
Probabilistic Reasoning

with Bayesian Networks

Fall 2023

authors: Linda van der Gaag

Silja Renooij

Preface

In artificial-intelligence research, the Bayesian network framework for automated reason-
ing with uncertainty has rapidly gained popularity since its introduction in the late 1980s.
Bayesian networks belong to the family of Probabilistic Graphical Models, providing a
powerful formalism for representing a joint probability distribution on a set of random
variables. In addition, the Bayesian network framework offers algorithms for efficient
probabilistic inference. Over the years, numerous decision-support systems employing the
framework have been developed for various domains of application, ranging from proba-
bilistic information retrieval to medical diagnosis. This syllabus provides a tutorial intro-
duction to the Bayesian network framework and highlights the basics underlying ongoing
research in applying the framework for problem solving in real-life domains. Each chapter
includes examples as well as a number of exercises; solutions, answers or hints to exercises
(indicated by a *) are provided in the final chapter.

This syllabus was first written in the late 1990s by L.C. van der Gaag and has been contin-
uously under development ever since. Since 2001, adaptations and extensions have been
made mostly by S. Renooij. The syllabus is by no means devoid from imperfections and
any useful comments on its contents are greatly appreciated.

Changes to the previous editions (Fall 2021 and Fall 2022) consist mostly of introducing
notation boxes and further extension and clarifications of exercises and their answers.

Linda van der Gaag
Silja Renooij
Utrecht University
August 2023
©All rights reserved. No part of this work may be reproduced without permission of the
authors.

1

Contents

1 Introduction 4

2 Preliminaries 10
2.1 Graph Theory . 10
2.2 Probability Theory . 12

2.2.1 Set-Theoretic View . 12
2.2.2 Algebraic View . 12

I PGMs: definition and inference 18

3 Independences and Graphical Representations 19
3.1 The Concept of Independence Revisited . 19

3.1.1 Pearl’s Axiomatic System for Independence 20
3.1.2 Properties of Independence Relations 22

3.2 Graphical Representations of Independence 23
3.2.1 Undirected Graphs . 24
3.2.2 Directed Graphs . 26
3.2.3 Choosing a Graphical Representation 29

4 The Bayesian Network Framework 34
4.1 The Bayesian Network Formalism . 34
4.2 Exact Probabilistic Inference . 37

4.2.1 Directed Trees . 38
4.2.2 Singly Connected Digraphs . 50
4.2.3 Multiply Connected Digraphs . 58
4.2.4 Other Algorithms for Probabilistic Inference 65

II Towards BN applications 74

5 Building a Bayesian Network 75
5.1 Identifying Variables and Values . 76
5.2 Constructing the Digraph . 78

5.2.1 Constructing the Digraph by Hand 78
5.2.2 Learning the Digraph from Data . 79

5.3 Assessing Probabilities . 85
5.3.1 Sources of Probabilistic Information 85
5.3.2 Simplifying Probability Assessment 86
5.3.3 Eliciting Probabilities from Experts 89
5.3.4 A Procedure for Probability Refinement 90

2

3

6 Bringing Bayesian Networks into Practice 99
6.1 Sensitivity Analysis . 100

6.1.1 What to Analyse? . 101
6.1.2 One-way Sensitivity Analysis . 102
6.1.3 Two-way Sensitivity Analysis . 108

6.2 Evaluating Bayesian Networks . 111
6.2.1 The Percentage Correct and its Shortcomings 112
6.2.2 An Evaluation Score . 113

6.3 A Problem-Solving Architecture . 115
6.3.1 Example Application: Threshold Decision Making 115
6.3.2 Example Application: Selective Evidence Gathering 118

6.4 Explaining Bayesian Networks . 121

7 Conclusions 126

8 Solutions, Answers and Hints 127

Bibliography 149

Index 158

Chapter 1

Introduction

Over the past decades interest in the results of artificial-intelligence research has been
growing rapidly, culminating in big data and (deep) machine learning hypes. Steady
attention throughout the years has been attracted by especially the area of intelligent or
knowledge-based systems. Traditionally knowledge-based systems are considered to be part
of ’symbolic AI’ which refers to AI systems that use some symbolic representation (e.g.
logic) to incorporate and reason with human knowledge [Lucas & Van der Gaag, 1991,
Jackson, 1990]. Until the 1980s, symbolic AI was the dominant AI paradigm; since then
’sub-symbolic AI’ started to get a foothold. Sub-symbolic AI systems, such as neural
networks, typically capture associations learned from data rather than human knowledge;
their ’reasoning’ is based on the manipulation of numbers rather than symbols. The need
for eXplainable AI (XAI) has resulted in more and more research into combining symbolic
and sub-symbolic systems [Ilkou & Koutraki, 2020]. Probabilistic graphical models, such
as Bayesian networks, combine characteristics of both symbolic and sub-symbolic systems
in a single framework.

Knowledge-Based Systems and Uncertainty

Knowledge-based systems are typically designed to deal with real-life problems that require
considerable human knowledge and expertise for their solution; in the early days they were
therefore called expert systems. Examples of such systems range from medical diagnosis
and technical trouble shooting to financial advice and product design. It is their ability
to capture and reason with (specialised) human knowledge that allows knowledge-based
systems to arrive at a performance comparable to that of human experts. Recognising
that complex decisions require more than the capability to reason alone, knowledge-based
systems are also referred to as decision-support systems. These systems by now have found
their way from academic laboratories to the industrial world and are being integrated into
conventional software environments.

As more and more decision-support systems were being developed for a large variety of
problems, it became apparent that the knowledge required to solve these problems often is
not precisely defined but instead is of an imprecise nature. In fact, many real-life problem
domains are fraught with uncertainty. Human experts in these domains typically are able
to form judgements and take decisions based on uncertain, incomplete, and sometimes
even contradictory information. To be of practical use, a decision-support system has
to deal with such information at least equally well. For this purpose, a decision-support
system employs a formalism for representing uncertainty and an associated algorithm for
manipulating uncertain information. The major research topic in artificial intelligence of
reasoning with uncertainty, or plausible reasoning, addresses the design of such formalisms
and algorithms [Shafer & Pearl, 1990].

4

1. Introduction 5

Early Probabilistic Reasoning

As probability theory is a mathematically well-founded theory about uncertainty, hav-
ing a long and outstanding tradition of research and experience, it is not surprising that
this theory takes a prominent place in research on reasoning with uncertainty in decision-
support systems. Unfortunately, applying probability theory in a knowledge-based context
is not as easy as it may seem at first sight. Straightforward application of the basic con-
cepts from probability theory leads to insuperable problems of computational complexity:
explicit representation of a joint probability distribution requires exponential space (ex-
ponential in the number of variables discerned), and even if the distribution could be
represented more economically, computing probabilities of interest by the basic rules of
marginalisation and conditioning would have an exponential time complexity. The rich
history of applying probability theory for reasoning with uncertainty in decision-support
systems shows various attempts to settle these problems.

In this chapter, we sketch the historical background of applying probability theory
in a knowledge-based system. We would like to note that our intention is not to be
complete, but merely to give an impression of the problems encountered by researchers
pioneering in automated probabilistic inference. In our sketch, we focus on the task of
(medical) diagnosis. For a given problem domain, we discern a set of possible hypotheses
H = {h1, . . . , hn}, n ≥ 1, and a set of pieces of evidence E = {e1, . . . , em}, m ≥ 1, that
may be observed in relation with these hypotheses. For ease of exposition, we assume that
each of the hypotheses is either true or false; equally, we assume that each of the pieces
of evidence is either true or false. A diagnostic problem in this domain now is a set of
pieces of evidence e ⊆ E that is actually observed and needs to be explained in terms
of the hypotheses discerned. A diagnosis for a problem e under consideration is a set of
hypotheses h ⊆H that best explains e.

As early as in the 1960s several research efforts on automated reasoning with uncer-
tainty for diagnostic applications were undertaken [Warner et al., 1961, Gorry & Barnett,
1968, De Dombal et al., 1972]. The systems constructed in this period were based to a
large extent on application of Bayes’ Theorem; in the sequel, we will refer to the approach
taken in these early systems as the naive-Bayesian approach. In this approach, the basic
idea of computing a diagnosis for a set of actually observed pieces of evidence e ⊆ E is
to compute for all sets of hypotheses h ⊆ H the conditional probability Pr(h | e) from
the distribution Pr on the domain at hand, and then select a set h′ ⊆ H with highest
probability. Since for real-life applications the conditional probabilities Pr(e | h) often are
easier to come by than the conditional probabilities Pr(h | e), generally Bayes’ Theorem
is used for computing the required probabilities:

Pr(h | e) =
Pr(e | h) · Pr(h)

Pr(e)

Evidently, this approach is quite expensive from a computational point of view: because a
diagnosis may be composed of several different hypotheses, the number of probabilities to
be computed equals 2n − 1. To overcome this problem of computational time complexity,
a simplifying assumption is made: it is assumed that all hypotheses are mutually exclusive
and collectively exhaustive. With this assumption only the n singleton hypothesis sets {hi}
have to be considered as possible diagnoses. So, only the probabilities Pr(hi | e) (writing
hi instead of {hi}) for all hi ∈ H have to be computed. To this end, once more Bayes’
theorem is used:

Pr(hi | e) =
Pr(e | hi) · Pr(hi)

Pr(e)
=

Pr(e | hi) · Pr(hi)∑n
k=1 Pr(e | hk) · Pr(hk)

For automated application of Bayes’ theorem in this form, several probabilities are required
from the joint probability distribution Pr on the domain at hand. In fact, conditional

1. Introduction 6

probabilities Pr(e | hk), k = 1, . . . , n, for every combination of pieces of evidence e ⊆ E,
have to be available. Apart from the fact that it is hardly likely that these probabilities
will be readily available in a real-life problem domain, this means storing exponentially
many probabilities. To overcome this problem of computational space complexity, a second
simplifying assumption is made: it is assumed that all pieces of evidence are conditionally
independent given any of the hypotheses discerned.

The two simplifying assumptions taken together allow for computing the probabilities
Pr(hi | e) for all hi ∈H given observed evidence e = {ej1 , . . . , ejp}, 1 ≤ p ≤ m, from

Pr(hi | ej1 ∧ · · · ∧ ejp) =
Pr(ej1 ∧ · · · ∧ ejp | hi) · Pr(hi)∑n

k=1 Pr(ej1 ∧ · · · ∧ ejp | hk) · Pr(hk)
=

=
Pr(ej1 | hi) · · ·Pr(ejp | hi) · Pr(hi)∑n

k=1 Pr(ej1 | hk) · · ·Pr(ejp | hk) · Pr(hk)

It will be evident that for any diagnostic problem e now only n− 1 probabilities have to
be computed, and that for this purpose only m ·n conditional probabilities and n−1 prior
ones have to be stored.

Quasi-Probabilistic Reasoning

The systems for automated reasoning with uncertainty constructed in the 1960s were
rather small-scaled: they were devised for clear-cut problem domains with only a small
number of hypotheses and restricted evidence. For these small systems, all probabili-
ties necessary for applying Bayes’ Theorem could be acquired from statistical analysis
of empirical data1. Despite the underlying (over-)simplifying assumptions, these systems
performed considerably well [De Dombal et al., 1974]. Nevertheless, interest in this naive
Bayesian approach to reasoning with uncertainty faded in the late 1960s and early 1970s.
One of the reasons for this decline in interest is that the approach was feasible only
for highly restricted problem domains. For larger or more complex domains, the above-
mentioned simplifying assumptions often were seriously violated, causing degeneration of
system behaviour. In addition, for larger domains the approach inevitably became de-
manding, either computationally or from an assessment point of view.

At this stage, the first diagnostic knowledge-based systems began to emerge from
artificial-intelligence research. These systems mostly use production rules for representing
human (experiential) knowledge in a modular form closely resembling logical implications
— production rules are expressions of the form if 〈condition〉 then 〈conclusion〉. These
so-called rule-based expert systems exhibit ‘intelligent’ reasoning behaviour by employing
a heuristic reasoning algorithm that use the production rules for selective gathering of ev-
idence and for pruning the search space of possible diagnoses. It is this pruning behaviour
that renders the rule-based expert systems capable of dealing with larger and complexer
problem domains than the early naive-Bayesian systems are. The best-known rule-based
expert system developed in the 1970s is the MYCIN system for assisting physicians in the
diagnosis and treatment of bacterial infections [Buchanan & Shortliffe, 1984].

In the context of rule-based expert systems, the naive Bayesian approach to reasoning
with uncertainty is no longer feasible due to the large number of probabilities to be com-
puted. Since in a rule-based system during problem solving the search space of possible
diagnoses is pruned by heuristic as well as probabilistic criteria, it is necessary to compute
probabilities for all intermediate results derived by the production rules in addition to the
probabilities of the separate hypotheses. To allow for efficient computation of all these

1Empirical data were available from (medical) research studies, but not collected or recorded to the
extent we are used to today, and certainly not in digital form!

