) · π(¬v2)
= 0.2 · 0.4 + 0.3 · 0.6 = 0.26

Pr¬v1(¬v3) = 0.8 · 0.4 + 0.7 · 0.6 = 0.74

179

An example with evidence V1 = false (5)

V1

V2 V5

V4V3

γ(v1) = 0.7
γ(v2 | v1) = 0.5

γ(v2 | ¬v1) = 0.4 γ(v5 | v1) = 0.1
γ(v5 | ¬v1) = 0.8

γ(v4 | v2) = 0.8
γ(v4 | ¬v2) = 0

γ(v3 | v2) = 0.2
γ(v3 | ¬v2) = 0.3

In a similar way, we find that

Pr¬v1(v4) = 0.32, Pr¬v1(¬v4) = 0.68

Pr¬v1(v5) = 0.80, Pr¬v1(¬v5) = 0.20

�

180

Another piece of evidence: tree example

V1

V2 V5

V4V3

γ(v1) = 0.7
γ(v2 | v1) = 0.5

γ(v2 | ¬v1) = 0.4

γ(v5 | v1) = 0.1

γ(v5 | ¬v1) = 0.8

γ(v4 | v2) = 0.8

γ(v4 | ¬v2) = 0

γ(v3 | v2) = 0.2
γ(v3 | ¬v2) = 0.3

The additional evidence V3 = true is entered.

Assignment: compute Pr¬v1,v3(Vi).

Start: Pr¬v1,v3(Vi) = α · π(Vi) · λ(Vi), i = 1, . . . , 5.

Which parameters can be re-used? Which need updating?

181

Another example (2)

V1

V2 V5

V4V3

γ(v1) = 0.7
γ(v2 | v1) = 0.5

γ(v2 | ¬v1) = 0.4

γ(v5 | v1) = 0.1

γ(v5 | ¬v1) = 0.8

γ(v4 | v2) = 0.8

γ(v4 | ¬v2) = 0

γ(v3 | v2) = 0.2
γ(v3 | ¬v2) = 0.3

For nodes Vi with i = 4, 5, λ(cVi
) = 1 and thus Pr(Vi) = π(Vi).

The probabilities for V1 remain unchanged:

Pr¬v1,v3(v1) = 0, Pr¬v1,v3(¬v1) = 1

The probabilities for node V5 remain unchanged.
Therefore

Pr¬v1,v3(v5) = Pr¬v1(¬v5) = 0.8, Pr¬v1,v3(¬v5) = 0.2

182

Another example (3)

V1

V2 V5

V4V3

γ(v1) = 0.7
γ(v2 | v1) = 0.5

γ(v2 | ¬v1) = 0.4

γ(v5 | v1) = 0.1

γ(v5 | ¬v1) = 0.8

γ(v4 | v2) = 0.8

γ(v4 | ¬v2) = 0

γ(v3 | v2) = 0.2
γ(v3 | ¬v2) = 0.3

Node V3 computes:

Pr¬v1,v3(v3) = α · π(v3) · λ(v3) = α · π(v3) = α · 0.26 · 1
Pr¬v1,v3(¬v3) = α · π(¬v3) · λ(¬v3) = 0

After normalisation: Pr¬v1,v3(v3) = 1, Pr¬v1,v3(¬v3) = 0

Node V3 computes for node V2: λV2
V3

(V2) =
∑

cV3
λ(V3) ·γ(cV3 | V2)

183

Another example (4)

V1

V2 V5

V4V3

γ(v1) = 0.7
γ(v2 | v1) = 0.5

γ(v2 | ¬v1) = 0.4

γ(v5 | v1) = 0.1

γ(v5 | ¬v1) = 0.8

γ(v4 | v2) = 0.8

γ(v4 | ¬v2) = 0

γ(v3 | v2) = 0.2
γ(v3 | ¬v2) = 0.3

Node V2 computes:

Pr¬v1,v3(v2) = α · π(v2) · λ(v2) = α · π(v2) · λV2
V3

(v2) · λV2
V4

(v2)

