
Syllabus, Chapter 6:

Bringing Bayesian Networks
into Practice

316



Inaccuracy versus robustness

Consider a BN B = (G,Γ). Assessments obtained (from data
or human experts) for the model-parameters γV ∈ Γ tend to be
inaccurate or uncertain.

Robustness: pertains to stability of some output in terms of
variation of model-parameter:

• output is robust if varying model-parameters reveals little
effect on the output;
• if varying model-parameters shows a considerable effect,

then the output is not robust and may be unreliable.

Inaccuracy, therefore, does not necessarily imply a lack of
robustness.
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Analysing the robustness of a Bayesian network

Various techniques are available for analysing the robustness
of a Bayesian network.

• sensitivity analysis

• systematically vary model-parameters and study the effect
on the output;
• in an n-way sensitivity analysis, n model-parameters are

varied simultaneously;

• uncertainty analysis

• repeatedly draw model-parameters from sample
distributions and study the effect.
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A one-way sensitivity analysis

A one-way sensitivity analysis for a network-parameter
x = γ(cVi | cρ(Vi)) results in a sensitivity curve, describing an
output probability y = Pr(cVo | cE) in terms of x:
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The effect of small variations in x on the output depends on the
original assessment x0 for network-parameter x.
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The computational burden involved

Straightforward sensitivity analysis is highly time consuming:

• for the following network, a single analysis8 requires 130
network propagations:

MC

B ISC

CCT

SH

γ(b | mc) = 0.20 γ(mc) = 0.20
γ(b | ¬mc) =0.05

γ(c | b, isc) = 0.80
γ(sh | b) = 0.80 γ(c | ¬b, isc) = 0.80
γ(sh | ¬b) = 0.60 γ(c | b,¬isc) = 0.80

γ(c | ¬b,¬isc) =0.05
γ(ct | b) = 0.95
γ(ct | ¬b) = 0.10 γ(isc | mc) = 0.80

γ(isc | ¬mc) = 0.20

• for the medium-sized classical swine fever network, a single
analysis requires approximately 20.000 network
propagations.
8assuming we compute 10 points per curve
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Reducing the computational burden

The computational burden of a sensitivity analysis can be
reduced by exploiting the following BN properties:

• various network-parameters cannot affect, upon variation,
the output probability of the network;

• the output probability relates to any network-parameter
under study as a quotient of two (multi-)linear functions.
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(Un)influential parameters – an overview

(See Meekes, Renooij & van der Gaag: Relevance of evidence in
Bayesian networks. (ECSQARU 2015))
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Influential parameters – the basics

Consider B = (G,Γ) with output variable of interest Vo ∈ VG

and evidence for the set E ⊆ VG.

Let SE(Vo)⊆ VG denote the set of variables whose
assessments may affect, upon variation, the output distribution
of interest Pre(Vo).

Which Vi ∈ VG belong to SE(Vo)?

Basically: each Vi for which a change in one of its
network-parameters γ(cVi | cρ(Vi)) will eventually result in a
change in the messages computed for/at Vo upon inference.

SE(Vo) is called the sensitivity set for Vo under evidence for E.
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(Un)influential parameters – introduction

Let UE(Vo) = VG \ SE(Vo) capture the variables for which a
change in an assessment will certainly not affect Pre(Vo), i.e.
the uninfluential ones.

• Suppose E = ∅.
Which Vi ∈ VG belong to S∅(Vo) and U∅(Vo)?

• Suppose E 6= ∅. How can Vi ∈ S∅(Vo) become uninfluential?

answers: see slide 326
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Uninfluential parameters: ancestors

The network-parameters for any variable Vi with

Vi ∈ ρ∗(Vo) and 〈{Vi} ∪ ρ(Vi) | E | {Vo}〉d

are uninfluential.

Example:
MC

B ISC

CCT

SH

• Can assessments for MC or
B affect the output probability
Pr(sh |¬ b)?
• Can assessments for B affect the

output probability Pr(c | ¬ b)?

�

answers:1)no;2)possibly

325



(Un)influential parameters – introduction cntd

• Suppose E = ∅. Then
S∅(Vo) = ρ∗(Vo) and U∅(Vo) = {Vi | Vi 6∈ ρ∗(Vo)}
• Suppose E 6= ∅. Then
S∅(Vo) ∩ UE(Vo) =
{Vi | Vi ∈ ρ∗(Vo) ∧ 〈{Vi} ∪ ρ(Vi) | E | {Vo}〉d}

• Suppose E 6= ∅. Which Vi ∈ U∅(Vo) remain uninfluential?

answer: see slide 328
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Uninfluential parameters: non-ancestors without evidence
for descendants

The network-parameters for any variable Vi with

Vi 6∈ ρ∗(Vo) and σ∗(Vi) ∩E = ∅

are uninfluential.

Example:
MC

B ISC

CCT

SH

• Can assessments for SH or
CT affect the output probability
Pr(c | ¬ isc)?
• Can assessments for SH affect the

output probability Pr(c | sh)?