1. Introduction 7

probabilities, a set of computation rules has been designed. These computation rules pro-
vide for computing the probability of an (intermediate) result from probabilities associated
with the production rules that are used in its derivation; to this end, each production rule
is assigned the conditional probability of its conclusion given its condition. Unfortunately,
these computation rules do not always accord with the axioms of probability theory and
can not even be considered approximation rules for computing probabilities. In the sequel,
we will use the phrase quasi-probabilistic to refer to this approach. The most well-known
illustration of the quasi-probabilistic approach is the certainty-factor model, designed orig-
inally for dealing with uncertainty in the MYCIN system [Shortliffe & Buchanan, 1984].
The certainty-factor model enjoys widespread use in rule-based expert systems built af-
ter MYCIN, even though by now it is widely known that the model is mathematically
flawed. The relative success of the model can however be accounted for by its satisfac-
tory behaviour in most applications and by its conceptual and computational simplicity
[Van der Gaag, 1994].

To Do or Not to Do: Using Probability Theory

Although the quasi-probabilistic approach to reasoning with uncertainty in knowledge-
based systems on the one hand met with considerable success in the artificial-intelligence
community, it was criticised severely on the other hand because of its ad-hoc character.
The incorrectness of the approach from a mathematical point of view even led to a world-
wide debate concerning the appropriateness of probability theory for handling uncertainty
in a knowledge-based context.

The adversaries of probability theory argue that the theory is not expressive enough to
cope with the different kinds of uncertainty that are encountered in real-life problem do-
mains and therefore have to be dealt with in decision-support systems. As a consequence
several other (more or less) mathematical models have been proposed for reasoning with
uncertainty. A major trend in plausible reasoning has arisen from the claim that proba-
bility theory is not able to capture imprecision or vagueness, notions of uncertainty which
are salient in natural language representations. The name of L.A. Zadeh is inseparable
from this trend: he was the first to propose fuzzy set theory as the point of departure
for the development of methods that are able to cope with vague information. Dempster-
Shafer theory lies at the basis of another major trend in plausible reasoning. The theory
was developed by G. Shafer, building on earlier work by A.P. Dempster [Shafer, 1976]. It
was motivated by the observation that probability theory is not able to discern between
uncertainty and ignorance due to incompleteness of information.

The advocates of probability theory, on the other hand, claim that it is provable
that probability theory is the only correct way of dealing with uncertainty and that
anything that can be done with non-probabilistic methods, can be done equally well
using a probability-based method. For this claim often an argument by R.T. Cox is
cited [Cox, 1979]: Cox states a simple set of intuitive properties a measure of uncertainty
has to satisfy and subsequently shows that the basic axioms of probability theory follow.
Here, we will not enter into the debate concerning the appropriateness of probability theory
for reasoning with uncertainty in decision-support systems; for a wide range of diverging
opinions, the reader is referred to [Cheeseman, 1988] with its ensuing discussions.

Probabilistic Reasoning: Luctor et Emergo

Although the above-mentioned debate was not in the least subdued, in the mid-1980s the
probabilistic network framework was introduced as a novel approach to applying probabil-
ity theory for reasoning with uncertainty in knowledge-based systems [Pearl, 1988]. The
probabilistic network framework is characterised by a powerful formalism for representing

1. Introduction 8

domain knowledge and the uncertainties that go with it — more in specific, the formalism
provides for a concise representation of a multi-variate joint probability distribution on
a set of random variables by combining a graph with local conditional probability dis-
tributions over small sets of variables. Associated with this formalism are algorithms for
efficiently computing probabilities of interest and for processing evidence; these algorithms
constitute the basic building blocks for reasoning with knowledge represented in the for-
malism. Probabilistic networks can both be handcrafted, using knowledge of the domain,
and learned from data.

When compared to the naive-Bayesian approach on the one hand and the quasi-
probabilistic approach on the other hand, the probabilistic network approach offers ad-
vantages over both. In contrast with the quasi-probabilistic approach, the probabilistic
network approach has a firm mathematical foundation in probability theory. Contrasting
the naive-Bayesian approach, the probabilistic network approach circumvents the need for
simplifying assumptions by capturing and reasoning about actual independences among
variables.

Focus of this Syllabus

Since the early 2000s, the general family of graph-based probabilistic networks is known
by the phrase Probabilistic Graphical models (PGMs); the family member that assumes
discrete variables and a directed graph is the topic of this syllabus and mostly referred
to as a Bayesian Network2. Since its introduction, the Bayesian network has rapidly
gained in popularity and by now illustrates its worth in complex problem domains: prac-
tical applications have for example been developed for medical diagnosis and progno-
sis [Andreassen et al., 1987, Heckerman et al., 1992, Blanco et al., 2005], information re-
trieval [Bruza & Van der Gaag, 1994], in computer vision [Jensen et al., 1990], forensic
science [Taroni et al., 2006] and various other domains [Pourret, Naim & Marcot, 2008].

Traditionally, Bayesian networks have been used as a probabilistic modelling tool that
allows for modelling and reasoning under uncertainty in a complex problem domain. The
graph associated with a Bayesian network is generally considered to be an intuitive repre-
sentation of the problem domain [Dal et al., 2018, p. 97], facilitating the manual construc-
tion as well as explanation of such a network for a real-life application. Indeed, earlier
applications of Bayesian networks are mostly handcrafted with the help of domain ex-
perts. The increasing availability of large data sets has made it much easier to construct
applications directly from data [Neapolitan, 2003]. Even large data sets, however, usu-
ally do not contain sufficient reliable information to construct reliable networks of general
topology. As a result, network engineers still have to rely on domain expertise to complete
the network [Druzdzel & Van der Gaag, 2000], or accept a less accurate model by resort-
ing to the use of various types of classifier [Friedman et al., 1997]. From the perspective
of explainable AI, classifiers with restricted topology that violates certain independence
properties from the domain are less preferable, even if their performance is acceptable.

With the growing interest in machine learning and data mining, Bayesian networks,
and PGMs more in general, have also become popular as statistical data analysis tool :
learning from data can provide insight in the relations between measured variables. The
Probabilistic Reasoning course for which this syllabus was written has a focus on Bayesian
networks as probabilistic modelling tool. For those interested in their use as statistical
analysis tool, we suggest to consider more data-science or data-mining oriented courses.

This syllabus provides a tutorial introduction to the Bayesian network framework and
highlights the basics of ongoing research in applying the framework for real-life problem

2Other names for Bayesian networks include (Bayesian) belief network, probabilistic network and causal
network.

Exercises 1 9

solving. It is organised as follows. Chapter 2 provides some preliminaries from graph
theory and from probability theory. In Chapter 3, we discuss the representation of prob-
abilistic independence in graphical models. Chapter 4 introduces the Bayesian network
framework: it details the Bayesian network formalism and outlines one of its associated
algorithms. In Chapter 5 we address building Bayesian networks for real-life problem do-
mains. Analysis of and problem solving with Bayesian networks is the topic of Chapter 6.
The syllabus is concluded with some discussion in Chapter 7 and answers to exercises in
Chapter 8.

Exercises

Exercise 1.1

In the naive Bayesian approach a score s = 10 · lnO(h | e) is computed for hypothesis
h given evidence e. Show that from this score the posterior probability Pr(h | e) can be
computed as follows:

Pr(h | e) = 1/
(
1 + e−(s/10)

)
,

where e is Euler’s number: the base of the natural logarithm ln = elog.

Exercise 1.2

Consider a set of n discrete, binary-valued, random variables Vi, i = 1, . . . , n. Assume
you have no knowledge about possible independences among these variables.

a. How many probabilities (or: model parameters) are required to specify the full joint
probability distribution over these n variables?

b. How many of these model parameters are free3?

* c. Suppose you want to compute from the joint distribution a probability over only
m < n variables. How many summations are required for this computation?

3If a discrete distribution requires k model parameters that together sum to one, then k−1 of these are
free in the sense that they can be arbitrarily chosen as long as their sum does not exceed one; the value of
the single remaining model parameter is used to ensure that the total mass becomes one and is therefore
dictated by the values of the other model parameters.

Chapter 2

Preliminaries

In this section, some concepts from graph theory and from probability theory are reviewed.
Our review is tailored to probabilistic graphical models and is not meant to be exhaus-
tive; for further information, any introductory textbooks on graph theory and probability
theory, respectively, will suffice.

Notation To enable unambiguous descriptions of all concepts and theory we require
notations. The literature on probabilistic graphical models uses a variety of notations and
very little conventions. For the material in this syllabus we try to match notations in
the original literature as much as possible, while at the same time using consistent and
contemporary notation. Boxes are used to summarize general properties of notations:

Boldfaced capital letters, e.g. V , are typically used to indicate sets; an element of such
a set is also denoted by an upper case letter, e.g. V ∈ V .

Specific notations can be tracked back to their definition through the index at the back
of this syllabus.

2.1 Graph Theory

Generally two types of graph are discerned: undirected and directed ones.

Definition 2.1.1 An undirected graph G is a pair G = (VG,EG) where VG is a finite set
of vertices (also called nodes) and EG is a set of unordered pairs (Vi, Vj), Vi, Vj ∈ VG,
called edges.

A directed graph, or digraph for short, is a pair G = (VG,AG) where VG is a finite set of
vertices and AG is a set of ordered pairs (Vi, Vj), Vi, Vj ∈ VG, called arcs. An arc (Vi, Vj)
is often written as Vi → Vj or Vj ← Vi.

For a vertex in a graph, different sets of related vertices can be identified.

Definition 2.1.2 In a digraph G, vertex Vj is called a predecessor (or parent) of vertex
Vi if (Vj , Vi) ∈ AG; the set of all predecessors of vertex Vi in G is denoted as ρG(Vi).
Likewise, vertex Vj is called a successor (or child) of vertex Vi if (Vi, Vj) ∈ AG; the set of
all successors of vertex Vi in G is denoted as σG(Vi). The reflexive transitive closure1 of
Vi under the predecessor relation is denoted as ρ∗G(Vi); an element from ρ∗G(Vi) is called
an ancestor of Vi. Similarly, σ∗G(Vi) denotes the descendants of Vi.

1The reflexive closure of set A under r is r0(A) = A, the transitive closure is r+(A) = r(A) ∪ r+(r(A)),
and both combined gives r∗(A) = r0(A) ∪ r+(A).

10

2.1 Graph Theory 11

The set of neighbours of vertex Vi is defined as

νG(Vi) =

{
σG(Vi) ∪ ρG(Vi) if G is directed;
{Vj | (Vi, Vj) ∈ EG} if G is undirected

The size of the neighbour-set of a vertex is called its degree. In case of a vertex in a
digraph, we in addition define the in-degree to be its number of predecessors and the out-
degree to be the number of its successors; the incoming and outgoing arcs together are
called its incident arcs.

We often drop the subscript G from ρG etc. as long as ambiguity cannot occur. The
following definition introduces several types of vertex sequence for undirected graphs.

Definition 2.1.3 Let G = (VG,EG) be an undirected graph. A path from vertex V0 to
vertex Vk in G is a sequence of vertices V0, . . . , Vk, k ≥ 0, with distinct edges (Vi−1, Vi) ∈
EG, i = 1, . . . , k, between them; k is called the length of the path. A path is called simple if
all vertices are distinct. A cycle is a path V0, . . . , Vk, V0 from V0 to V0 of non-zero length.
The graph G is called cyclic if it contains at least one cycle; otherwise, it is called acyclic.

In undirected graphs, self-loops (an edge (V0, V0)) are generally not allowed. The concepts
of path and cycle introduced for undirected graphs directly apply to directed graphs by
considering arcs rather than edges. Unless stated otherwise, we typically assume paths to
be simple.

We now introduce the concept of underlying graph. This concept associates an undi-
rected graph with a directed one. We thereby assume that directed graphs do not contain
self-loops either, although this is not a convention.

Definition 2.1.4 Let G = (VG,AG) be a digraph. The underlying graph H of G is the
undirected graph H = (VH ,EH) where VH = VG and EH is obtained from AG by replacing
each arc (Vi, Vj) ∈ AG by an edge (Vi, Vj).

Related to a digraph’s underlying graph, we introduce two additional types of vertex
sequence for digraphs.

Definition 2.1.5 Let G be a digraph and let H be its underlying graph. A chain from
vertex V0 to vertex Vk in G is a sequence of vertices V0, . . . , Vk, k ≥ 0, that is a path in the
underlying graph H of G; k is called the length of the chain. A loop in G is a sequence
of vertices that is a cycle in the underlying graph H of G.

Note that, in a digraph, the concept of path takes the directions of the arcs into account,
while the concept of chain does not. A digraph is therefore acyclic if it contains no directed
cycles; an acyclic digraph (or DAG) can contain loops, however.

In a directed graph, two vertices may be connected by a chain. If this property holds
for any two vertices in a digraph, we say that the graph is connected.

Definition 2.1.6 A digraph G is connected if there exists at least one chain between any
two vertices in G; otherwise, it is called unconnected.