= α · π(v2) · γ(v3 | v2) = α · 0.4 · 0.2 = α · 0.08

Pr¬v1,v3(¬v2) = α · π(¬v2) · λ(¬v2) = α · π(¬v2) · λV2
V3

(¬v2) · λV2
V4

(¬v2)
= α · π(¬v2) · γ(v3 | ¬v2) = α · 0.6 · 0.3 = α · 0.18

Normalisation gives: Pr¬v1,v3(v2) = 0.31, Pr¬v1,v3(¬v2) = 0.69
184

Another example (5)

V1

V2 V5

V4V3

γ(v1) = 0.7
γ(v2 | v1) = 0.5

γ(v2 | ¬v1) = 0.4

γ(v5 | v1) = 0.1

γ(v5 | ¬v1) = 0.8

γ(v4 | v2) = 0.8

γ(v4 | ¬v2) = 0

γ(v3 | v2) = 0.2
γ(v3 | ¬v2) = 0.3

Node V2 computes for node V4:

πV2
V4

(V2) = α · π(V2) · λV2
V3

(V2)⇒ 0.31 and 0.69

Node V4 computes:

Pr¬v1,v3(v4) = π(v4) = γ(v4 | v2) · πV2
V4

(v2) + γ(v4 | ¬v2) · πV2
V4

(¬v2)
= γ(v4 | v2) · πV2

V4
(v2) + 0 = 0.8 · 0.31 = 0.248

Pr¬v1,v3(¬v4) = 0.2 · 0.31 + 1.0 · 0.69 = 0.752 �
185

Entering evidence: example in a SCG

V1

V2 V3
γ(v2) = 0.1
γ(¬v2) = 0.9

γ(v3) = 0.4
γ(¬v3) = 0.6

γ(v1 | v2 ∧ v3) = 0.8
γ(v1 | ¬v2 ∧ v3) = 0.9
γ(v1 | v2 ∧ ¬v3) = 0.5
γ(v1 | ¬v2 ∧ ¬v3) = 0.6

γ(¬v1 | v2 ∧ v3) = 0.2
γ(¬v1 | ¬v2 ∧ v3) = 0.1
γ(¬v1 | v2 ∧ ¬v3) = 0.5
γ(¬v1 | ¬v2 ∧ ¬v3) = 0.4

Evidence V1 = true is entered.

Assignment: compute Prv1(V2) = α · π(V2) · λ(V2).

π(V2) = γ(V2) (special case : root)

λ(V2) = λV2
V1

(V2)

186

An example with evidence V1 = true (2)

V1

V2 V3
γ(v2) = 0.1
γ(¬v2) = 0.9

γ(v3) = 0.4
γ(¬v3) = 0.6

γ(v1 | v2 ∧ v3) = 0.8
γ(v1 | ¬v2 ∧ v3) = 0.9
γ(v1 | v2 ∧ ¬v3) = 0.5
γ(v1 | ¬v2 ∧ ¬v3) = 0.6

γ(¬v1 | v2 ∧ v3) = 0.2
γ(¬v1 | ¬v2 ∧ v3) = 0.1
γ(¬v1 | v2 ∧ ¬v3) = 0.5
γ(¬v1 | ¬v2 ∧ ¬v3) = 0.4

Node V2 receives from node V1 [Note: no normalisation!]:

λV2
V1

(v2) = λ(v1) · [γ(v1 | v2 ∧ v3) · πV3
V1

(v3) +

γ(v1 | v2 ∧ ¬v3) · πV3
V1

(¬v3)] +

λ(¬v1) · [γ(¬v1 | v2 ∧ v3) · πV3
V1

(v3) +

γ(¬v1 | v2 ∧ ¬v3) · πV3
V1

(¬v3)] =

= 0.8 · 0.4 + 0.5 · 0.6 = 0.62

λV2
V1

(¬v2) = 0.9 · 0.4 + 0.6 · 0.6 = 0.72

187

An example with evidence V1 = true (3)

V1

V2 V3
γ(v2) = 0.1
γ(¬v2) = 0.9

γ(v3) = 0.4
γ(¬v3) = 0.6

γ(v1 | v2 ∧ v3) = 0.8
γ(v1 | ¬v2 ∧ v3) = 0.9
γ(v1 | v2 ∧ ¬v3) = 0.5
γ(v1 | ¬v2 ∧ ¬v3) = 0.6