�

answers:1)no;2)possibly
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(Un)influential parameters – introduction cntd

• Suppose E = ∅. Then
S∅(Vo) = ρ∗(Vo) and U∅(Vo) = {Vi | Vi 6∈ ρ∗(Vo)}
• Suppose E 6= ∅. Then
S∅(Vo) ∩ UE(Vo) =
{Vi | Vi ∈ ρ∗(Vo) ∧ 〈{Vi} ∪ ρ(Vi) | E | {Vo}〉d}
• Suppose E 6= ∅. Then
U∅(Vo) ∩ UE(Vo) ⊇ {Vi | Vi 6∈ ρ∗(Vo) ∧ σ∗(Vi) ∩E = ∅}

• Suppose E ∩ σ∗(Vi) 6= ∅. Which Vi remain in
U∅(Vo) ∩ UE(Vo)?
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Uninfluential parameters: non-ancestors with evidence for
descendants

The network-parameters for any variable Vi with

Vi 6∈ ρ∗(Vo), 〈{Vi} ∪ ρ(Vi) | E | {Vo}〉d and σ∗(Vi) ∩E 6= ∅

are uninfluential.

Example:
MC

B ISC

CCT

SH

• Can assessments for B affect the
output probability Pr(isc | ¬ ct)?
• Can assessments for B affect the

output Pr(isc | mc ∧ ¬ ct)?

�

answers:1)possibly;2)no
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The sensitivity set – definition

The sensitivity set SE(Vo) is the set of variables Vi for which
none of the following holds:

• Vi ∈ ρ∗(Vo) and 〈{Vi} ∪ ρ(Vi) | E | {Vo}〉d;
• Vi 6∈ ρ∗(Vo) and σ∗(Vi) ∩E = ∅;
• Vi 6∈ ρ∗(Vo), 〈{Vi} ∪ ρ(Vi) | E | {Vo}〉d and σ∗(Vi) ∩E 6= ∅;

Only the network-parameters for the variables in the sensitivity
set may affect, upon variation, the network’s output probability.
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Example: the prior sensitivity set for variable Stage

The sensitivity set S∅(Stage) in the prior network consists of 6
variables, together specifying 206 model-parameters.
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Example: a posterior sensitivity set for variable Stage

The sensitivity set SE(Stage) in this posterior network consists
of 21 variables, together specifying 527 model-parameters.
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Computing the sensitivity set (I)

The sensitivity set SE(Vo) is identified as follows:

• construct, from the network’s digraph G, a new digraph G∗ by
adding an auxiliary parent Xi to every Vi ∈ VG;

• determine all nodes Vi for which ¬ 〈{Xi} | E | {Vo}〉dG∗; these
constitute the sensitivity set.

The sensitivity set can thus be identified in polynomial time
(O(|AG∗ |)) from just graphical considerations.
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Computing the sensitivity set (II)

An alternative to identifying the sensitivity set SE(Vo) is to use
Bayes-Ball (BB) output (see Shachter, UAI 1998 for details):

BB terminology:
top mark, Np(Vo,E),
’Requisite p()’

SE(Vo) = Np

BB can also output
’Requisite e’ (E\IrrEv) and
’Irrelevant’ (E∪DSep)

The sensitivity set can be identified in O(|VG|+ |AG|) from just
graphical considerations.
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Computing an example sensitivity set

MC

B ISC

CCT

SH

Assume that the graph is extended with auxiliary parents XCT ,
XSH , XC , XB, XISC , and XMC .

• the sensitivity set for ISC given MC and CT equals {ISC};
• the sensitivity set for C given MC and CT equals
{B, CT, C, ISC}.
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An introduction to the sensitivity function

In sensitivity analyses of Bayesian networks, any output
probability is a function of the model-parameter under study:

MC

B ISC
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SH
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An example sensitivity function

A sensitivity function is strongly constrained by network B.
Consider the following Bayesian network:

MC

B ISC

CCT

SH

γ(b | mc) = 0.20 γ(mc) = 0.20
γ(b | ¬mc) =0.05

γ(c | b, isc) = 0.80
γ(sh | b) = 0.80 γ(c | ¬b, isc) = 0.80
γ(sh | ¬b) = 0.60 γ(c | b,¬isc) = 0.80

γ(c | ¬b,¬isc) = x
γ(ct | b) = 0.95
γ(ct | ¬b) = 0.10 γ(isc | mc) = 0.80

γ(isc | ¬mc) = 0.20

Output probability Pr(¬mc ∧¬b ∧¬isc ∧ c), analytically
expressed as a function of model-parameter x=γ(c |¬b ∧ ¬isc):
Pr(¬mc ∧ ¬ b ∧ ¬ isc ∧ c)(x) =

=
∑

cCT ,cSH
Pr(¬mc ∧ ¬ b ∧ ¬ isc ∧ c ∧ cCT ∧ cSH)(x)

= γ(mc)·γ(b |mc)·γ(isc |mc)·γ(c |b∧isc)·
∑
cCT

γ(cCT |b)·
∑
cSH

γ(cSH|b)(x)

= γ(¬mc) · γ(¬ b | ¬mc) · γ(¬ isc | ¬mc) · γ(c | ¬ b ∧ ¬ isc) · 1(x)
= 0.80 · 0.95 · 0.80 · x = 0.61 · x
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The (one-way) sensitivity function: in general

Consider a sensitivity analysis of B = (G,Γ) with output
variable of interest Vo and evidence for set E.