We have introduced the concept of connectedness to apply to directed graphs; the concept,
however, is easily extended to apply to undirected graphs.

We now distinguish between several types of digraph.

Definition 2.1.7 A digraph G is called singly connected if it does not contain any loops;
otherwise, it is called multiply connected. A singly connected digraph G is called a directed
tree if each vertex in G has at most one predecessor.

2.2 Probability Theory 12

Note that in a singly connected digraph, there is at most one chain between any two
vertices; this property does not hold for multiply connected digraphs.

To conclude, we introduce the concept of a subgraph. The concept is introduced for
undirected graphs, but is extended straightforwardly to apply to digraphs.

Definition 2.1.8 Let G = (VG,EG) be an undirected graph. The subgraph H induced by
V ⊆ VG is the undirected graph H = (V , (V × V) ∩EG).

Note that a subgraph induced by a set of vertices V takes from the original graph all
edges existent among the vertices from V .

2.2 Probability Theory

2.2.1 Set-Theoretic View

In (introductory) literature, probability theory is often approached from a set-theoretic
point of view. Probability distributions are then defined on sets of elements that repre-
sent events. All possible outcomes of an experiment (for example, the possible outcomes
of rolling a die) are given by the sample space Ω and each event A is a subset of Ω. A
probability measure/function/distribution then is a function from events to the [0, 1] in-
terval. As events are sets, combinations of events can be expressed using operations on
sets such as union (∪) and intersection (∩). Outcomes of an experiment are often coded
by using a random variable (also: statistical/ stochastic variable) which is a function from
the sample space to another space (such as reals). By writing probability distributions on
random variables, the notation suppresses references to the actual sample space. However,
as a statement about a random variable defines an event, there is no actual difference.

2.2.2 Algebraic View

In probabilistic graphical models we typically assume domain and range of random vari-
ables to be the same. For a variable V defined on outcomes heads and tails, for example,
we therefore have V (heads) = heads and V (tails) = tails. We now simply say that V can
have or take on one of the values heads and tails, in which case we write V = heads or
V = tails as possible value-assignments. Note that each value-assignment can be seen as
an event that either does or does not occur; alternatively, it can be viewed as a logical
proposition that is either true or false. The PGM community now approaches probability
theory from an algebraic point of view by associating probabilities with logical propositions
instead of with sets.

We use lower case letters to denote outcomes of random variables. A value-assignment
of an outcome to a variable is often abbreviated to just the outcome, if no confusion is
possible. For example, V = heads may be abbreviated to just heads.
An arbitrary value-assignment to variable V is denoted by cV . This notation reflects
that a (joint) value-assignment to one or more variables is often called a configuration.
For a binary-valued variable V , taking on either the value true or the value false, the
two configurations V = true and V = false are typically denoted v and ¬v, respectively.
An arbitrary configuration for a set of variables V is denoted cV .A boldface lower case
v is sometimes used to indicate a specific configuration for the set V .

In this syllabus, we consider a set of random variables V = {V1, . . . , Vn}, n ≥ 1.
For ease of exposition, we will often restrict the discussion to binary-valued variables;
the generalisation to variables with more than two discrete values, however, is rather

2.2 Probability Theory 13

straightforward. The set of variables V may be looked upon as spanning a Boolean algebra
of propositions V. Informally speaking, this algebra comprises all logical propositions that
are built from value assignments to the variables discerned. More formally, the Boolean
algebra of propositions V spanned by V is the set of logical propositions consisting of the
constant propositions True and False2, the atomic proposition vi for all Vi ∈ V , and all
compound propositions that are constructed from these by applying the binary operators
∧ (conjunction), ∨ (disjunction), and the unary operator ¬ (negation); the elements of
the algebra V adhere to the usual axioms of propositional logic.

We now define a joint probability distribution as a function on a Boolean algebra of
propositions that is spanned by a set of random variables.

Definition 2.2.1 Let V be a set of random variables and let V be the Boolean algebra of
propositions spanned by V . Let Pr : V → [0, 1] be a function such that

� Pr(x) ≥ 0, for all x ∈ V, and Pr(False) = 0, more in specific;

� Pr(True) = 1;

� Pr(x ∨ y) = Pr(x) + Pr(y), for all x, y ∈ V such that x ∧ y ≡ False.

Then, Pr is called a joint probability distribution on V . For each x ∈ V, the function
value Pr(x) is termed the probability of x.

A probability Pr(x) for a logical proposition x expresses the amount of certainty concerning
the truth of x. Note that in the previous definition we have indeed associated probabilities
with logical propositions instead of with sets. It can easily be shown, however, that the
probability of an event (a set of outcomes) is equivalent to the probability of the truth of
the proposition asserting the occurrence of the event [Finetti, 1970].

Example 2.2.2 Suppose X and Y are random variables representing a coin toss. Let A
be the event that X = heads and Y = tails then the probability of this event is

• from a set-theoretic point of view: the probability of event A, written Pr(A);

• from an algebraic point of view: the probability that X = heads and Y = tails are both
true propositions, written Pr(X = heads ∧ Y = tails)

If X = heads and Y = tails were considered two separate events A and B, then this would
make no difference from the algebraic point of view, but in the set-theoretic approach we
should now write Pr(A ∩B).

In the sequel, we will want to single out strictly positive joint probability distributions
as these have some interesting properties. Strictly positive distributions for example are
well-known for their not embedding any functional or logical relationships among their
variables.

Definition 2.2.3 Let V be a set of random variables and let V be the Boolean algebra of
propositions spanned by V . Let Pr be a joint probability distribution on V . Pr is strictly
positive if Pr(x) = 0 implies x ≡ False.

We now introduce the concept of conditional probability.

2Note the difference between these propositions and the afore mentioned outcomes/values!

2.2 Probability Theory 14

Definition 2.2.4 Let V be a set of random variables and let V be the Boolean algebra
of propositions spanned by V . Let Pr be a joint probability distribution on V . For each
x, y ∈ V with Pr(y) > 0, the conditional probability of x given y, denoted as Pr(x | y), is
defined as

Pr(x | y) =
Pr(x ∧ y)

Pr(y)

The conditional probability Pr(x | y) expresses the amount of certainty concerning the
truth of x given that the information y is known with certainty. Note that a conditional
probability Pr(x | y) = p does not mean that whenever y is known to be true, the
probability of x equals p: it means that the probability of x equals p if y is known to
be true and nothing else is known that may affect the certainty concerning the truth of
x. In the sequel, we will assume that all conditional probabilities specified are properly
defined, that is, for each conditional probability Pr(x | y), we will implicitly assume that
Pr(y) > 0. We further state without proof that for a given element y ∈ V, the conditional
probabilities Pr(x | y) for all x ∈ V once more constitute a probability distribution on V ;
this probability distribution is called the conditional probability distribution given y and
will sometimes be denoted as Pry. A conditional probability distribution is sometimes
referred to as a posterior probability distribution; the joint probability distribution it is
obtained from then in contrast is referred to as the prior distribution.

The following definition introduces the concept of independence of propositions.

Definition 2.2.5 Let V be a set of random variables and let V be the Boolean algebra of
propositions spanned by V . Let Pr be a joint probability distribution on V . Then, two
propositions x, y ∈ V are called (mutually) independent in Pr if

Pr(x ∧ y) = Pr(x) · Pr(y)

otherwise, x and y are called dependent in Pr. Two propositions x, y ∈ V are called
conditionally independent given the proposition z ∈ V in Pr if

Pr(x ∧ y | z) = Pr(x | z) · Pr(y | z)

otherwise, x and y are called conditionally dependent given z in Pr.

In the sequel, we will make extensive use of various well-known properties of joint
probability distributions. Before stating these properties, we provide some additional
concepts and notational conventions.

Recall that so far we have built on the Boolean algebra of propositions V spanned by
some set of random variables V . In the sequel we will consider propositions from the
Boolean algebra spanned by V without explicitly referring to V. More specifically, we will
typically consider (arbitrary) configurations cV , i.e. conjunctions of value assignments,
to all variables from a set V . Rather than describing a joint probability distribution on
V in terms of Pr(x) for any proposition x ∈ V, we write Pr(V) to denote the collection
of probabilities Pr(cV). In this notation, the upper case letter V is used as a template
to represent all possible configurations; the distinction between e.g. a set and a template
should be clear from the context. Any statement involving a configuration template V
is thus taken to hold for any configuration cV . If a configuration cV concerns the empty
set V = ∅, then—by convention—cV ≡ True (no restrictions, anything is possible).

2.2 Probability Theory 15

Example 2.2.6 Consider the set of two binary-valued random variables V = {X,Y }.
The joint probability distribution on V is written as Pr(V), or Pr(X ∧ Y) where V and
X ∧ Y are actually templates that represent all 4 possible configurations cV ≡ cX ∧ cY :
x ∧ y, x ∧ ¬y, ¬x ∧ y and ¬x ∧ ¬y. The joint distributions are completely defined by
the probabilities Pr(cV) = Pr(cX ∧ cY). Let v ≡ x ∧ ¬y be a specific configuration, then
Pr(v) = Pr(x ∧ ¬y).

The conditional distribution on X given Y = false is written as Pr(X | ¬y) where
again X is a template representing the two configurations cX . Pr(X | Y) indicates a set
of conditional distributions on X: one for each configuration cY of Y .

We now state the various properties that we will use in the sequel. We would like to
note that in the literature on probability theory these properties are introduced in many
different appearances; we have chosen the form that suits our purposes best. The property
stated in the following proposition is known as the chain rule.

Proposition 2.2.7 Let V = {V1, . . . , Vn}, n ≥ 1, be a set of random variables and let Pr
be a joint probability distribution on V . Then,

Pr(V) = Pr(V1 ∧ · · · ∧ Vn) = Pr(Vn | V1 ∧ · · · ∧ Vn−1) · . . . · Pr(V2 | V1) · Pr(V1)

Note that the expression stated in the previous proposition actually uses the afore-mentioned
template notation to capture a whole collection of equalities: the conjunctions only form
proper propositions once the variables are assigned a value (V1 ∧ V2 is not a proposition
since V1 and V2 are not propositions, but V1 = red ∧ V2 = yellow is). For example, if all
variables are binary-valued, the expression represents 2n equalities, one for each configu-
ration of the set of variables V .

The property stated in the following proposition is termed the marginalisation property.

Proposition 2.2.8 Let V be a set of random variables and let Pr be a joint probability
distribution on V . Then,

Pr(X) =
∑
cY

Pr(X ∧ cY)

for all sets of variables X,Y ⊆ V .

We state without proof that for any set of variables X ⊆ V , the probabilities Pr(cX)
for all configurations cX of X once more constitute a joint probability distribution; this
probability distribution is termed the marginal probability distribution on X.

The conditioning property is stated in the following proposition.

Proposition 2.2.9 Let V be a set of random variables and let Pr be a joint probability
distribution on V . Then,

Pr(X) =
∑
cY

Pr(X | cY) · Pr(cY)

for all sets of variables X,Y ⊆ V .

The following theorem is known as Bayes’ Theorem or Bayes’ rule.

Theorem 2.2.10 Let V be a set of random variables and let Pr be a joint probability
distribution on V . Then,

Pr(X | Y ∧Z) =
Pr(Y |X ∧Z) · Pr(X | Z)

Pr(Y | Z)

for all sets of variables X,Y ,Z ⊆ V .

Exercises 2 16

Note that Bayes’ theorem simplifies to the following for Z = ∅:

Pr(X | Y) =
Pr(Y |X) · Pr(X)

Pr(Y)

To conclude this section, we once more turn to the concept of (conditional) inde-
pendence. Recall that so far we have taken the concept of independence to apply to
propositions. We now introduce the concept of independence of variables.

Definition 2.2.11 Let V be a set of random variables and let X,Y ,Z ⊆ V . Let Pr be
a joint probability distribution on V . Then, the set of variables X is called conditionally
independent of the set of variables Y given the set of variables Z in Pr if

Pr(X | Y ∧Z) = Pr(X | Z)

otherwise, X is called conditionally dependent of Y given Z in Pr.

In qualitative terms, the expression Pr(X | Y ∧ Z) = Pr(X | Z) indicates that, once
information about Z is available, information about Y is irrelevant with respect to X.
Note that forX and Y to be independent given Z, every pair of configurations ofX and Y
has to be independent given every configuration of Z. Independence of variables therefore
implies independence of propositions. The reverse property, however, does not hold in
general. Also note that the expression from Definition 2.2.11 is asymmetric in X and Y .
Using Bayes’ Theorem, however, it is easily shown that Pr(X | Y ∧ Z) = Pr(X | Z)
implies Pr(Y |X ∧Z) = Pr(Y | Z).