γ(¬v1 | v2 ∧ v3) = 0.2
γ(¬v1 | ¬v2 ∧ v3) = 0.1
γ(¬v1 | v2 ∧ ¬v3) = 0.5
γ(¬v1 | ¬v2 ∧ ¬v3) = 0.4

Node V2 computes:

Prv1(v2) = α · π(v2) · λ(v2) = α · γ(v2) · λV2
V1

(v2) =
= α · 0.1 · 0.62 = 0.062α

Prv1(¬v2) = α · 0.9 · 0.72 = 0.648α

Normalisation gives: Prv1(v2)∼0.087, Prv1(¬v2)∼0.913 �

188

Pearl: some complexity issues

Consider a Bayesian network B with SCG G with n ≥ 1 nodes.
Suppose node V has p parents and s children:

W1 Wi Wp

V

Z1 Zj Zs

.

.

ρ(V)

σ(V)

• Node V computes its compound causal parameter in O(2p)
time:

π(V) =
∑

cρ(V)

γ(V | cρ(V)) ·
∏

i=1,...,p

πWi
V (cWi

)

189

Complexity issues (2)

W1 Wi Wp

V

Z1 Zj Zs

.

.

ρ(V)

σ(V)

• Computing the compound diagnostic parameter requires
O(s) time:

λ(V) =
∏

j=1,...,s

λVZj
(V)

A node can therefore compute the probabilities of its own
values in O(s) +O(2p) time.

190

Complexity issues (3)

W1 Wi Wp

V

Z1 Zj Zs

.

.

ρ(V)

σ(V)

• Computing a causal message parameter for a child Zj

requires constant time:

πV
Zj

(V) = α · π(V) ·
∏

l=1,...,s,l 6=j

λVZl
(V) =

Pr(V)

λVZj
(V)

191

Complexity issues (4)

W1 Wi Wp

V

Z1 Zj Zs

.

.

ρ(V)

σ(V)

• Computing a diagnostic message parameter for a parent Wi

takes O(2p) time:

λWi
V (Wi)=α·

∑

cV

λ(cV)

 ∑

cρ(V)\{Wi}

(
γ(V | cρ(V)\{Wi} ∧Wi) ·

∏

l=1,...,p,l 6=i

πWl
V (cWl

)
)]

A node can compute the messages for all its neighbours in at
most O(s · 1) +O(p · 2p) = O(p · 2p) time.

If the number of parents per node is bounded by k, then full
inference requires at most O(n · k · 2k) time.

192

Inference in multiply connected digraphs

When applying Pearl’s algorithm to a Bayesian network with a
multiply connected digraph, the following problems result:

• the message passing does not necessarily reach an
equilibrium;
• even if an equilibrium is reached, the computed probabilities

are not necessarily correct.

These problems are due to the independences assumed by the
BP algorithm, which are invalid in the given Bayesian network.

(⇒ approximation algorithm ’Loopy belief propagation’)

193

No equilibrium: an example

Consider B = (G,Γ) with multiply connected digraph G:

V1

V2

V3 V4

V5

If node V5 is instantiated, then the message passing does not
necessarily reach an equilibrium.

194

Incorrect computations: an example (1)

V1

V2

V3 V4

V5

Suppose that evidence V1 = true is
obtained and that we are interested
in Prv1(V5).

Using marginalisation and indepen-
dence we find that Prv1(V5) equals:

Prv1(V5) =
∑

c{V2,V3,V4}

Pr(V5 ∧ c{V2,V3,V4} | v1)

=
∑

c{V3,V4}

Pr(V5 | c{V3,V4})·
∑

cV2

Pr(cV3 | cV2)·Pr(cV4 | cV2)·Pr(cV2 | v1)

Note the same value cV2 in the product of the last three terms!

195

Incorrect computations: an example (2)

V1

V2

V3 V4

V5

Suppose that evidence V1 = true is
obtained and that we are interested
in Prv1(V5).