Consider an arbitrary network-parameter x from Γ. Then,

• the output probability of interest equals

Pr(vo | e)(x) =
Pr(vo ∧ e)(x)

Pr(e)(x)
=
a · x+ b

c · x+ d

where a, b, c, and d are constants;

• if c 6= 0 is guaranteed, i.e. Pr(e) actually varies with x, then in
essence only three constants are required:

Pr(vo | e)(x) ==
a/c · x+ b/c

c/c · x+ d/c

• The sensitivity function takes the form of (a fragment of) a
rectangular hyperbola.
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The (one-way) sensitivity function: specific case

Consider an network-parameter x from Γ. Then,

• if x = γ(cVi | cρ(Vi)) is associated with a Vi ∈ VG for which
σ∗(Vi) ∩E = ∅, then the output probability of interest equals

Pr(vo | e)(x) = a · x+ b

where a and b are constants.

• The sensitivity function is linear.
• Note that this always holds in a prior network without

evidence.
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Proportional scaling of parameters

Upon varying a single model-parameter x = γ(vi | ρ) for a
variable V , the other moedl-parameters γ(vj | ρ), j 6= i, for V
are co-varied:

γ(vj | ρ)(x) =

 x if j = i

γ(vj | ρ) · 1− x
1− γ(vi | ρ)

otherwise

The scheme of proportional scaling keeps the proportions
between the model-parameters γ(vj | ρ), j 6= i, constant.

The scheme results in the smallest distance9 between the
original and the new distribution.

9Chan & Darwiche (2003): A distance measure for bounding
probabilistic belief change
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Computing the sensitivity function f(x)

Building upon its general form, it suffices to compute the
constants of a sensitivity function:

• a simple algorithm computes the output probability for a
small number of values of the model-parameter under study
and solves the resulting system of equations;10

• a more intricate algorithm establishes the constants in the
function analytically through propagation;
• observing the relation between the constants and derivatives

of f(x), we can also use a differential approach.11

10The next slides illustrate this algorithm; if you need to compute a
sensitivity function by hand, please use the analytic approach from
slide 337!

11Darwiche (2000): A differential approach to inference in Bayesian
networks.
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Computing an example sensitivity function (1)

Consider once again the following Bayesian network:

MC

B ISC

CCT

SH

γ(b | mc) = 0.20 γ(mc) = 0.20
γ(b | ¬mc) =0.05

γ(c | b, isc) = 0.80
γ(sh | b) = 0.80 γ(c | ¬b, isc) = 0.80
γ(sh | ¬b) = 0.60 γ(c | b,¬isc) = 0.80

γ(c | ¬b,¬isc) =0.05
γ(ct | b) = 0.95
γ(ct | ¬b) = 0.10 γ(isc | mc) = x

γ(isc | ¬mc) = 0.20

Compute the sensitivity function for output probability
Pr(mc | isc) as a function of x = γ(isc | mc):

1) compute the output probability from the network three (max
four) times, for different values of x, using standard inference

For example, for x = 0.2, x = 0.5 and x = 0.8 we find:

Pr(mc | isc)(0.2) = 0.200
Pr(mc | isc)(0.5) = 0.385
Pr(mc | isc)(0.8) = 0.500
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Computing an example sensitivity function (2)

Compute the sensitivity function for output probability
Pr(mc | isc) as a function of x = γ(isc | mc):

2) establish a system of linear equations:

Pr(mc | isc)(0.2) = 0.200
a′ · 0.2 + b′

0.2 + d′
= 0.200

Pr(mc | isc)(0.5) = 0.385 =⇒ a′ · 0.5 + b′

0.5 + d′
= 0.385

Pr(mc | isc)(0.8) = 0.500
a′ · 0.8 + b′

0.8 + d′
= 0.500
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Computing an example sensitivity function (3)

Compute the sensitivity function for output probability
Pr(mc | isc) as a function of x = γ(isc | mc):

3) solve the system of linear equations:

a′ · 0.2 + b′ = 0.200 · 0.2 + 0.200 · d′ and
a′ · 0.5 + b′ = 0.385 · 0.5 + 0.385 · d′

which together give a′ = 1.525/3 + 1.85/3 · d′.

Combining this with equation

a′ · 0.8 + b′ = 0.500 · 0.8 + 0.500 · d′

gives b′ = −0.2/30 + 0.2/30 · d′.

Substituting a′ and b′ in the first equation gives
d′ = 1.65/2.1 ≈ 0.786 and therefore a′ ≈ 0.993 and
b′ ≈ −0.001.
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Practicable sensitivity analysis

Straightforward sensitivity analysis of a Bayesian network is
infeasible. The digraph of the network, however, induces

• algebraic independence of the output probability of various
network-parameters;
• simple mathematical functions that relate the output

probability to the potentially influential network-parameters.

By exploiting these properties, sensitivity analysis of a
Bayesian network is rendered practicable.

Still, the number of sensitivity functions returned from all
potentially influential network-parameters can be quite large.

How do we select the network-parameters that we consider
sensitive and that require further study ?
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Selection of sensitive assessments

A sensitivity analysis results in a large amount of data.

Example: the oesophageal cancer network:

In the prior network, 206 parameters potentially influence the 6
probabilities of Pr(Stage)→ 1236 sensitivity functions.