Exercises

Exercise 2.1

For this exercise, consider the definition of a joint probability distribution (Definition 2.2.1).
In addition, consider a binary-valued random variable V with configurations v and ¬v, re-
spectively.

a. Prove that for x ≡ v and y ≡ ¬v the third bullet of the definition follows from the
well-known inclusion/exclusion rule:

Pr(x ∨ y) = Pr(x) + Pr(y)− Pr(x ∧ y)

Note: the inclusion/exclusion rule for the disjunction of 3 propositions equals

Pr(x∨y∨z) = Pr(x)+Pr(y)+Pr(z)−Pr(x∧y)−Pr(x∧z)−Pr(y∧z)+Pr(x∧y∧z)

For n propositions this quickly leads to a combinatorial explosion [Comtet, 1974].

b. Prove that the following property follows from the definition of a joint probability
distribution:

Pr(v) + Pr(¬v) = 1

Exercises 2 17

* Exercise 2.2

Consider a set V of random variables Vi and let E ⊂ V . Match the following notations
with their correct semantics:

a. Pr(vi) I. marginal (’prior’) probability
b. Pr(V) II. conditional (’posterior’) probability
c. Pr(Vi) III. joint probability
d. Pr(v) IV. marginal probability distribution
e. Pr(vi | e) V. conditional probability distribution
f. Pr(Vi | e) VI. joint probability distribution
g. Pr(V | E) VII. set of conditional probability distributions

*Exercise 2.3

Prove the following properties for any joint probability distribution, using only definitions
and not the properties from this exercise:

a. the chain rule (stated in Proposition 2.2.7);

b. Bayes’ Theorem (stated in Theorem 2.2.10);

c. the marginalisation property (stated in Proposition 2.2.8);

d. the conditioning property (stated in Proposition 2.2.9).

Hint: all properties are defined in template form; you can prove them in terms of config-
urations for the variables as long as the configurations can be considered arbitrary.

*Exercise 2.4

Let V be a set of random variables and let Pr be a joint probability distribution on V .
Show that

Pr(X ∨ Y) = Pr(X) + Pr(Y)− Pr(X ∧ Y)

for all sets of variables X,Y ⊆ V .

*Exercise 2.5

Let V be a set of random variables and let Pr be a joint probability distribution on V .
Show that

Pr(X | Z) =
∑
cY

Pr(X | cY ∧Z) · Pr(cY | Z)

for all sets of variables X,Y ,Z ⊆ V .

* Exercise 2.6

Let V be a set of random variables and let X,Y ,Z ⊆ V . Let Pr be a joint probability
distribution on V . Show that the set of variables X is conditionally independent of the
set of variables Y given the set of variables Z if and only if Pr(X ∧ Y | Z) = Pr(X |
Z) · Pr(Y | Z) and Pr(Y ∧Z) > 0.

Part I

PGMs: definition and inference

18

Chapter 3

Independences and Graphical
Representations

The historical background to the framework of Bayesian networks shows various attempts
to handle the computational complexity of applying probability theory for reasoning with
uncertainty in knowledge-based systems. The concept of (conditional) independence plays
a key role in these attempts as knowledge about independences allows for simplifying
computations. In this chapter, we address formalisms that allow for a concise represen-
tation of an independence relation for effective use in a decision-support system. Current
research into independence relations (beyond the scope of this syllabus) is focussed on
defining small generating sets [Waal & Van der Gaag, 2005, Bolt & Van der Gaag, 2019],
efficient closure computations [Van der Gaag et al., 2018], and on automated construction
of graphical representations from them [Baioletti et al., 2011].

3.1 The Concept of Independence Revisited

In most introductory literature on probability theory, the concept of (conditional) in-
dependence is introduced in terms of numerical quantities: the independence relation
of a joint probability distribution is taken to be implicitly embedded in the probabil-
ities involved. Recall for example that in the previous chapter we have defined two
sets of variables X and Y to be conditionally independent given a third set of vari-
ables Z if Pr(X | Y ∧ Z) = Pr(X | Z). A definition of independence in terms of
numbers suggests that, in order to determine whether two sets of variables are (condi-
tionally) independent, several conditional probabilities have to be computed and several
equalities have to be tested; moreover, such a definition suggests that for determining
independence a joint probability distribution has to be explicitly available for the vari-
ables discerned. In contrast, humans tend to be able to state directly, with conviction
and consistency, whether or not two sets of variables are independent. Such statements
of independence typically are issued qualitatively, without any reference to numerical
manipulation of exact probabilities. Based on these observations, we cannot but con-
clude that the concept of independence is far more basic to human reasoning than its
numerical definition suggests. In fact, the definition of independence in terms of proba-
bilities may be looked upon as a quantitative way of capturing the basic concept which
is qualitative in nature. To formalise properties of the qualitative concept of indepen-
dence, J. Pearl and his co-researchers have designed an axiomatic system for independence
[Pearl & Paz, 1985, Pearl & Verma, 1987, Geiger & Pearl, 1988]. In this section, we re-
view this axiomatic system.

19

3.1 The Concept of Independence Revisited 20

3.1.1 Pearl’s Axiomatic System for Independence

We begin our review of Pearl’s axiomatic system for independence by introducing some
new terminology and notational convention.

Definition 3.1.1 Let V be a set of random variables and let Pr be a joint probability
distribution on V . Then, the independence relation I Pr ⊆ P(V) × P(V) × P(V) of Pr
is defined by (X,Z,Y) ∈ I Pr if and only if Pr(X | Y ∧ Z) = Pr(X | Z) for all sets of
variables X,Y ,Z ⊆ V .

In the sequel, we will write I Pr(X,Z,Y) to denote (X,Z,Y) ∈ I Pr and ¬I Pr(X,Z,Y)
to denote (X,Z,Y) 6∈ I Pr. A statement I Pr(X,Z,Y) of a joint probability distribution’s
independence relation I Pr is termed an independence statement . In qualitative terms, an
independence statement I Pr(X,Z,Y) expresses that in the context of information about
Z, information about Y is irrelevant with respect to X. The above definition allows for
stating some trivial but convenient independence statements, such as I Pr(X,X,Y), which
holds iff Pr(X | Y ∧X) = Pr(X | X), i.e. 1 = 1; its symmetric version I Pr(Y ,X,X) is
also trivially true since I Pr(Y ,X,X) iff Pr(Y |X ∧X) = Pr(Y |X).

In designing his axiomatic system for independence, Pearl builds on a set of properties
that are satisfied by any joint probability distribution’s independence relation; Theo-
rem 3.1.2 reviews these properties.

Theorem 3.1.2 Let V be a set of random variables. Let Pr be a joint probability distri-
bution on V and let I Pr be its independence relation. Then, I Pr satisfies the properties

� I Pr(X,Z,Y)→ I Pr(Y ,Z,X); (symmetry)

� I Pr(X,Z,Y ∪W)→ I Pr(X,Z,Y) ∧ I Pr(X,Z,W); (decomposition)

� I Pr(X,Z,Y ∪W)→ I Pr(X,Z ∪W ,Y); (weak union)

� I Pr(X,Z,Y) ∧ I Pr(X,Z ∪ Y ,W)→ I Pr(X,Z,Y ∪W); (contraction)

for all mutually disjoint sets of variables X,Y ,Z,W ⊆ V . If the distribution Pr is
strictly positive, then I Pr satisfies the additional property

� I Pr(X,Z ∪W ,Y) ∧ I Pr(X,Z ∪ Y ,W)→ I Pr(X,Z,Y ∪W); (intersection)

for all mutually disjoint sets of variables X,Y ,Z,W ⊆ V .

The properties stated in the previous theorem are easily verified from the basic ax-
ioms of probability theory. We would like to note that we have closely followed Pearl
by stating the properties in the theorem to hold for mutually disjoint sets of variables
only [Pearl, 1988]. These properties, however, also hold for overlapping sets of vari-
ables [Van der Gaag & Meyer, 1998], as well as empty sets. Moreover, it can be easily
shown that the symmetry, contraction and intersection properties can actually be stated
as a bi-implication (↔). The opposite of decomposition, called the composition property,
I Pr(X,Z,Y) ∧ I Pr(X,Z,W) → I Pr(X,Z,Y ∪W) is satisfied by many independence
relations I Pr, but not all [Gasse & Aussem, 2016].

Pearl now takes the properties stated in Theorem 3.1.2 as axioms for the qualitative
concept of independence [Pearl, 1988]. Following the properties for IPr, Pearl assumed for
each axiom that the sets of variables involved are mutually disjoint. Given the insight
that the properties also hold for overlapping sets, we will lift the assumption of mutual
disjointness in the next and all following definitions involving independence relations. The
following now defines informational independence:

3.1 The Concept of Independence Revisited 21

Definition 3.1.3 Let V be a set of random variables. A semi-graphoid independence
relation on V is a ternary relation I ⊆ P(V) × P(V) × P(V) such that I satisfies the
properties

� I(X,Z,Y)→ I(Y ,Z,X);

� I(X,Z,Y ∪W)→ I(X,Z,Y) ∧ I(X,Z,W);

� I(X,Z,Y ∪W)→ I(X,Z ∪W ,Y);

� I(X,Z,Y) ∧ I(X,Z ∪ Y ,W)→ I(X,Z,Y ∪W);

for all sets of variables X,Y ,Z,W ⊆ V . A graphoid independence relation I on V is a
semi-graphoid independence relation on V such that I satisfies the additional property

� I(X,Z ∪W ,Y) ∧ I(X,Z ∪ Y ,W)→ I(X,Z,Y ∪W);

for all sets of variables X,Y ,Z,W ⊆ V .

The properties described in the previous definition with each other convey the idea that
learning irrelevant information does not alter the independences among the variables dis-
cerned [Pearl, 1988]. We consider the qualitative meanings of the various properties sep-
arately.

The property

I(X,Z,Y)→ I(Y ,Z,X)

for all sets of variables X,Y ,Z ⊆ V , states that if information about Y is deemed
irrelevant with respect to X in the context of some information about Z, then information
about X must be irrelevant with respect to Y in this context; this property is called the
symmetry axiom.

The property

I(X,Z,Y ∪W)→ I(X,Z,Y) ∧ I(X,Z,W)

for all sets of variables X,Y ,Z,W ⊆ V , asserts that if information about both Y and W
is judged irrelevant with respect to X, then both information about Y and information
about W must be irrelevant with respect to X separately; this property is known as
the decomposition axiom. We would like to note that the decomposition axiom may be
reformulated as I(X,Z,Y ∪W)→ I(X,Z,Y); we have chosen, however, to use Pearl’s
original formulation because it conveys the idea of decomposition more clearly.

The property

I(X,Z,Y ∪W)→ I(X,Z ∪W ,Y)

for all sets of variables X,Y ,Z,W ⊆ V , states that learning information about W that
is known to be irrelevant with respect to X cannot help irrelevant information about Y
to become relevant with respect to X; this property is known as the weak union axiom.

The property

I(X,Z,Y) ∧ I(X,Z ∪ Y ,W)→ I(X,Z,Y ∪W)

for all sets of variables X,Y ,Z,W ⊆ V , states that if we judge information about W to
be irrelevant with respect to X after learning some irrelevant information about Y , then
the information about W must have been irrelevant with respect to X before we learned
Y ; this property is known as the contraction axiom. Note that the contraction axiom

3.1 The Concept of Independence Revisited 22

can be reformulated as I(X,Z,Y)→ (I(X,Z ∪ Y ,W)→ I(X,Z,Y ∪W)). From this
reformulation, it is seen that the axiom can be looked upon as a conditional reverse of the
weak union axiom.

We now consider the property

I(X,Z ∪W ,Y) ∧ I(X,Z ∪ Y ,W)→ I(X,Z,Y ∪W)

for all sets of variables X,Y ,Z,W ⊆ V , for graphoid independence relations. This
property states that if, in the context of some information about Z, learning information
about W renders information about Y irrelevant with respect to X and learning Y
renders W irrelevant with respect to X, then the information about both Y and W must
be irrelevant with respect to X given Z; this property is known as the intersection axiom.

From Definition 3.1.3 and Theorem 3.1.2, we observe that every independence rela-
tion that is embedded in a joint probability distribution is a semi-graphoid independence
relation; this property is stated more formally in the following corollary.

Corollary 3.1.4 Let V be a set of random variables. Let Pr be a joint probability dis-
tribution on V and let I Pr be its independence relation. Then, I Pr is a semi-graphoid
independence relation. Furthermore, if Pr is strictly positive, then I Pr is a graphoid inde-
pendence relation.

Unfortunately, although any probability distribution’s independence relation is a semi-
graphoid independence relation, the reverse property does not hold. There exist semi-
graphoid independence relations for which there do not exist joint probability distributions
embedding them; for details, we refer to [Van der Gaag & Meyer, 1996, Studený, 1989].
We would like to note that it has been shown that a finite axiomatisation of the concept
of probabilistic independence does not exist [Studený, 1992].

3.1.2 Properties of Independence Relations

Using the definition of informational independence, we derive some convenient properties
of (semi-graphoid and graphoid) independence relations. The following lemma shows that
the symmetry and contraction axioms are easily generalised to bi-implications.

Lemma 3.1.5 Let V be a set of random variables. Furthermore, let I be a semi-graphoid
independence relation on V . Then,

� I(X,Z,Y)↔ I(Y ,Z,X);

� I(X,Z,Y) ∧ I(X,Z ∪ Y ,W)↔ I(X,Z,Y ∪W);

for all sets of variables X,Y ,Z,W ⊆ V .