Pearl’s algorithm basically computes:

Prv1(V5) = Pr(V5 | v3 ∧ v4) · Pr(v3 | v1) · Pr(v4 | v1)
+ Pr(V5 | ¬v3 ∧ v4) · Pr(¬v3 | v1) · Pr(v4 | v1)
+ Pr(V5 | v3 ∧ ¬v4) · Pr(v3 | v1) · Pr(¬v4 | v1)
+ Pr(V5 | ¬v3 ∧ ¬v4) · Pr(¬v3 | v1) · Pr(¬v4 | v1)

and

Pr(V3 | v1) = Pr(V3 | v2) · Pr(v2 | v1) + Pr(V3 | ¬v2) · Pr(¬v2 | v1)
Pr(V4 | v1) = Pr(V4 | v2) · Pr(v2 | v1) + Pr(V4 | ¬v2) · Pr(¬v2 | v1)

196

Incorrect computations: an example (3)

V1

V2

V3 V4

V5

Suppose that evidence V1 = true is
obtained and that we are interested in
Prv1(V5).

Substitution of Pr(V3 | v1) and Pr(V4 | v1) thus results in
incorrect terms, such as for example

Pr(v5 | v3 ∧ v4) · Pr(v3 | v2) · Pr(v2 | v1) · Pr(v4 | ¬v2) · Pr(¬v2 | v1)

197

Correct computations: an example

V1

V2

V3 V4

V5

Suppose that evidence V1 = true is obtained
and that we are interested in Prv1(V5).

This can be computed by conditioning on V2:

Prv1(V5) = Pr(V5 | v2 ∧ v1) · Pr(v2 | v1) +

+ Pr(V5 | ¬v2 ∧ v1) · Pr(¬v2 | v1)

Pearl’s algorithm can correctly compute:
Prv1(V5 | V2), e.g.:

Prv1(V5 | v2)=Pr(V5 | v3 ∧ v4) · Pr(v3 | v2 ∧ v1) · Pr(v4 | v2 ∧ v1) +
Pr(V5 | ¬v3 ∧ v4) · Pr(¬v3 | v2 ∧ v1) · Pr(v4 | v2 ∧ v1) +
Pr(V5 | v3 ∧ ¬v4) · Pr(v3 | v2 ∧ v1) · Pr(¬v4 | v2 ∧ v1) +
Pr(V5 | ¬v3 ∧ ¬v4) · Pr(¬v3 | v2 ∧ v1) · Pr(¬v4 | v2 ∧ v1)

Compare: Prv1,v2(V5) =
∑

c{V3,V4}

Pr(V5 ∧ c{V3,V4} | v1 ∧ v2)

198

An example

V1

V2

V3 V4

V5

When node V2 is instantiated, digraph G behaves as a SCG:

199

A solution: Cutset Conditioning

The idea behind cutset conditioning for computing Pr(V | c̃VG):

1. Select a loop cutset of G:

nodes LG ⊆ VG such that instantiating LG makes the
digraph ‘behave’ as if it were singly connected;

2. Compute Pr(V | c̃VG ∧ cLG
) for all possible loop cutset

configurations cLG
;

3. Marginalise out (= sum out) the loop cutset node(s) LG.

200

A loop cutset

Definition: Let G = (VG,AG) be an acyclic digraph.

A set LG ⊆ VG is called a loop cutset of G if:

every simple cyclic chain (loop) s in G contains a node X
such that:
− X ∈ LG, and
− X has at most one incoming arc on s.

NB a cyclic chain (loop) is not a cycle; a cycle is defined as a
cyclic path!

201

An example: loop cutsets

V1

V2 V3

V4

V5

V6

V7

• How many loops does G contain ?
• Which of the following sets are loop cutsets of G ?:

– ∅
– {V1}
– {V3} X
– {V1, V5} X

– {V2, V7}
– {V4, V7}
– {V1, V2, V3} X
– {V1, V4, V5, V6, V7} X

202

Pearl with cutset conditioning: an example (1)

Consider B = (G,Γ) with multiply connected digraph G:

V1

V2 V3

V4V5

γ(v1) = 0.8

γ(v2 | v1) = 0.9
γ(v2 | ¬v1) = 0.3

γ(v3 | v1) = 0.2
γ(v3 | ¬v1) = 0.6

γ(v5 | v2) = 0.4
γ(v5 | ¬v2) = 0.5

γ(v4 | v2 ∧ v3) = 0.1
γ(v4 | ¬v2 ∧ v3) = 0.2
γ(v4 | v2 ∧ ¬v3) = 0.6
γ(v4 | ¬v2 ∧ ¬v3) = 0.1