Given patient evidence (156), the number of potentially
influential network-parameters may become 826. �

Various selection criteria can be employed to select network-
parameters that deserve attention.
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Selection criteria

Parameter assessments that may require further study can be
selected based upon:

• absolute effect of variation on output probability:
|f(0)− f(1)|;
• plausible effect on output probability;
• the sensitivity value, i.e. the absolute value of the first

derivative of the sensitivity function at original assessment;
• the vertex proximity, i.e the distance between the original

assessment of the network-parameter and the vertex
(“shoulder”) of the function;
• the admissible deviation, i.e. the variation allowed in the

network-parameter without changing the most likely value of
the variable of interest.
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The sensitivity value as selection criterion

Consider sensitivity function f(x) for network-parameter x.Let
x0 be the original assessment for x.

The absolute value of the first derivative of f(x) in (x0, f(x0)),
also called the sensitivity value, captures how sensitive the
output is to varying x.

∣∣∣∣∂f∂x (0.02)

∣∣∣∣ = 6.97

Problem: the first derivative
is a good approximation
of the function only for
x ∈ [x0 − ε, x0 + ε].

348



Vertex proximity

The sensitivity value in x0 may be small near the vertex
(shoulder) of a sensitivity function.

Yet, slight variation of the parameter around x0 can have a
large effect on the outcome probability.

Solution: if x0 is close to
xvertex, then select x for
further study, regardless of
the sensitivity value.
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The admissible deviation
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More elaborate sensitivity analyses

Properties of an n-way analysis for n > 1:

• all n model-parameters are varied simultaneously.
• reveals possible interactions, or synergistic effects.
• sensitivity function is a fraction of two multi-linear functions in

the model-parameters under study.
• hardly any research into shapes and properties of n-way

sensitivity functions for n ≥ 2.
• interpretation of results is hard, especially for n > 2.
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Two-way sensitivity analyses

With a two-way sensitivity analysis, two model-parameters are
varied simultaneously:

f(x, y) =
c1 · x · y + c2 · x+ c3 · y + c4
c5 · x · y + c6 · x+ c7 · y + c8

A two-way analysis reveals possible synergistic effects (c1, c5)
not found from two one-way analyses.

Selection criteria: Parameter assessments that may require
further study can be selected based upon:

• absolute effect of variation on output probability;
• plausible effect on output probability;
• the (max) sensitivity value:

√
(∂f
∂x

(x0, y0))2 + (∂f
∂y

(x0, y0))2

• contour distances, i.e the distances between iso-probability
lines in a 2D projection of the sensitivity function.
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Contour distance

A two-way analysis reveals synergistic effects.
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• absolute distance: the
smaller the distance, the
more sensitive the out-
put probability is to para-
meter variation;
• relative distance: va-

rying distances indicate
interaction effects.

The iso-probability contours here are not equi-distant due to
non-zero interaction terms in the sensitivity function.
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Intermezzo
De following slides briefly summarize more research related to
sensitivity analysis done in our Department.

This does not have to be studied for the exam;
you can also skip to the topic of evaluation.
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Brief: robustness to parameter inaccuracies II

We can provide general bounds on sensitivity functions
through (x0, p0) and on their properties12

which can be further bounded13 given fPr(e)(x) = c · x+ d:

fPr(h|e)(x) =
r

x− s
+ t, r = (x0 − s) · (p0 − t)

for asymptotes x = s = −d
c

and y = t.
12S. Renooij, L.C. van der Gaag (2004). Evidence-invariant sensitivity bounds. In: UAI 2004.
13S. Renooij, L.C. van der Gaag (2005). Exploiting evidence-dependent sensitivity bounds. In: UAI 2005.
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Brief: robustness to structure changes

We can simulate the removal of an arc by posing constraints
on an n-way sensitivity function14

Original CPT for node B:
c1 c2

a1 a2 a1 a2
b1 0.7 0.1 0.9 0.6
b2 0.3 0.9 0.1 0.4

For removing A→ B:
c1 c2

a1 a2 a1 a2
b1 x′1 x′2
b2 1− x′1 1− x′2

14S. Renooij (2010). Bayesian network sensitivity to arc-removal. In: PGM 2010
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Brief: robustness to discretisation

We can study the effect of choosing a different discretisation15

• changing a discretisation threshold is like varying a
network-parameter

15R. Bertens, L.C. van der Gaag, S. Renooij (2012). Discretisation effects in naive Bayesian networks. In: IPMU 2012
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Brief: sensitivity to model assumptions

We can gain understanding about the behaviour of

• networks of restricted topology
– naive Bayesian network classifiers16

– multi-dimensional Bayesian network classifiers17

• causal interaction models18

16S. Renooij, L.C. van der Gaag (2008). Evidence and scenario sensitivities in naive Bayesian classifiers. IJAR vol 49.
17J.H. Bolt, S. Renooij (2014). Sensitivity of multi-dimensional Bayesian classifiers. In: ECAI 2014.

& J.H. Bolt, S. Renooij (2015). Robustness of multi-dimensional Bayesian network classifiers. In: BNAIC 2015.
18S.P.D. Woudenberg, L.C. van der Gaag (2015), Propagation effects of model-calculated probability values in Bayesian

networks, IJAR vol 61.
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Brief: results applied in other contexts

Rather than using sensitivity functions as analysis tools, we
can exploit their properties in other contexts19

• parameter tuning 20

• pre-processing inference in credal networks21

• . . . ?