Proof. We begin our proof by observing that since I is a semi-graphoid independence
relation, it obeys the first four axioms stated in Definition 3.1.3. The first property stated
in the lemma now follows directly from the symmetry axiom. For the second property,
we observe that I(X,Z,Y) ∧ I(X,Z ∪ Y ,W) → I(X,Z,Y ∪W) coincides with the
contraction axiom and therefore trivially holds for the relation I. We will now prove that
I(X,Z,Y ∪W)→ I(X,Z,Y) ∧ I(X,Z ∪ Y ,W). We have

I(X,Z,Y ∪W) ⇒ I(X,Z,Y) ∧ I(X,Z,W) ⇒ I(X,Z,Y)

by the decomposition axiom. In addition, we have

I(X,Z,Y ∪W) ⇒ I(X,Z ∪ Y ,W)

3.2 Graphical Representations of Independence 23

by weak union. The property stated in the lemma now follows directly. �

For graphoid independence relations we have that the intersection axiom can also be
generalised to a bi-implication.

Lemma 3.1.6 Let V be a set of random variables. Furthermore, let I be a graphoid
independence relation on V . Then,

I(X,Z ∪W ,Y) ∧ I(X,Z ∪ Y ,W)↔ I(X,Z,Y ∪W)

for all sets of variables X,Y ,Z,W ⊆ V .

Proof. We will only prove that I(X,Z,Y ∪W)→ I(X,Z ∪W ,Y) ∧ I(X,Z ∪ Y ,W);
the reverse property coincides with the intersection axiom and therefore trivially holds for
the independence relation I. We have

I(X,Z,Y ∪W)⇒ I(X,Z ∪W ,Y)

and

I(X,Z,Y ∪W)⇒ I(X,Z ∪ Y ,W)

by the weak union axiom. The property stated in the lemma now follows directly. �

In the sequel, we will use the phrase independence relation to denote a semi-graphoid
independence relation, unless stated otherwise.

3.2 Graphical Representations of Independence

One of the problems in applying probability theory for automated reasoning with un-
certainty in a knowledge-based system is the space complexity of representing a joint
probability distribution. Since the concept of independence plays a key role in solving this
problem, a formalism for representing joint probability distributions should allow for effi-
ciently modelling independences. There are various ways of representing an independence
relation. One way, for example, is to enumerate the separate statements of an indepen-
dence relation explicitly. Such a representation clearly is impractical as the number of
tuples in an independence relation can be astronomical. Another way is to make use of
the axioms from Definition 3.1.3: only the statements from an appropriate subset of the
independence relation are enumerated explicitly and all its other statements are defined
implicitly by this set and the defining axioms. Although exploiting the axioms allows for a
far more economical representation of an independence relation than explicit enumeration,
it can still require exponential space.

In this section, we consider more concise representations of independence relations,
building on the idea of graphical encoding, in which graphs are used as a language for com-
municating probabilistic independence statements. Graphs have no probabilistic meaning
by themselves. For representing an independence relation in a graph, therefore, a proba-
bilistic meaning has to be assigned to the topological properties of such a graph, that is,
we have to assign a probabilistic meaning to both the vertices of the graph and to its arcs
or edges. To this end we will model the variables of the independence relation as vertices
in the graph and use the connection between vertices to describe the independence state-
ments. In Section 3.2.1 we address modelling an independence relation in an undirected
graph; in Section 3.2.2 we consider encoding an independence relation in the formalism of
directed graphs.

3.2 Graphical Representations of Independence 24

3.2.1 Undirected Graphs

To formally capture the probabilistic meaning of an undirected graph, we begin by defining
a graphical criterion for reading sets of vertices from a graph that allow for blocking all
paths between two given sets of vertices; this graphical criterion is termed the separation
criterion for undirected graphs.

Definition 3.2.1 Let G = (VG,EG) be an undirected graph. Let X,Y ,Z ⊆ VG be sets
of vertices in G. The set of vertices Z is said to separate the sets of vertices X and Y
in G, denoted as 〈X |Z |Y 〉G, if for each vertex Vi ∈ X and each vertex Vj ∈ Y every
simple path from Vi to Vj in G contains at least one vertex from Z.

We look upon a separating set as effectively blocking influence: if a set of variables Z
separates two sets of variables X and Y , then Z is blocking any flow of information or
influence between X and Y .

The relation between the graphical notion of separation in undirected graphs and its
probabilistic meaning is given by the following definition.

Definition 3.2.2 Let V be a set of random variables and let I be an independence relation
on V . Furthermore, let G = (VG,EG) be an undirected graph with VG = V . Then,

� the graph G is called an undirected dependence map, or D-map for short, for I, if
for all sets of variables X,Y ,Z ⊆ V , we have: if I(X,Z,Y) then 〈X |Z |Y 〉G;

� the graph G is called an undirected independence map, or I-map for short, for I, if
for all sets of variables X,Y ,Z ⊆ V , we have: if 〈X |Z |Y 〉G then I(X,Z,Y);

� the graph G is called an undirected perfect map, or P-map for short, for I, if G is
both an undirected D-map and an undirected I-map for I.

From the previous definition we have that the ’language’ of undirected graphs is not nec-
essarily apt to faithfully describe an independence relation: only an undirected P-map
can perfectly encode such a relation. In an undirected D-map any pair of neighbour-
ing vertices represents a pair of variables that are dependent; however, not every pair of
dependent variables needs be represented as a pair of neighbouring vertices. In an undi-
rected D-map, therefore, a pair of non-neighbouring vertices may represent either a pair
of dependent variables or a pair of (conditionally) independent variables.

V1

V2

V4

V3

(a) Example D-map

V1

V2

V4

V3

(b) Example I-map

V1

V2

V4

V3

(c) P-map

Figure 3.1: Undirected graph encodings for the independence relation from Example 3.2.3.

Example 3.2.3 Let V = {V1, V2, V3, V4} be a set of random variables. We consider the in-
dependence relation I on V defined by the independence statements I({V1}, {V2, V3}, {V4})
and I({V2}, {V1, V4}, {V3}). The undirected graph G shown in Figure 3.1a is an exam-
ple of an undirected D-map for I, since for each independence statement I(X,Z,Y),

3.2 Graphical Representations of Independence 25

X,Y ,Z ⊆ V , from the relation I, there exists a matching separation statement 〈X |Z |
Y 〉G. For example, for the independence statement I({V1}, {V2, V3}, {V4}) we find that
the only path from V1 to V4 comprises the vertex V2 which is included in the set {V2, V3},
that is, 〈{V1}|{V2, V3}|{V4}〉G. �

In an undirected I-map, any pair of non-neighbouring vertices represents a pair of variables
that are (conditionally) independent; however, not every pair of (conditionally) indepen-
dent variables is represented as a pair of non-neighbouring vertices. In an undirected
I-map, therefore, a pair of neighbouring vertices may represent either a pair of dependent
variables or a pair of independent variables.

Example 3.2.4 Consider once more the independence relation I from Example 3.2.3.
The graph G shown in Figure 3.1b is an example of an undirected I-map for the relation
I, since for each separation statement 〈X |Z | Y 〉G, X,Y ,Z ⊆ V , read from G, there
exists a matching independence statement I(X,Z,Y): for the single separation statement
〈{V2}|{V1, V4}|{V3}〉G read from the graph, we find the statement I({V2}, {V1, V4}, {V3})
in the relation I. �

An undirected P-map for an independence relation faithfully represents all independences
as well as all dependences from the relation.

Example 3.2.5 Consider once more the independence relation I from Example 3.2.3.
The graph G shown in Figure 3.1c is the only undirected P-map for G. Note that G is an
undirected D-map for I as well as an undirected I-map for I. �

From the above observations, we conclude that the various types of map provide for reading
different types of probabilistic information from an undirected graph. If the graph is an
undirected I-map for an independence relation, we can read independence statements
from it as any separation statement is guaranteed to correspond with an independence
statement; from an undirected D-map we can read dependence statements, and from an
undirected P-map we can read both independence and dependence statements.

We now investigate the expressive power of the formalism of undirected graphs for
representing independence relations.

Lemma 3.2.6 For every independence relation, there exist an undirected D-map and an
undirected I-map.

Proof. We first show that for every independence relation there exists an undirected D-
map. To this end, we show that the edgeless undirected graph G = (V ,∅) is an undirected
D-map for any independence relation I on the set of variables V . Since the graph G is
edgeless, we have that the property: if I(X,Z,Y) then 〈X |Z |Y 〉G, trivially holds for
all sets of variables X,Y ,Z ⊆ V . Informally speaking, as the graph G does not represent
any dependences, it cannot represent any dependence incorrectly.

We now show that for every independence relation there exists an undirected I-map.
To this end, we show that the complete undirected graph G′ = (V ,V ×V) is an undirected
I-map for any independence relation I on V . Since in this graph every pair of vertices
is connected by an edge, we have that the property: if 〈X | Z | Y 〉G then I(X,Z,Y),
trivially holds for all sets of variables X,Y ,Z ⊆ V . Informally speaking, as the graph G′

does not represent any independences, it cannot represent any independence incorrectly.
�

From the previous lemma, we have that every independence relation has an undirected

3.2 Graphical Representations of Independence 26

D-map and an undirected I-map; in fact, an independence relation may have several undi-
rected D-maps and I-maps. Unfortunately, a similar property does not hold for undirected
P-maps: not every independence relation has an undirected P-map.

Example 3.2.7 Consider an independence relation I on a set of variables V such that
I(X,Z1,Y) for some sets of variables X,Y ,Z1 ⊆ V and ¬I(X,Z1 ∪ Z2,Y) for some
set Z2 ⊆ V with Z2 6= ∅ and X,Y ,Z1,Z2 are disjoint. The independence relation I
is an example of an independence relation comprising an induced dependence: the sets of
variables X and Y are independent given Z1, but become dependent if information about
Z2 becomes available. Now, for any undirected graph G to be an undirected P-map for
this independence relation I, it should be an undirected D-map as well as an undirected
I-map for I. For G to be an undirected D-map for I, it should display the set Z1 as
a separating set for X and Y ; on the other hand, for G to be an undirected I-map, it
should display Z1 ∪ Z2 as not separating X and Y . We observe, however, that for any
undirected graph G the property: if 〈X | Z1 | Y 〉G then 〈X | Z1 ∪ Z2 | Y 〉G holds by
definition. More in general, if two sets of vertices X and Y are separated by a third set
of vertices Z in an undirected graph G, then X and Y are separated by any superset of
Z in G as well. From this observation, it will be evident that no undirected graph can
satisfy the two requirements mentioned above simultaneously and, hence, that there does
not exist an undirected P-map for I. �

Although not every independence relation has an undirected P-map, there are indepen-
dence relations that can indeed be represented faithfully. An independence relation for
which an undirected P-map exists is termed undirected graph-isomorphic.

Definition 3.2.8 An independence relation I is said to be undirected graph-isomorphic
if there exists an undirected graph G such that G is an undirected P-map for I.

We would like to note that, if an independence relation is undirected graph-isomorphic,
then it allows one and only one undirected P-map. To conclude, we would like to mention
that a necessary and sufficient condition has been identified for an independence relation
to be undirected graph-isomorphic [Pearl, 1988]; this condition allows for testing whether
a given independence relation lends itself to representation in an undirected graph. Here,
we will not elaborate any further on this observation.

3.2.2 Directed Graphs

In the previous section, we have addressed the representation of an independence relation
in the formalism of undirected graphs. We have seen that not every independence relation
can be represented faithfully in this formalism. In this section, we investigate the formalism
of directed graphs (digraphs) with its increased expressive power as a language for encoding
independence relations; we will consider acyclic digraphs only.

Just like undirected graphs, do directed graphs not have a probabilistic meaning by
themselves and therefore have to be assigned one. For this purpose, we will formulate
a graphical criterion similar to the separation criterion for undirected graphs. For di-
graphs, this criterion is called the d-separation criterion. Before defining this criterion,
however, we introduce the concept of blocking influence among variables. The definition
provided here is an enhancement of the original definition by Pearl, based upon subsequent
insights [Van der Gaag & Meyer, 1998].

Definition 3.2.9 Let G = (VG,AG) be an acyclic digraph and let s be a chain in G
between Vi ∈ VG and Vj ∈ VG. The chain s is blocked by a (possibly empty) set of vertices
W ⊆ VG if Vi ∈W or Vj ∈W , or s contains three consecutive vertices X1, X2, X3, for
which (at least) one of the following conditions hold:

3.2 Graphical Representations of Independence 27

a. arcs (X2, X1) and (X2, X3) are on the chain s, and X2 ∈W ;

b. arcs (X1, X2) and (X2, X3) are on the chain s, and X2 ∈W ;

c. arcs (X1, X2) and (X3, X2) are on the chain s, and σ∗G(X2) ∩W = ∅.