We are interested in the probabilities Pr(v4) and Pr(¬v4). We
choose LG = {V1}. Pearl’s algorithm is now applied twice:

V2

V5 V4

V3

(I) V1 = true

V2

V5 V4

V3

(II) V1 = false

203

Pearl with cutset conditioning: example (2: general)

V2

V5 V4

V3

(I) V1 = true

V2

V5 V4

V3

(II) V1 = false

Pearl applied to (I) gives Pr(v4 | v1) and Pr(¬v4 | v1);
Pearl applied to (II) gives Pr(v4 | ¬v1) and Pr(¬v4 | ¬v1).

The probabilities of interest are finally computed using
marginalisation (probability theory):

Pr(v4) = Pr(v4 | v1)·Pr(v1) + Pr(v4 | ¬v1)·Pr(¬v1)
Pr(¬v4) = Pr(¬v4 | v1) · Pr(v1) + Pr(¬v4 | ¬v1) · Pr(¬v1)

where Pr(v1) = 0.8, Pr(¬v1) = 0.2 are the prior probabilities for
node V1 (not conditioned on loop cutset configurations!)

204

Pearl with cutset conditioning: example (3: in detail)
V1

V2 V3

V4V5

γ(v1) = 0.8

γ(v2 | v1) = 0.9
γ(v2 | ¬v1) = 0.3

γ(v3 | v1) = 0.2
γ(v3 | ¬v1) = 0.6

γ(v5 | v2) = 0.4
γ(v5 | ¬v2) = 0.5

γ(v4 | v2 ∧ v3) = 0.1
γ(v4 | ¬v2 ∧ v3) = 0.2
γ(v4 | v2 ∧ ¬v3) = 0.6
γ(v4 | ¬v2 ∧ ¬v3) = 0.1

Pearl applied to situation (I) where V1 = true:

Pr(v4 | v1) = Prv1(v4) = α · π(v4) · λ(v4) = π(v4)
Pr(¬v4 | v1) = Prv1(¬v4) = π(¬v4)

The compound causal parameter is computed:

π(v4) = γ(v4 | v2 ∧ v3) · πV2
V4

(v2) · πV3
V4

(v3) +

γ(v4 | ¬v2 ∧ v3) · πV2
V4

(¬v2) · πV3
V4

(v3) +

γ(v4 | v2 ∧ ¬v3) · πV2
V4

(v2) · πV3
V4

(¬v3) +

γ(v4 | ¬v2 ∧ ¬v3) · πV2
V4

(¬v2) · πV3
V4

(¬v3) = . . .

205

Pearl with cutset conditioning: example (4)

V1

V2 V3

V4V5

γ(v1) = 0.8

γ(v2 | v1) = 0.9
γ(v2 | ¬v1) = 0.3

γ(v3 | v1) = 0.2
γ(v3 | ¬v1) = 0.6

γ(v5 | v2) = 0.4
γ(v5 | ¬v2) = 0.5

γ(v4 | v2 ∧ v3) = 0.1
γ(v4 | ¬v2 ∧ v3) = 0.2
γ(v4 | v2 ∧ ¬v3) = 0.6
γ(v4 | ¬v2 ∧ ¬v3) = 0.1

. . .

π(v4) = 0.1 · 0.9 · 0.2 + 0.2 · 0.1 · 0.2+

+ 0.6 · 0.9 · 0.8 + 0.1 · 0.1 · 0.8 = 0.462

Similarly, we find π(¬v4) = 0.538

206

Pearl with cutset conditioning: example (5)
V1

V2 V3

V4V5

γ(v1) = 0.8

γ(v2 | v1) = 0.9
γ(v2 | ¬v1) = 0.3

γ(v3 | v1) = 0.2
γ(v3 | ¬v1) = 0.6

γ(v5 | v2) = 0.4
γ(v5 | ¬v2) = 0.5

γ(v4 | v2 ∧ v3) = 0.1
γ(v4 | ¬v2 ∧ v3) = 0.2
γ(v4 | v2 ∧ ¬v3) = 0.6
γ(v4 | ¬v2 ∧ ¬v3) = 0.1