19J.H. Bolt, S. Renooij (2017). Structure-based categorisation of Bayesian network parameters. In: ECSQARU 2017
20J.H. Bolt, S. Renooij (2014). Local sensitivity of Bayesian networks to multiple simultaneous parameter shifts. PGM

2014
21J.H. Bolt, J. De Bock, S. Renooij (2016). Exploiting Bayesian network sensitivity functions for inference in credal

networks. In: ECAI 2016
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End of Intermezzo
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Evaluation of Bayesian networks

An evaluation of the practical value of a Bayesian network
consists of the following steps:

1) select realistic cases to evaluate
(for example from data or scenarios);

2) select the outcome variable(s) of interest;
3) choose a standard of validity;
4) compute, from the network, the outcome for each case;
5) compare the outcome to your standard of validity.
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Evaluation of Bayesian networks: an example

Consider the evaluation of the practical value of the
oesophageal cancer network.

• data: symptoms and test-results for 156 patients (average:
14.8 of the 25, per patient);
• outcomes of interest: Stage of the tumour: I, IIA, IIB, III,

IVA, IVB;
• standard of validity: assessment of the stage, given by the

physicians.

From the oesophageal cancer network we now compute the
stage for each of the 156 patients.
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Patient file for Patient X

Passage: can pass mashed food
Weightloss: none
Physical exam: swollen lymph nodes neck

Biopsy: squamous
X-lungs: metastases
Bronchoscopy: ×
Sono-cervix: ×
Barium swallow: ×
Gastroscopy: circumf: length: location: necrosis: shape:

circular 7 cm proximal absent polypoid

CT-scan (liver, locoregion, lungs, organs, truncus): ×
Endosonography (locoregion, mediastinum, truncus, wall): ×
Laparascopy (liver, diaphragm, truncus): ×

Diagnosis: stage = I/IIA/IIB/III/IVA/©IVB
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Diagnosing Patient X
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The percentage correct

After processing evidence, a Bayesian network gives a
posterior probability distribution for the outcome variable.

The standard of validity, however, usually consists of a single
value for the outcome variable.

• The most likely value of the outcome variable is chosen as
the outcome of the network;
• the outcome is compared against the standard: the

outcome is either correct or incorrect.

The percentage of cases where the outcome predicted by the
network is correct according to the standard of validity is called
the percentage correct (or: accuracy).
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The percentage correct: an example

Compare for each patient the stage predicted by the network
against the stage assessed by the physicians.

For 133 of the 156 patients, the network gives an accurate
prediction:

network
I IIA IIB III IVA IVB total

I 2 0 0 0 0 0 2
IIA 0 37 0 1 0 0 38

phys. IIB 0 1 0 3 0 0 4
III 1 10 0 36 0 0 47
IVA 0 0 0 4 35 0 39
IVB 0 0 0 3 0 23 26
total 3 48 0 47 35 23 156

The percentage correct is therefore 85%.
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Explaining the differences

Differences between the outcomes of a network and the
standard of validity can originate from several sources:

• modelling errors;
• errors in the standard, or in the data;
• random variation:
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Evaluation scores: the Brier score

The uncertainty expressed in the predicted distribution can be
taken into account in the evaluation.

Let pij = Pr(vj | ei) be the predicted (network) probability for
case i and value j of the outcome variable.

Let sij =


1 if outcome j is correct outcome for case i

(according to standard of validity);
0 otherwise

The Brier score for the predicted distribution for case i now is

Bi =
∑
j

(pij − sij)2

The Brier score lies within the interval [0, 2], where 0 indicates a
perfect prediction.
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The Brier score: an example

Consider evaluating the oesophageal cancer network, where

• pij is the network probability computed for patient i and
stage j ∈ {I, . . . , IV B};
• sij returns 1 if patient i’s medical file states stage j, and 0

otherwise.

The Brier score for patient i now is Bi =
∑

j=I,...,IVB

(pij − sij)2

For patients X, B and C we find, respectively:

BX = (0− 0)2 + (0.01− 0)2 + (0.04− 0)2 + (0.14− 0)2+

+ (0.06− 0)2 + (0.75− 1)2 = 0.09

BB = 3 · (0− 0)2 + (0.36− 1)2 + (0 .35 − 0)2 + (0 .29 − 0)2 = 0.62

BC = (0.02− 0)2 + (0.38− 0)2 + (0.05− 0)2 + (0.37− 1)2+

+ (0.09− 0)2 + (0.09− 0)2 = 0.56
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Average Brier score

We can compute an average Brier score over n ‘forecasts’:

B =
1

n

∑
i=1,...,n

Bi

An example: The average Brier score over all patients per
predicted-stage / actual-stage combination:

network
I IIA IIB III IVA IVB

I 0.21 – – – – –
IIA – 0.28 – 1.52 – –

phys. IIB – 1.17 – 0.98 – –
III 1.40 0.89 – 0.26 – –
IVA – – – 0.75 0.08 –
IVB – – – 0.87 – 0.06

The average Brier score over all 156 patients is: 0.29 �
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Decision support: a two-layer problem solving architecture

The control layer

The probabilistic layer

Probabilistic layer for probabilistic reasoning:
• stores: a Bayesian network;
• tasks: receive evidence, propagate it, and return

requested probabilities.