In defining the concept of a blocked chain, we have distinguished three graphical conditions.
Figure 3.2 serves as a reference for these conditions; in the two chains representing the
conditions a. and b., vertex X2 is drawn with shading to indicate that it is comprised in
the blocking set W for the chain at hand.

X1 X2 X3Condition a.

X1 X2 X3Condition b.

X1 X2 X3Condition c.

Figure 3.2: Chain Blocking; Shaded Vertices are Members of Blocking-set W .

Building on the concept of blocking of single chains, we now define the d-separation
criterion for reading from a digraph sets of vertices that allow for blocking all chains
between two given sets of vertices.

Definition 3.2.10 Let G = (VG,AG) be an acyclic digraph. Let X,Y ,Z ⊆ VG be sets of
vertices in G. The set of vertices Z is said to d-separate the sets of vertices X and Y in
G, denoted as 〈X |Z |Y 〉dG, if for each vertex Vi ∈X and each vertex Vj ∈ Y every chain
from Vi to Vj in G is blocked by Z.

We would like to note that in assigning a meaning to the topological properties of a directed
graph, we want to distinguish between conditional independences and dependences, that
is, between two alternatives only. The formalism of directed graphs, however, allows for
distinguishing between three alternatives since there are three different ways in which two
arcs between three vertices can be directed (up to renaming of vertices). This observation
accounts for two conditions of the concept of blocking having been assigned the same
meaning; these are the first two conditions depicted in Figure 3.2. Note that the third
condition models an induced dependence.

The following definition now relates the d-separation criterion to the concept of inde-
pendence.

Definition 3.2.11 Let V be a set of random variables and let I be an independence
relation on V . Furthermore, let G = (VG,AG) be an acyclic digraph with VG = V . Then,

� the graph G is called a directed dependence map, or D-map for short, for I, if for
all sets of variables X,Y ,Z ⊆ V , we have: if I(X,Z,Y) then 〈X |Z |Y 〉dG;

� the graph G is called a directed independence map, or I-map for short, for I, if for
all sets of variables X,Y ,Z ⊆ V , we have: if 〈X |Z |Y 〉dG then I(X,Z,Y);

� the graph G is called a directed perfect map, or P-map for short, for I, if G is both
a directed D-map and a directed I-map for I.

3.2 Graphical Representations of Independence 28

An efficient algorithm exists that identifies d-separation properties represented in
a directed graph in time O(|AG|) [Geiger et al., 1990]. A more intuitively appealing
method for identifying d-separation properties is known by the name of ‘Bayes-Ball’
(see [Shachter, 1998], Algorithm 2); the associated algorithm (Algorithm 3) identifies dif-
ferent sets of vertices—that allow for establishing more than just d-separation properties
from a Bayesian network—in O(|AG|+ |VG|) time.

The previous definition suggests that the ’language’ of directed graphs is also not
necessarily apt to faithfully represent an independence relation: in addition to P-maps,
D-maps and I-maps exist. The different types of directed map have the same meaning as
the different types of undirected map we discerned in Section 3.2.1. In a directed D-map
for an independence relation, any pair of neighbouring vertices again represents a pair of
dependent variables; however, not every pair of dependent variables needs be represented
as a pair of neighbouring vertices.

V1

V3

V2

V4

(a) Example D-map

V1

V3

V2

V4

(b) Example I-map

V1

V3

V2

V4

(c) P-map

Figure 3.3: Directed graph encodings for the independence relation from Example 3.2.12.

Example 3.2.12 Let V = {V1, V2, V3, V3} be a set of random variables and consider the
independence relation I on V that is defined by the independence statements I({V1},∅, {V2})
and I({V1, V2}, {V3}, {V4}). The digraph G shown in Figure 3.3a is an example of a di-
rected D-map for I, since for each independence statement I(X,Z,Y), X,Y ,Z ⊆ V ,
from the relation I, there exists a matching d-separation statement 〈X | Z | Y 〉dG. For
example, for the independence statement I({V1},∅, {V2}), we find that 〈{V1} |∅ | {V2}〉dG
as there does not exist any chain between the vertices V1 and V2 in G. �

In a directed I-map, any pair of non-neighbouring vertices once more represents a pair of
variables that are (conditionally) independent; however, not every pair of (conditionally)
independent variables is represented as a pair of non-neighbouring vertices.

Example 3.2.13 Consider once more the independence relation I from Example 3.2.12.
The digraph G shown in Figure 3.3b is an example of a directed I-map for the relation
I, since for each d-separation statement 〈X | Z | Y 〉dG, X,Y ,Z ⊆ V , read from G,
there exists a matching independence statement I(X,Z,Y) in I. For example, for the
d-separation statement 〈{V1}|{V3}|{V4}〉dG read from the digraph, we find the statement
I({V1}, {V3}, {V4}) in the independence relation. �

A directed P-map for an independence relation once more faithfully captures all indepen-
dences and dependences from the relation.

Example 3.2.14 Consider once more the independence relation I from Example 3.2.12.
The digraph G shown in Figure 3.3c is a directed P-map for G. Note that G is a directed
D-map as well as a directed I-map for I. �

3.2 Graphical Representations of Independence 29

From the above observations, we once more conclude that, if a digraph is a directed I-
map for an independence relation, we can read independence statements from it; from a
directed D-map we can read dependence statements, and from a directed P-map we can
read both independence and dependence statements.

Just as we have done for undirected graphs, we investigate the expressive power of
the formalism of directed graphs for representing independence relations. It can easily be
shown that every independence relation has a directed D-map and a directed I-map.

Lemma 3.2.15 For every independence relation, there exist a directed D-map and a di-
rected I-map.

Proof. The proof is analogous to the proof of Lemma 3.2.6. For the directed D-map we
consider the arcless graph G = (V ,∅). For the directed I-map we consider a complete
oriented graph G = (V ,AG) where for each Vi, Vj ∈ V , i 6= j, AG includes either (Vi, Vj)
or (Vj , Vi) and G is acyclic. That is, every pair of vertices is connected by a single arc;
since arc directions can be arbitrarily chosen as long as the resulting graph is acyclic,
multiple complete oriented graphs over the same set of vertices exist. �

Unfortunately, a similar property does not hold for directed P-maps: not every indepen-
dence relation has a directed P-map.

Example 3.2.16 Consider an independence relation I on a set of variables V such that
I({V1}, {V2, V3}, {V4}) and I({V2}, {V1, V4}, {V3}) for some variables V1, V2, V3, V4 ∈ V .
No acyclic digraph can model these independence statements simultaneously. �

Although not every independence relation has a directed P-map, there are independence
relations that can indeed be represented faithfully. An independence relation for which a
directed P-map exists is termed directed graph-isomorphic.

Definition 3.2.17 An independence relation I is said to be directed graph-isomorphic if
there exists an acyclic digraph G such that G is a directed P-map for I.

We would like to note that, if an independence relation is directed graph-isomorphic, it
may allow several different directed P-maps, that is, a directed P-map does not need to
be unique. To conclude, we would like to mention that a necessary condition has been
identified for an independence relation to be directed graph-isomorphic [Pearl, 1988]. Here,
we will not elaborate any further on this observation.

3.2.3 Choosing a Graphical Representation

In the previous sections we have investigated two different graphical formalisms for rep-
resenting independence relations: the formalism of undirected graphs and the formalism
of directed graphs. Both formalisms allow for a space-efficient representation of an inde-
pendence relation: all graphical representations considered are polynomial in terms of the
number of variables of the relation at hand. In addition, the two formalisms provide for an
explicit representation of independence that allows for efficiently verifying independence
statements without requiring numerical computations. These properties render graphi-
cal formalisms highly suitable for representing independence relations in knowledge-based
systems. Unfortunately, while the graphical formalisms allow for capturing some indepen-
dence relations to accuracy, they do not allow for a faithful representation (P-map) for
every such relation. The correspondence between independence relations on the one hand
and graphical representations on the other hand is shown schematically in Figure 3.4. This

3.2 Graphical Representations of Independence 30

directed graphs undirected graphs

independence relations

Figure 3.4: Independence Relations and Graphical Representations.

figure depicts that there are independence relations that are undirected graph-isomorphic
yet not directed graph-isomorphic, and vice versa; also, there are independence relations
that are both undirected and directed graph-isomorphic and independence relations that
are not graph-isomorphic at all. This property negatively affects the suitability of graph-
ical formalisms for representing independence relations. The efficiency of representation,
however, generally is considered to outweigh the lack of expressive power of these for-
malisms. We would like to note that it is possible to mix directed and undirected graphs;
such mixed graphs are called chain graphs [Studený, 1998] and are capable of represent-
ing a broader class of independence relations. Chain graphs are, however, hardly used for
practical applications as a result of their more complex semantics. In the Bayesian network
framework, therefore, a graphical formalism is used for representing independences. As
experience learns that the independence relations that are typically encountered in prac-
tical problem domains often are best represented by a directed graph rather than by an
undirected graph, the formalism of directed graphs is employed in the framework. There
does exist an undirected counterpart of the Bayesian network in the family of Probabilistic
Graphical Models: the Markov network.

In real-life problem domains, independence relations may be encountered that are not
graph-isomorphic. For such an independence relation, it is not possible to faithfully rep-
resent all independences as well as all dependences. The relation therefore has to be
represented in either a directed I-map or a directed D-map. Now observe that since we are
interested in exploiting independences for simplifying computations, we have to make sure
that independences that can be read from the graphical representation of an independence
relation actually do hold in the relation at hand; otherwise, we would assume indepen-
dences where there are none and thereby introduce errors in inference. An independence
relation that is not directed graph-isomorphic therefore is best represented by a directed
I-map. Furthermore, acknowledging that some independences will escape representation,
we settle for a representation in which as many of the independences of the relation as
possible are modelled, that is, we insist that the number of unrepresented independences
is kept at a minimum. A directed I-map that does not contain any superfluous arcs is
called minimal.

Definition 3.2.18 Let V be a set of random variables and let I be an independence
relation on V . Furthermore, let G = (VG,AG) be an acyclic digraph with VG = V . Then,
the digraph G is called a minimal directed I-map for I if G is a directed I-map for I and
no proper subgraph of G is a directed I-map for I.

We would like to note that an independence relation may allow several minimal I-maps,

Exercises 3 31

V1

V2

V4

V3

Figure 3.5: An Example Minimal Directed I-map.

that is, a minimal directed I-map need not be unique. Different I-maps that represent the
same independence relation are called Markov equivalent.

Example 3.2.19 Let V = {V1, V2, V3, V4} be a set of random variables. We consider once
more the independence relation I on V defined by the statements I({V1}, {V2, V3}, {V4})
and I({V2}, {V1, V4}, {V3}). In Example 3.2.16 we concluded that the relation I is not di-
rected graph-isomorphic. The digraph G shown in Figure 3.5 now is an example of a mini-
mal directed I-map for I. Note that, whereas the independence statement I({V1}, {V2, V3}, {V4})
is portrayed by G, the statement I({V2}, {V1, V4}, {V3}) has escaped representation. �

Exercises

*Exercise 3.1

Let V be a set of random variables. Let Pr be a joint probability distribution on V and
let I Pr be its independence relation. Show that I Pr satisfies the properties

a. I Pr(X,Z,Y)→ I Pr(Y ,Z,X);

b. I Pr(X,Z,Y ∪W)→ I Pr(X,Z,Y) ∧ I Pr(X,Z,W);

c. I Pr(X,Z,Y ∪W)→ I Pr(X,Z ∪W ,Y);

d. I Pr(X,Z,Y) ∧ I Pr(X,Z ∪ Y ,W)→ I Pr(X,Z,Y ∪W);

for all sets of variables X,Y ,Z,W ⊆ V .

* Exercise 3.2

Let V be a set of random variables and let I be a semi-graphoid independence relation on
V . Show that

I(X,Z,Y ∪W) ∧ I(Y ,Z,W)→ I(X ∪W ,Z,Y)

for all sets of variables X,Y ,Z,W ⊆ V .

* Exercise 3.3

Let V be a set of random variables and let I be a semi-graphoid independence relation on
V . Show that

I(X,Y ∪Z,U ∪W) ∧ I(Y ,Z ∪U ,X)→ I(X,Z ∪U ,Y ∪W)

for all sets of variables X,Y ,Z,W ⊆ V .