Pearl applied to situation (II) where V1 = false:

Pr(v4 | ¬v1) = α · π(v4) · λ(v4) = π(v4)
Pr(¬v4 | ¬v1) = π(¬v4)

where

π(v4) = γ(v4 | v2 ∧ v3) · πV2
V4

(v2) · πV3
V4

(v3) +

γ(v4 | ¬v2 ∧ v3) · πV2
V4

(¬v2) · πV3
V4

(v3) +

γ(v4 | v2 ∧ ¬v3) · πV2
V4

(v2) · πV3
V4

(¬v3) +

γ(v4 | ¬v2 ∧ ¬v3) · πV2
V4

(¬v2) · πV3
V4

(¬v3) = . . .

207

Pearl with cutset conditioning: example (6)

V1

V2 V3

V4V5

γ(v1) = 0.8

γ(v2 | v1) = 0.9
γ(v2 | ¬v1) = 0.3

γ(v3 | v1) = 0.2
γ(v3 | ¬v1) = 0.6

γ(v5 | v2) = 0.4
γ(v5 | ¬v2) = 0.5

γ(v4 | v2 ∧ v3) = 0.1
γ(v4 | ¬v2 ∧ v3) = 0.2
γ(v4 | v2 ∧ ¬v3) = 0.6
γ(v4 | ¬v2 ∧ ¬v3) = 0.1

. . .

π(v4) = 0.1 · 0.3 · 0.6 + 0.2 · 0.7 · 0.6 +

+ 0.6 · 0.3 · 0.4 + 0.1 · 0.7 · 0.4 = 0.202

Similarly, we find π(¬v4) = 0.798

208

Pearl with cutset conditioning: example completed

Recall: we are interested in Pr(v4) and Pr(¬v4).
With Pearl’s algorithm we computed

Pr(v4 | v1) = 0.462
Pr(¬v4 | v1) = 0.538
Pr(v4 | ¬v1) = 0.202
Pr(¬v4 | ¬v1) = 0.798

From the assessment functions we establish that

Pr(v1) = 0.8, Pr(¬v1) = 0.2

Resulting in (marginalisation)

Pr(v4) = Pr(v4 | v1)·Pr(v1) + Pr(v4 | ¬v1)·Pr(¬v1)
= 0.462 · 0.8 + 0.202 · 0.2 = 0.41

Pr(¬v4) = Pr(¬v4 | v1) · Pr(v1) + Pr(¬v4 | ¬v1) · Pr(¬v1)
= 0.538 · 0.8 + 0.798 · 0.2 = 0.59 �

209

Cutset conditioning with evidence c̃VG

Let LG be a loop cutset for digraph G. Then cutset conditioning
exploits that for all Vi ∈ VG:

Pr(Vi | c̃VG
) =

∑
cLG

Pr(Vi | c̃VG
∧ cLG

)︸ ︷︷ ︸ ·Pr(cLG
| c̃VG

)︸ ︷︷ ︸
Pearl (from B) recursively

Recursion: step 1 for 1-st piece of evidence e1:

Pr(cLG
| e1) = α ·Pr(e1 | cLG

)︸ ︷︷ ︸ ·Pr(cLG
)︸ ︷︷ ︸

Pearl (from B) marginalisation (from Pr!)

Recursion: step j

Pr(cLG
| e1 ∧ . . . ∧ ej) = α ·Pr(ej | cLG

∧ e1 ∧ . . . ∧ ej−1)︸ ︷︷ ︸ ·
Pearl (from B)

· Pr(cLG
| e1 ∧ . . . ∧ ej−1)︸ ︷︷ ︸
Step j − 1

210

An example: cutset conditioning with evidence

V1

V2 V3

V4V5

γ(v1) = 0.8

γ(v2 | v1) = 0.9
γ(v2 | ¬v1) = 0.3

γ(v3 | v1) = 0.2
γ(v3 | ¬v1) = 0.6

γ(v5 | v2) = 0.4
γ(v5 | ¬v2) = 0.5

γ(v4 | v2 ∧ v3) = 0.1
γ(v4 | ¬v2 ∧ v3) = 0.2
γ(v4 | v2 ∧ ¬v3) = 0.6
γ(v4 | ¬v2 ∧ ¬v3) = 0.1

Use loop cutset {V1}.
Initially we have loop
cutset configurations:
Pr(v1) = 0.8 and
Pr(¬v1) = 0.2.