Control layer for (intelligent) control over reasoning
• stores: non-probabilistic information;
• tasks: make strategic decisions by sending evidence,

requesting probabilistic information, computing
non-probabilistic information.
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Problem solving: Threshold decision making

The purpose of threshold decision making is supporting the
choice between therapeutic decision alternatives.

A system for threshold decision making has the following tasks:

• Diagnostic reasoning: compute the probability Pr(d) of some
hypothesis (diagnosis), based upon the available findings.

0 1

P−(d)

P ∗(d)

P+(d)
no treat

no treat
test

treat
treat

• Treatment advisement: give advise concerning treatment,
based upon Pr(d) and the threshold values for the treatment
options.
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Threshold decision making

A simple strategy for threshold decision making using a
Bayesian network B = (G,Γ):

PROCEDURE THRESHOLDDECISION(B,cE ,P ,A):
PROPAGATE-EVIDENCE(B,cE );
ADVISE(P , A)

END

The procedure is called with

• evidence cE for a set of nodes E ⊂ VG, and
• a set of threshold values P for the diagnosis under

consideration.

The procedure returns a treatment alternative of A 6∈ VG.
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Expected utility of treatment

The choice between two treatment alternatives depends on
their expected benefit. Benefit can be defined in terms of utility.

Consider hypothesis node H and evidence e for a nodes E;
variable A models different treatment alternatives.

• the desirability of each cAH of A and H is given by a
subjective utility u(cAH);

• the expected utility of each treatment alternative cA then is

û(cA) =
∑
cH

u(cA ∧ cH) · Pre(cH), where cA ∧ cH ≡ cAH

Advise: treatment alternative with highest expected utility.

Drawback: each û(cA) has to be recomputed every time a
different value for Pre(cH) is encountered. . .
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Expected utility for setting thresholds

Let H, e and A be as before. Expected utility can be written as
a function of Pre(h) for value of interest h of H.

In case of a binary-valued H this function equals:

û(cA) =
∑
cH

u(cA ∧ cH) · Pre(cH)

= u(cA ∧ h) · Pre(h) + u(cA ∧ ¬h) · Pre(¬h)

= (u(cA ∧ h)− u(cA ∧ ¬h)) · Pre(h) + u(cA ∧ ¬h)

Therefore, with x = Pre(h) we have

û(cA)(x) = (u(cA ∧ h)− u(cA ∧ ¬h)) · x+ u(cA ∧ ¬h)

Threshold probabilities are computed by solving x (for each
pair of alternatives ai and aj, i 6= j, for A) from
û(ai)(x) = û(aj)(x).
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An example

Consider the following network and utilities u(cA ∧ cH):
MC

B ISC

CCT

SH

u(stop ∧ b) = 0.02
u(stop ∧ ¬b) = 1.00
u(treat ∧ b) = 0.50
u(treat ∧ ¬b) = 0.92

0 1
Pre(b)P ∗

û(stop)

û(treat)

Threshold value P ∗ ≈ 0.143 is
computed from:

û(treat)(x) = (0.50− 0.92) · x+ 0.92

û(stop)(x) = −0.98 · x+ 1.00

where x = Pre(h) = Pr(b)

Should a patient with Pr(b) = 0.10 be treated or not?
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An example
Consider the following network and utilities u(cA ∧ cH):

MC

B ISC

CCT

SH

u(stop ∧ b) = 0.02
u(stop ∧ ¬b) = 1.00
u(test ∧ b) = 0.45
u(test ∧ ¬b) = 0.98
u(treat ∧ b) = 0.50
u(treat ∧ ¬b) = 0.92

0 1P− P+

û(stop)

û(treat)

û(test)

Threshold values P−≈0.044 and
P+≈0.545 are computed from:

û(stop)(x) = −0.98 · x+ 1.00

û(treat)(x) = −0.42 · x+ 0.92

û(test)(x) = −0.53 · x+ 0.98

where x = Pre(h) = Pr(b)

Should a CT-scan be ordered for a patient with Pr(b) = 0.10?
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Threshold decision making: summary

For threshold decision making, the probabilistic layer and the
control layer have the following functionality:

Probabilistic layer:

• propagates evidence and returns requested probabilities

Control layer:

• stores utility functions
• computes and stores threshold probabilities for different

treatment choices;
• compares probabilities with appropriate thresholds and

returns a treatment advise based upon the comparisons.
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Problem solving: Diagnostication

Diagnostication: determine the most likely hypothesis
(diagnosis), at the lowest possible costs (a.k.a adaptive testing
in Intelligent Tutoring Systems).