Exercises 3 32

Exercise 3.4

Let V = {V1, V2, V3, V4} be a set of random variables. Furthermore, let I be the following
(semi-graphoid) independence relation on V :

I({V1},∅, {V4}) I({V1},∅, {V2}) I({V1, V3}, {V2}, {V4})
I({V2},∅, {V4}) I({V2},∅, {V1}) I({V4}, {V2}, {V1})
I({V3},∅, {V4}) I({V1, V4},∅, {V2}) I({V4}, {V2}, {V3})
I({V4},∅, {V1}) I({V2},∅, {V1, V4}) I({V4}, {V2}, {V1, V3})
I({V4},∅, {V2}) I({V2, V4},∅, {V1}) I({V1}, {V3}, {V4})
I({V4},∅, {V3}) I({V1},∅, {V2, V4}) I({V2}, {V3}, {V4})
I({V1, V2},∅, {V4}) I({V2}, {V1}, {V4}) I({V1, V2}, {V3}, {V4})
I({V1, V3},∅, {V4}) I({V3}, {V1}, {V4}) I({V1}, {V4}, {V2})
I({V2, V3},∅, {V4}) I({V2, V3}, {V1}, {V4}) I({V2}, {V4}, {V1})
I({V4},∅, {V1, V2}) I({V4}, {V1}, {V2}) I({V3}, {V1, V2}, {V4})
I({V4},∅, {V1, V3}) I({V4}, {V1}, {V3}) I({V4}, {V1, V2}, {V3})
I({V4},∅, {V2, V3}) I({V4}, {V1}, {V2, V3}) I({V2}, {V1, V3}, {V4})
I({V1, V2, V3},∅, {V4}) I({V1}, {V2}, {V4}) I({V4}, {V1, V3}, {V2})
I({V4},∅, {V1, V2, V3}) I({V3}, {V2}, {V4}) I({V1}, {V2, V3}, {V4})

I({V4}, {V2, V3}, {V1})

Show that each statement I(X,Z,Y), X,Y ,Z ⊆ V , of the independence relation I
can be derived from the statements I({V1, V2, V3},∅, {V4}) and I({V1},∅, {V2}) by the
independence axioms from Definition 3.1.3.

* Exercise 3.5

Let V = {V1, V2, V3, V4} be a set of random variables. Let I be the independence relation
on V that is defined by the statements I({V1}, {V2, V3}, {V4}) and I({V2}, {V1, V4}, {V3}).

a. Give all undirected D-maps for the independence relation I;

b. Give all undirected I-maps for the independence relation I.

* Exercise 3.6

Recall that νG is the neighbour set (see Definition 2.1.2). Show that for any undirected
graph G = (VG,EG) the following property holds: for any vertex Vi ∈ VG and any vertex
Vj ∈ VG \ ({Vi} ∪ νG(Vi)), we have that 〈{Vi}|νG(Vi) |{Vj}〉G.

* Exercise 3.7

Examine for each of the following statements whether or not it holds in graph G:

V1

V2 V3

V5V4

V6

a. 〈{V1}|{V2, V3}|{V6}〉dG;

b. 〈{V2}|∅ |{V3}〉dG;

c. 〈{V2}|{V1}|{V3}〉dG;

d. 〈{V4}|{V1}|{V3}〉dG;

e. 〈{V2}|{V3, V4}|{V6}〉dG;

f. 〈{V3}|∅ |{V1}〉dG.

Exercises 3 33

* Exercise 3.8

Let V = {V1, V2, V3, V4} be a set of random variables. Let I be the independence relation
on V that is defined by the statements I({V1},∅, {V2}) and I({V1, V2}, {V3}, {V4}).

a. Give some directed D-maps for the independence relation I;

b. Give some directed I-maps for the independence relation I.

* Exercise 3.9

Show that for every independence relation there exists a directed D-map and a directed
I-map (Lemma 3.2.6).

* Exercise 3.10

Given an example of an independence relation that has more than one directed P-map.

* Exercise 3.11

Let V = {V1, V2, V3, V4} be a set of random variables. Let I be the independence relation
on V that is defined by the statements I({V1}, {V2, V3}, {V4}) and I({V2}, {V1, V4}, {V3}).
Give some minimal directed I-maps for the relation I.

* Exercise 3.12

Show that for any acyclic directed graph G = (VG,AG) the following property holds:
for any vertex Vi ∈ VG and any vertex Vj ∈ VG \ (σ∗G(Vi) ∪ ρG(Vi)), we have that
〈{Vi}|ρG(Vi) |{Vj}〉dG.

This property is known as the local Markov property of a DAG.

* Exercise 3.13

Let V be a set of random variables. Let I be an independence relation on V and let G
be a directed I-map for I. Now, let H be the underlying graph of G. Is H an undirected
I-map for I ?

* Exercise 3.14

a. Give an example of an independence relation that has both an undirected P-map and
a directed P-map.

b. Give an example of an independence relation that has an undirected P-map but no
directed P-map.

c. Give an example of an independence relation that has a directed P-map but no undi-
rected P-map.

d. Give an example of an independence relation that has no undirected P-map nor a
directed P-map.

Chapter 4

The Bayesian Network Framework

The Bayesian network framework is characterised by a powerful and intuitively appealing
formalism for representing a joint probability distribution on a set of random variables, for
use in a decision-support system. Associated with this formalism are algorithms for effi-
ciently computing probabilities of interest and for processing evidence. These algorithms—
referred to as algorithms for (probabilistic) inference— constitute the basic building blocks
for reasoning within the modelled domain. In this chapter we introduce the Bayesian net-
work formalism and detail a well-known message-passing algorithm for exact inference.
The ideas underlying this algorithm are also found in more popular algorithms, both
for exact and approximate inference [Korb & Nicholson, 2010]. Approximate inference is
beyond the scope of this syllabus.

4.1 The Bayesian Network Formalism

The Bayesian network formalism provides a concise representation of a joint probability
distribution on a set of random variables V . The conciseness of representation is arrived
at by explicit separation of knowledge of the independences holding in a distribution and
the numerical quantities involved. To this end, a Bayesian network comprises two parts:
a qualitative part and a quantitative part. The qualitative part of a Bayesian network is
a graphical representation of the independences holding among the variables in the prob-
ability distribution that is being represented; more in specific, the qualitative part of a
Bayesian network is a (minimal) directed I-map for the independence relation of the dis-
tribution. Associated with the qualitative part of a Bayesian network is a set of functions
representing numerical quantities from the distribution; with each vertex in the digraph
is associated a assessment function which basically is a set of (conditional) probabilities
describing the influence of the values of the vertex’ predecessors on the probabilities of
the values of this vertex itself. These assessment functions with each other constitute the
quantitative part of the Bayesian network.

We define the concept of a Bayesian network more formally.

Definition 4.1.1 A Bayesian network is a tuple B = (G,Γ) where

� G = (VG,AG) is an acyclic digraph with vertices VG representing a set of random
variables {V1, . . . , Vn}, n ≥ 1, and arcs AG;

� Γ = {γVi | Vi ∈ VG} is a set of real-valued non-negative functions

γVi : {cVi} × {cρG(Vi)} → [0, 1]

called assessment functions, such that for each configuration cρG(Vi) of the set ρG(Vi)
of (immediate) predecessors of vertex Vi in G, we have that γVi(¬vi | cρG(Vi)) =
1− γVi(vi | cρG(Vi)), i = 1, . . . , n.

34

4.1 The Bayesian Network Formalism 35

V1

V3

V2

V4

Figure 4.1: The Digraph of an Example Bayesian Network.

Note from the previous definition that there exists a one-to-one correspondence between
vertices Vi ∈ VG and random variables Vi ∈ V .

Despite the fact that the numbers specified by the assessment functions are (conditional)
probabilities, we prefer to use the γ notation over the use of Pr to explicitly distinguish
between the probabilities that are part of the Bayesian network specification and the
probabilities that can be computed from the network specification using inference
algorithms.

The assessment functions for a single vertex are often represented in a table, typically
referred to as conditional probability table or CPT. The specified numbers are therefore
often called CPT-parameters or CPT-entries; we will use the more general phrase of
model-parameter or network-parameter to refer to these probabilities.

A lot of literature uses the phrase parameter , and θ/Θ rather than γ/Γ to refer to
the probabilities that are part of the network specification, especially in the context
of learning these from data. However, the literature also uses “parameter” and θ to
denote other unknown or varying quantities. Moreover, we will use “parameter” later
on extensively to refer to messages in the message-passing algorithm.

Example 4.1.2 We consider the digraph G shown in Figure 4.1. With the digraph G,
we associate a set Γ = {γVi | i = 1, . . . , 4} of assessment functions γVi . For example, for
the vertices V1 and V2, the assessment functions γV1 and γV2 may be defined as

γV1(v1) = 0.25 and γV2(v2) = 0.5
γV1(¬v1) = 0.75 γV2(¬v2) = 0.5

For vertex V4, the assessment function γV4 is defined as

γV4(v4 | v3) = 0.8 γV4(¬v4 | v3) = 0.2
γV4(v4 | ¬v3) = 0 γV4(¬v4 | ¬v3) = 1.0

For vertex V3, the assessment function γV3 is defined by the values

γV3(v3 | v1 ∧ v2) = 0.75 γV3(¬v3 | v1 ∧ v2) = 0.25
γV3(v3 | ¬v1 ∧ v2) = 0.4 and their complements γV3(¬v3 | ¬v1 ∧ v2) = 0.6
γV3(v3 | v1 ∧ ¬v2) = 0.25 γV3(¬v3 | v1 ∧ ¬v2) = 0.75
γV3(v3 | ¬v1 ∧ ¬v2) = 0.2 γV3(¬v3 | ¬v1 ∧ ¬v2) = 0.8

The pair B = (G,Γ) is a Bayesian network. �

4.1 The Bayesian Network Formalism 36

The assessment functions of a Bayesian network with each other provide all information
necessary for uniquely defining a joint probability distribution on the variables discerned
that respects the independence relation portrayed by the qualitative part of the network;
henceforth, we will call this distribution the joint probability distribution defined by the
network (note again the use of the template notation).

Proposition 4.1.3 Let B = (G,Γ) be a Bayesian network. Then,

Pr(VG) =
∏

Vi∈VG

γVi(Vi | ρG(Vi))

defines a joint probability distribution Pr on VG such that G is a directed I-map for the
independence relation IPr of Pr.

Proof. Since the digraph G of the Bayesian network B is acyclic, it allows a total ordering
of its vertices such that any successor of a vertex in the digraph follows it in the ordering;
such an ordering is termed a topological order of the digraph’s vertices. Note that any
topological order of the vertices of G constitutes an ordering of the corresponding random
variables. We take ιG to be such a topological order; for ease of exposition, we assume that
ιG(Vi) = i for all Vi ∈ VG. We now consider an arbitrary joint probability distribution
P on VG such that G is a directed I-map for the independence relation of P . To the
expression P (VG) describing the distribution P , we apply the chain rule from probability
theory, such that every variable Vi from VG is conditioned on the variables V1, . . . , Vi−1,
preceding it in the ordering ιG, that is,

P (VG) =
∏

Vi∈VG

P (Vi | V1 ∧ · · · ∧ Vi−1)

From the digraph G, we read, by means of the d-separation criterion, that 〈{Vi}|ρG(Vi) |
{V1, . . . , Vi−1} \ ρG(Vi)〉dG for every vertex Vi ∈ VG. Since G is a directed I-map for the
distribution P , we have for every Vi that IP ({Vi},ρG(Vi), {V1, . . . , Vi−1} \ ρG(Vi)). From
this observation, we have that

P (Vi | V1 ∧ · · · ∧ Vi−1) = P (Vi | ρG(Vi))

for every vertex Vi ∈ VG. By exploiting this property, we find that

P (VG) =
∏

Vi∈VG

P (Vi | ρG(Vi))

Since P has been chosen arbitrarily, we conclude that any joint probability distribution
such that G is a directed I-map for its independence relation, satisfies this property. By
reversing the argument, we find that there exists a (unique) joint probability distribution
Pr on VG such that G is a directed I-map for the independence relation of Pr and Pr(Vi |
ρG(Vi)) = γVi(Vi | ρG(Vi)) for each variable Vi ∈ VG. �

We illustrate the basic idea of the previous proposition by means of an example.

Example 4.1.4 We consider once more the Bayesian network B = (G,Γ) from Exam-
ple 4.1.2. From the property stated in Proposition 4.1.3, we have that from the expression

Pr(V1 ∧ V2 ∧ V3 ∧ V4) = γV1(V1) · γV2(V2) · γV3(V3 | V1 ∧ V2) · γV4(V4 | V3)

any probability of interest can be computed. For example, we have that

Pr(v1 ∧ ¬v2 ∧ v3 ∧ v4) = γV1(v1) · γV2(¬v2) · γV3(v3 | v1 ∧ ¬v2) · γV4(v4 | v3) =
= 0.25 · 0.5 · 0.25 · 0.8 = 0.025

4.2 Probabilistic Inference 37

and

Pr(¬v1 ∧ ¬v2 ∧ v3 ∧ v4) = γV1(¬v1) · γV2(¬v2) · γV3(v3 | ¬v1 ∧ ¬v2) · γV4(v4 | v3) =
= 0.06

By marginalisation we can now compute the probability Pr(¬v2 ∧ v3 ∧ v4):

Pr(¬v2 ∧ v3 ∧ v4) = Pr(v1 ∧ ¬v2 ∧ v3 ∧ v4) + Pr(¬v1 ∧ ¬v2 ∧ v3 ∧ v4) =
= 0.085

�

From Proposition 4.1.3 it is readily seen that the function values of a Bayesian network’s
assessment functions can be interpreted as conditional probabilities.