Let’s process evidence V3 = false. Updated probabilities are
now established for the loop cutset configurations:

Pearl old

Pr¬v3(v1) = α ·
︷ ︸︸ ︷
Pr(¬v3 | v1) ·

︷ ︸︸ ︷
Pr(v1) = α · 0.8 · 0.8 = α · 0.64

⇒ 0.89

Pr¬v3(¬v1) = α · Pr(¬v3 | ¬v1) · Pr(¬v1) = α · 0.4 · 0.2 = α · 0.08
⇒ 0.11

211

An example (2)

We are interested in Pr¬v3(v4).Pearl’s algorithm is applied twice:

V2

V5 V4

V3

(I) V1 = true

V2

V5 V4

V3

(II) V1 = false

︸ ︷︷ ︸ ︸ ︷︷ ︸
Pr(v4 |v1∧¬v3) = 0.55 Pr(v4 |¬v1∧¬v3) = 0.25
Pr(¬v4 |v1∧¬v3) = 0.45 Pr(¬v4 |¬v1∧¬v3) = 0.75

Recall that Pr¬v3(v1) = 0.89, Pr¬v3(¬v1) = 0.11. Now:

Pr¬v3(v4) = Pr(v4 | v1 ∧ ¬v3) · Pr(v1 | ¬v3)
+ Pr(v4 | ¬v1 ∧ ¬v3) · Pr(¬v1 | ¬v3)

= 0.55 · 0.89 + 0.25 · 0.11 = 0.52 �

212

Minimal and optimal loop cutsets

Definition: A loop cutset LG for acyclic digraph G is called

• minimal: if no proper subset L ⊂ LG is a loop cutset for G;

• optimal: if for all loop cutsets L′G 6= LG for G: |L′G| ≥ |LG|.

Example: Consider the following acyclic digraph G:

V1

V2 V3

V4

V5

V6

V7

Which of the following loop cutsets for G are minimal; which
are optimal? {V3}XX, {V1, V3}X, {V1, V5}

213

Finding an optimal loop cutset

Lemma: The problem of finding an optimal loop cutset for an
acyclic digraph is NP-hard.

Proof: The property can be proven by reduction from the
“Minimal Vertex Cover”-Problem. For details, see

H.J. Suermondt, G.F. Cooper (1990). Probabilistic infe-
rence in multiply connected belief networks using loop
cutsets, International Journal of Approximate Reaso-
ning, vol. 4, pp. 283 – 306.

�

214

A heuristic algorithm (Suermondt & Cooper)

The following algorithm is a heuristic for finding an optimal loop
cutset for a given acyclic digraph G:

PROCEDURE LOOP-CUTSET(G, LG):

WHILE THERE ARE NODES IN G DO

IF THERE IS A NODE Vi ∈ VG WITH degree(Vi) ≤ 1
THEN SELECT NODE Vi
ELSE DETERMINE ALL NODES K = {V ∈ VG | indegree(V) ≤ 1}

(THE CANDIDATES FOR THE LOOP CUTSET);
SELECT A CANDIDATE NODE Vi ∈K WITH

degree(Vi) ≥ degree(V) FOR ALL OTHER V ∈K ;
ADD NODE Vi TO THE LOOP CUTSET LG

FI;
DELETE NODE Vi AND ITS INCIDENT ARCS FROM G

OD;
END

215

An example

V1

V2

V3 V4

V5

V6

V7

V8 V9

V10 V11

(Recursively) deleting all nodes Vi with degree(Vi) ≤ 1 gives . . .

216

An example (2)

(Recursively) deleting all nodes Vi with degree(Vi) ≤ 1 gives:

V4

V5

V6

V7

V8 V9

V10

The following nodes are candidates for the loop cutset:
V4, V5, V6, V8, V9. All have degree 2.