A system for diagnostication has the following tasks:

• Diagnostic reasoning: determine most likely problem cause
from available information about its manifestations.
• Test selection: select appropriate tests to gain more

information about the manifestations.
• Stopping criterion evaluation: check whether the current

diagnosis is sufficiently reliable.
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Simple diagnostication

A simple strategy for diagnostication using a Bayesian network
B = (G,Γ):

PROCEDURE DIAGNOSTICATION(B,E,H ):
SUFFICIENT ← FALSE;
WHILE E 6= ∅ AND NOT SUFFICIENT DO

Ei ← SELECT-TEST(E);
ei ← GATHER-EVIDENCE(Ei);
PROPAGATE-EVIDENCE(B,ei);
E ← E \ {Ei};
SUFFICIENT ← EVALUATE-STOP

OD;
DIAGNOSE(H )

END

The procedure is called with the set E ⊂ VG of all evidence
nodes. It returns a sufficiently reliable hypothesis for H ∈ VG.
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Test-selection measures

Gathering evidence has benefit for diagnostication, as it may
decrease uncertainty concerning the diagnosis.

Most often information measures are used to establish the
expected benefit:

• Shannon entropy;
• Gini index;
• misclassification error;
• Kullback-Leibler divergence (uses cross entropy);
• expected utility

These measures all measure uncertainty only; it is possible to
include different types of cost as well.
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Expected utility for selecting tests

Consider binary hypothesis node H. Let e denote the
processed evidence and let Ei be a relevant uninstantiated
evidence node.

• The utility of the value cEi
for node Ei is defined as

u(cEi
) = |Pre(h)− Pre(h | cEi

)|

• the expected utility of observing a value for node Ei (i.e.
doing the test) then is

û(Ei) =
∑
cEi

u(cEi
) · Pre(cEi

)

SELECT-TEST(E) now returns a node Ei ∈ E with highest
expected utility.
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An example

V1

V2

V3 V4

γ(v1) = 0.7

γ(v2 | v1) = 0.7
γ(v2 | ¬v1) = 0.6

γ(v3 | v2) = 0.9
γ(v3 | ¬v2) = 0.2

γ(v4 | v2) = 0.3
γ(v4 | ¬v2) = 0.8

V2 is an hypothesis node;
V1, V3 and V4 are evi-
dence nodes; all are un-
instantiated.

Pre(h) = Pr(v2) = 0.67

For V3: u(v3) = |Pr(v2)− Pr(v2 | v3)| = |0.67− 0.901| = 0.231
u(¬v3) = |Pr(v2)− Pr(v2 | ¬v3)| = |0.67− 0.202| = 0.468

The expected benefit of obtaining V3’s value is:

û(V3) = u(v3) · Pr(v3) + u(¬v3) · Pr(¬v3)
= 0.231 · 0.669 + 0.468 · 0.331 = 0.309

For V1 and V4 we similarly find û(V1) = 0.042 and û(V4) = 0.223.

û(V3) is highest→ user is prompted for value of V3.
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Some assumptions

To reduce computational complexity two simplifying
assumptions are made:

• the myopia assumption: tests are selected and performed
one at a time;
• the single-disorder assumption: all hypotheses are mutually

exclusive.

Both assumptions, however, can be somewhat relaxed.
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Stopping criteria

After processing newly obtained evidence, a stopping criterion
is evaluated: if this criterion is met, the selection of tests is
halted.
Some examples of stopping criteria:

• sufficiency of confirmation: the probability of the hypothesis
is above (below) a given threshold value;

(or: take the entire distribution over the hypothesis node into
consideration)

• sufficiency of information: the expected utilities of the
relevant uninstantiated evidence nodes are below a given
threshold value;

(or: take the maximum utility instead of expected utility into
consideration).
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An example

V1

V2

V3 V4

γ(v1) = 0.7

γ(v2 | v1) = 0.7
γ(v2 | ¬v1) = 0.6

γ(v3 | v2) = 0.9
γ(v3 | ¬v2) = 0.2

γ(v4 | v2) = 0.3
γ(v4 | ¬v2) = 0.8

V2 is an hypothesis
node; V1, V3 and V4 are
evidence nodes.

Suppose the stopping criterion for selecting tests is ‘sufficiency
of information’ with a threshold value of 0.1.

With evidence V3 = true, we find Pre(h) = Prv3(v2) = 0.90.

The expected utilities for V1 and V4 are now updated for e = v3:

û(V1) = 0.017 and û(V4) = 0.089

Both expected utilities are below 0.1 so selection of tests is
halted.
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Diagnostication: summary

For diagnostication, the probabilistic layer and the control layer
have the following functionality:

Probabilistic layer:

• propagates evidence and returns requested probabilities

Control layer:

• stores knowledge concerning the roles of different variables
(hypothesis, evidence, intermediate);
• stores and computes (expected) utilities of the different tests

available;
• selects the most appropriate tests;
• evaluates the stopping criterion.
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Explanation of Bayesian networks

The ability to explain a Bayesian network and its predictions is
crucial for its acceptance (explainable AI)!