Suppose that node V4 is selected and added to the loop
cutset. . .

217

An example (3)

After deleting node V4 and recursively deleting all remaining Vi
with degree(Vi) ≤ 1 we get: V7

V8 V9

V10

The following nodes are candidates for the loop cutset:
V7, V8, V9.

Node V7 has highest degree (3) and is selected for the loop
cutset.

After deleting node V7 and recursively deleting all remaining
nodes Vi with degree(Vi) ≤ 1 the empty graph results.

The loop cutset found is {V4, V7}. There are other possibilities!
218

Some properties of the heuristic algorithm

• it always finds a loop cutset for a given acyclic digraph;

• it does not always find an optimal loop cutset;

Example: Consider the following graph G:

V1

V2 V3

V4

V5

V6

V7

What is the optimal loop cutset for G ? Why won’t the
algorithm find this loop cutset ? �

• it found an optimal loop cutset for 70% of the graphs
randomly generated in an experiment.

219

Some properties – continued

• the heuristic does not always find a minimal loop cutset.

Example: Reconsider graph G:

V1

V2 V3

V4

V5

V6

V7

V3

V5

V6

V7

The algorithm could, for example, return the loop cutset
{V1, V3} for G; this loop cutset is not minimal. �

Note that this problem can be easily resolved afterwards.

220

Some properties – continued

• the heuristic can select nodes for the loop cutset that are not
on a cyclic chain.

Example:
Consider the following graph G, where G1, . . . , Gk, k >> 1,
are non-singly connected graphs:

V

G1 Gk

The algorithm can select node V for addition to the loop
cutset. �

This can be similarly resolved.
221

Pearl: complexity issues

Consider a Bayesian network B = (G,Γ).

• Let G be a singly connected digraph with n nodes Vi ∈ VG.

If |ρ(Vi)| in G is bounded by a small constant, then
computing the probabilities for Vi costs time linear in n.

• Let G be a multiply connected digraph with n nodes Vi ∈ VG

and let LG be a loop cutset for G.

If Pearl’s algorithm is used in combination with loop cutset
conditioning, then all calculations are repeated 2|LG| times.

222

Summary Pearl: idea and complexity

Idea of Pearl extended with loop cutset conditioning:
1 condition on loop cutset→ multiply connected graph

behaves singly connected
2 update probabilities by message-passing between nodes

(= ‘standard’ Pearl)
3 marginalise out loop cutset

Complexity for all Pr(Vi | cE) simultaneously:
• singly connected graphs: O(n · k · exp(k)), where
k = maxVi

|ρG(Vi)|
• multiply connected graphs: O(n · k · exp(k + l)), where
l = |LG|

223

Probabilistic inference: complexity issues

• In general, probabilistic inference with an arbitrary Bayesian
network is NP-hard;

G.F. Cooper (1990). The computational complexity of pro-
babilistic inference using Bayesian belief networks, Artificial
Intelligence, vol. 42, pp. 393 – 405.

This even holds for approximation algorithms, such as e.g.
loopy propagation!
• all existing algorithms for probabilistic inference have an

exponential worst-case complexity;
• the existing algorithms for probabilistic inference have a

polynomial time complexity for certain types of Bayesian
network (∼ the sparser the graph, the better).

224

Probabilistic models including continuous variables

Our definition of Bayesian network assumes all variables in γV
to be discrete.

• this typical assumption can be relaxed5;
• ∑ for discrete variable→

∫
for continuous variable;

• exact inference is possible for a restricted family of
distributions (conjugate exponential, e.g. Gaussian);

methods are similar to those for discrete case;
(See slide 108)
• otherwise only approximate inference is possible.

(See slide 109)

5More on hybrid BNs? See Coursera lecture, and Salmerón et al. ‘A
Review of Inference Algorithms for Hybrid Bayesian Networks’ in JAIR 2018

225

https://www.coursera.org/lecture/probabilistic-graphical-models/continuous-variables-wkNvM
https://www.researchgate.net/publication/327401527_A_Review_of_Inference_Algorithms_for_Hybrid_Bayesian_Networks
https://www.researchgate.net/publication/327401527_A_Review_of_Inference_Algorithms_for_Hybrid_Bayesian_Networks