• what can and should we explain?
• for whom is the explanation intended?
• BN expert / domain expert / user

• how to explain?
• . . .
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Explaining Bayesian networks

• 1992: Explanation in Bayesian belief networks
(Stanford PhD thesis by H.J. Suermondt)

• 2001: A Review of Explanation Methods for Bayesian
Networks (KER paper by C. Lacave and F.J. Dı́ez)

2021: A taxonomy of explainable Bayesian networks (I.P. Derks, A. de Waal)

2022: Extending MAP-independence for Bayesian network explainability (E. Valero-Leal, P. Larrañaga, C. Bielza)
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Analysis for explaining decisions

Derks & De Waal (2021):

Explanation of decisions supports the following questions:

• “Given the available information, are we ready to make a
decision?”, and if not
• “ What additional information do we require to make an

informed decision?”

using threshold-based solutions:

• SDP: probability that same decision is made upon obtaining
additional evidence (2012 –)

• sensitivity analysis: to what extent does the outcome depend
on the specified conditional probabilities? (1995 –)
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Explanation of reasoning: monotonicity (visual)

Img: Explanation of Bayesian Networks and Influence Diagrams in Elvira (C. Lacave, M. Luque, F.J. Dı́ez, IEEE Trans., 2007)

392



Explanation of reasoning: scenarios (textual)

1991:
2016:

1991: Qualitative propagation and scenario-based approaches to explanation of probabilistic reasoning (M. Henrion, M.J.
Druzdzel, UAI)
2016: When stories and numbers meet in court (C.S. Vlek, PhD Thesis, RUG)
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Explanation of reasoning: relevance of evidence

1997:

2015:

1997: BANTER: a Bayesian network tutoring shell (P. Haddawy, J. Jacobson, Ch.E. Kahn Jr., AI in Med.)
2015: Explaining the reasoning of Bayesian networks with intermediate nodes and clusters (J. van Leersum, MSc Thesis, UU)
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Explanation of reasoning: argument graphs

2011:
2017:

2011: On extracting arguments from Bayesian network representations of evidential reasoning (J. Keppens, ICAIL)
2017: Designing and understanding forensic Bayesian networks using argumentation (S.T. Timmer, PhD Thesis, UU)
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Persuasive contrastive explanation
(explanation of reasoning: classification)

Consider evidence e, resulting in output t instead of t′.

A persuasive contrastive explanation combines

• sufficient explanation s
I minimal sub-configuration of evidence e that suffices for
concluding t, regardless of the values for E \ S

“ evidence s would already be enough to conclude t ”

• counterfactual explanation c
I minimal sub-configuration of unobserved values e that
in combination with the remaining evidence for E \C
suffices to conclude t′

“ t′ would result if the evidence contains c instead ”
Persuasive contrastive Explanations for Bayesian networks (T. Koopman, S. Renooij, ECSQARU 2021)
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Explanation support: MAP-independence

Recall: MAP h∗ = arg maxh P (H = h | E = e).

h∗ is MAP-independent of subset R of intermediate variables, if
for all r: (Kwisthout, 2021)

argmax
h′

Pr(h′ ∧ r | e) = h∗

If argmaxh′ 6= h∗ for some r then

• r provides for a “counterfactual”;
• that contrasts outputs h∗ and h′.

Note that the explanation concerns the effects of possible
future observations rather than current!
Explainable AI using MAP-independence (J. Kwisthout, ECSQARU 2021)

Relevance for Robust Bayesian Network MAP-Explanations (S. Renooij, PGM 2022)
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Interactive explanation

Computing contrastive, counterfactual explanations for Bayesian networks (T. Koopman, MSc. Thesis, UU, 2020)
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Explanation: what & how

• structure alone
• probabilistic relations in the graph
• signs on arcs (QPNs), thickness of arcs

• relation between evidence and outcome
• reasoning chains: from graphs, verbal explanations

(text), arguments
• sufficient and counterfactual explanations

• evidence itself
• MAP/MPE (= a configuration of maximum probability)
• conflict / surprise

• outcome distribution/probability
• verbal explanation: text + verbal probability expression

Any widely adopted solutions after 30 years? No. . .
(but see MSc thesis by J.R. Koiter for examples)
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Syllabus, Chapter 7:

Conclusions
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Concluding observations about P(G)Ms

The state of the art as far as Probabilistic (Graphical) Models
are concerned is as follows:

• P(G)Ms and their associated algorithms offer a useful
framework for representing and manipulating probabilistic
information;
• the framework combines mathematical correctness with

expressiveness and efficiency;
• advances in research enable and facilitate applicability of

P(G)Ms in increasingly more practical situations;
• P(G)Ms are becoming more and more important due to their

interpretability.
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Current Research into P(G)Ms

Research aims mostly at supporting their practical application:
• approximate inference;
• learning from data;
• confounding variables, causality, and interventions;
• representation and manipulation of continuous distributions;
• representation and manipulation of time;
• incremental model-construction;
• relevance of variables, values, arcs and probabilities;
• model-complexity vs accuracy;
• model-checking and repairing;
• design of methods for knowledge acquisition and

explanation;
• building actual applications;
• design of software for builders and users;
• . . .
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Interested in more?

For further information on research on the subject of this
course, see:

• links on the course website, also for info about
graduation projects;
• (proceedings of) the annual UAI conference on

Uncertainty in Artificial Intelligence;
• (online proceedings of) the BMAW workshop linked to UAI:

Bayesian Modeling Applications Workshop (more);
• (proceedings of) the bi-annual PGM conference on

Probabilistic Graphical Models;
• authors’ homepages
• . . .
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What’s next?

• opportunity to ask your remaining questions about the
course
• the exam
• see www.cs.uu.nl/docs/vakken/prob/beoordeling.html for details
• see studymanual for expectations

• Please fill out the Caracal course evaluation!
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