Corollary 4.1.5 Let B = (G,Γ) be a Bayesian network and let Pr be the joint probability
distribution defined by B. Then, for each vertex Vi ∈ VG, we have that

Pr(Vi | ρG(Vi)) = γVi(Vi | ρG(Vi))

4.2 Exact Probabilistic Inference

A Bayesian network generally is used for probabilistic inference, that is, for making prob-
abilistic statements concerning the variables that are represented in the network. For this
purpose, the property stated in Proposition 4.1.3 can be exploited: from the proposition we
have that, since the digraph of a Bayesian network and its associated assessment functions
with each other uniquely define a joint probability distribution, any (prior or posterior)
probability of interest can be computed from the network. Explicitly generating the rep-
resented probability distribution as indicated by the proposition and then using the basic
rules of marginalisation and conditioning, however, is computationally infeasible. In addi-
tion, such a straightforward approach would not exploit the independences that are repre-
sented by the qualitative part of the network at hand. More efficient algorithms for exact
probabilistic inference have been designed that do exploit the represented independences.
The best known of these are the Belief Propagation algorithm by J. Pearl [Pearl, 1988] and
the algorithm of S.L. Lauritzen and D.J. Spiegelhalter [Lauritzen & Spiegelhalter, 1988].
Although the latter is typically used in practice for computational reasons, in the sequel
we will focus on Pearl’s algorithm. This choice is mostly made for didactic reasons. In
addition, the underlying message-passing algorithm can be found in many other inference
algorithms for probabilistic models, such as the Sum-Product and Viterbi algorithms.

Idea underlying belief propagation The basic idea of Pearl’s algorithm for proba-
bilistic inference is best explained from an object-centered point of view. The digraph of
a Bayesian network is looked upon as a computational architecture: the vertices of the
digraph are autonomous objects and its arcs are bi-directional communication channels.
Each vertex has a local processor that is capable of performing simple probabilistic compu-
tations and a local memory in which its associated assessment function is stored. Through
the communication channels the vertices send each other parameters1 providing informa-
tion about the joint probability distribution that is represented by the network — that is,
information determined from the network’s assessment functions and the independences
portrayed in the digraph — and about the evidence that has been entered and processed

1Note that these parameters are not the same as the model-parameters γ specified by the network’s
assessment functions!

4.2 Probabilistic Inference 38

so far. Each vertex is now able to compute the probabilities of its values from its own
assessment function and the information it receives from its neighbours.

Initially, a Bayesian network is in an equilibrium state: recomputation of the various
compound parameters and message parameters that the vertices send one another, does
not result in a change in any of them. Now, when a piece of evidence is entered into
the network for some vertex, this equilibrium is perturbed, since the probability distribu-
tion over the network’s variables under consideration has now changed: the distribution
should be conditioned on the (additional) evidence obtained. Once the value of a variable
is known with certainty, the probability distribution for the variable degenerates and can
no longer change; entering evidence for a variable into a Bayesian network thus basically
amounts to adding its corresponding vertex to the (initially empty) blocking-set W for the
digraph, thereby changing the independences that have to be taken into account by the
inference algorithm. Therefore, to process the evidence entered for some vertex, the mes-
sage parameters this vertex sends to its neighbours are updated. After receiving updated
message parameters, these neighbours in turn compute new message parameters to send
to their neighbours, and so on. The impact of the evidence thus spreads throughout the
network by message-passing between neighbouring vertices. After a full network propaga-
tion, when all vertices have sent and received message parameters and have updated their
probabilities, a new equilibrium state is reached.

In this section, we detail the computations involved in Pearl’s belief propagation algo-
rithm. In doing so, we distinguish between various types of graph. In Section 4.2.1, we
focus on directed trees. In Section 4.2.2 we address singly connected digraphs more in gen-
eral. In Section 4.2.3 we discuss probabilistic inference with Bayesian networks comprising
a multiply connected digraph.

4.2.1 Directed Trees

In discussing Pearl’s algorithm, we begin by focusing on probabilistic inference with a
Bayesian network comprising a directed tree for its qualitative part, that is, in the network’s
digraph a vertex may have several successors but at most one predecessor. Before detailing
the computations involved in inference with such a network, we introduce some more
terminology and notational convention that we will use in the sequel.

Let G be the digraph of a Bayesian network, and let V be (a subset of) the set of
variables represented by its vertices. Now Vi ∈ V is called instantiated if its value is
known with certainty; otherwise, it is called uninstantiated. Now, let X ⊆ V be the set
of instantiated variables or vertices from V . The configuration cX of X that is known
with certainty is a partial configuration of V and will be denoted as c̃V . Note that the
notation c̃V provides for referring to the subset of instantiated variables or vertices in a
Bayesian network without having to specify this subset explicitly.

At any time during probabilistic inference with a Bayesian network, the probabilities of the
values of a variable of interest depend upon all evidence entered so far into the network.

Lemma 4.2.1 Let B = (G,Γ) be a Bayesian network where G = (VG,AG) is a directed
tree, and let Pr be the joint probability distribution defined by B. Let Vi ∈ VG be a vertex
in G, and let V −i = σ∗G(Vi) and V +

i = VG \ V −i . Then,

Pr(Vi | c̃VG) = α · Pr(c̃V −i
| Vi) · Pr(Vi | c̃V +

i
)

where c̃VG = c̃V −i
∧ c̃V +

i
and α is a normalisation constant.

4.2 Probabilistic Inference 39

Figure 4.2: A Fragment of a Directed Tree.

Proof. For the probabilities Pr(Vi | c̃VG) of the values of vertex Vi, we have

Pr(Vi | c̃VG) =
Pr(c̃VG | Vi) · Pr(Vi)

Pr(c̃VG)
=

Pr(c̃V −i
∧ c̃V +

i
| Vi) · Pr(Vi)

Pr(c̃V −i
∧ c̃V +

i
)

by Bayes’ Theorem. Now consider Figure 4.2 showing a fragment of the directed tree
G of the network. Using the d-separation criterion, we observe that 〈X | {Vi} | Y 〉dG
for all sets of vertices X ⊆ V −i and Y ⊆ V +

i . Since G is a directed I-map for the

joint probability distribution Pr, we conclude that I Pr(X, {Vi},Y) for all sets X ⊆ V −i ,

Y ⊆ V +
i . Exploiting this observation, we find

Pr(Vi | c̃VG) =
Pr(c̃V −i

| Vi) · Pr(c̃V +
i
| Vi) · Pr(Vi)

Pr(c̃V −i
∧ c̃V +

i
)

=

=
Pr(c̃V −i

| Vi) · Pr(Vi | c̃V +
i

)

Pr(c̃V −i
| c̃V +

i
)

Now observe that the factor (Pr(c̃V −i
| c̃V +

i
))−1 in the expression depends on the location of

vertex Vi in the digraph and, if instantiated, on the value of its instantiation, but not on the
value of Vi under consideration. It therefore is a constant with respect to Vi. In the sequel,
this constant will universally be denoted as α. The constant α is generally referred to as a
normalisation constant because it can be computed from Pr(vi | c̃VG) + Pr(¬vi | c̃VG) = 1.
The property stated in the lemma now follows by substitution. �

Defining Compound Parameters in Directed Trees

The previous lemma shows that the probabilities of the values of a vertex of interest
can be expressed in terms of two factors describing the influence of evidence entered for
this vertex’ descendants and for all other vertices, separately. The following definition
introduces some new terminology for these separate factors.

Definition 4.2.2 Let B = (G,Γ) be a Bayesian network where G = (VG,AG) is a directed
tree, and let Pr be the joint probability distribution defined by B. Let Vi ∈ VG be a vertex

4.2 Probabilistic Inference 40

in G, and let V −i and V +
i be as before. The compound causal parameter πVi for vertex

Vi is the function πVi : Vi → [0, 1] defined by

πVi(Vi) = Pr(Vi | c̃V +
i

)

The compound diagnostic parameter λVi for Vi is the function λVi : Vi → [0, 1] defined by

λVi(Vi) = Pr(c̃V −i
| Vi)

Note that the compound diagnostic parameter for a vertex describes the combined influ-
ence on this vertex’ probabilities of all evidence that has been entered for its descendants;
the compound causal parameter for the vertex describes the combined influence of evidence
entered for all other vertices in the digraph.

Special cases We take a closer look at the previous definition for some special cases.
We begin by addressing uninstantiated vertices having either no incoming or no outgoing
arcs. A directed tree has one vertex W without any incoming arcs; this vertex is the
root of the tree. We observe that for W the set W+ is empty. So, c̃W+ = True. The
compound causal parameter πW for W therefore equals πW (W) = Pr(W). The directed
tree may further include several vertices having no outgoing arcs; these vertices are the
leaves of the tree. For a leaf V , we observe that the set V − consists of V only. From V
being uninstantiated, we have that c̃V − = True. The compound diagnostic parameter λV
for V therefore equals λV (V) = 1, regardless of the value of V . To conclude, we consider
instantiated vertices. For a vertex Vi for which the evidence Vi = true has been entered,
we find πVi(vi) = Pr(vi | c̃V +

i
) and πVi(¬vi) = Pr(¬vi | c̃V +

i
), and λVi(vi) = Pr(c̃V −i

| vi)
and λVi(¬vi) = 0; an analogous observation holds for the case where the evidence Vi =
false has been entered.

Data fusion Using the definition of the compound causal and diagnostic parameters for
a vertex, the property stated in Lemma 4.2.1 can now be reformulated: for each vertex
Vi, we have that

Pr(Vi | c̃VG) = α · πVi(Vi) · λVi(Vi)

where α is a normalisation constant. In this form, the lemma is known as the data fusion
lemma [Pearl, 1988]. Note that the data fusion lemma implies that the compound and
diagnostic parameters for a vertex provide it with enough information for computing the
probabilities of its values, that is, no further knowledge of the joint probability distribution
is needed.

Defining Message Parameters in Directed Trees

The compound diagnostic parameter for a vertex specifies probabilistic information from
all its descendants combined; an analogous observation applies to the compound causal
parameter for the vertex. To be able to exploit the digraph of a Bayesian network as a
computational architecture as outlined before, the compound parameters for a vertex have
to be computed from separate message parameters originating from its various neighbours.
The following definition introduces such message parameters; the Lemmas 4.2.4 and 4.2.5
will show the computation of the compound parameters from these messages.

Definition 4.2.3 Let B = (G,Γ) be a Bayesian network where G = (VG,AG) is a directed
tree, and let Pr be the joint probability distribution defined by B. For each vertex V ∈ VG,

4.2 Probabilistic Inference 41

let V − and V + be as before. Now, let Vi be a vertex with a successor Vk in G. The causal
(message) parameter πVi

Vk
from Vi to Vk is the function πVi

Vk
: Vi → [0, 1] defined by

πVi
Vk

(Vi) = Pr(Vi | c̃V +
k

)

Now, let Vi be a vertex having the predecessor Vj in G. The diagnostic (message) parameter

λ
Vj

Vi
from Vi to Vj is the function λ

Vj

Vi
: Vj → [0, 1] defined by

λ
Vj

Vi
(Vj) = Pr(c̃V −i

| Vj)

Note that a causal parameter is a message parameter that a vertex sends to a successor
to provide this successor with information concerning its non-descendants. A diagnostic
parameter is a message parameter that a vertex sends to its predecessor to provide this
predecessor with information concerning the vertices located in the subtree rooted at
the vertex at hand. The separate causal and diagnostic parameters are the messages
the vertices send each other through the communication channels of the computational
architecture and, hence, may be looked upon as associated with the arcs of the directed
tree of the Bayesian network at hand.

Special cases We take a closer look at the previous definition for some special cases.
We observe that for the root of a directed tree no diagnostic parameter is defined because
it does not have a predecessor. For the leaves of the tree no causal parameters are defined
as these vertices do not have any successors. In addition, we note that for a vertex Vi
for which the evidence Vi = true is observed and entered into the network, we find that
πVi
Vk

(vi) = 1 and πVi
Vk

(¬vi) = 0 for any successor Vk of Vi; an analogous observation holds
for the case where Vi = false is observed.

Computing Compound Parameters in Directed Trees

The following lemma now shows that a vertex can compute its compound causal parameter
from the causal parameter it receives from its predecessor and its own assessment function.

Lemma 4.2.4 Let B = (G,Γ) be a Bayesian network where G = (VG,AG) is a directed
tree. Let Vi ∈ VG be a vertex with the predecessor Vj in G. Let πVi be the compound causal

parameter for vertex Vi, and let π
Vj

Vi
be the causal parameter from Vj to Vi. Then,

πVi(Vi) =
∑
cVj

γVi(Vi | cVj) · π
Vj

Vi
(cVj)

Proof. Let Pr be the joint probability distribution defined by the Bayesian network B.
For vertex Vi, let V +

i be as before. Then, by definition we have that

πVi(Vi) = Pr(Vi | c̃V +
i

)

By conditioning on the values of Vi’s predecessor Vj , we find

πVi(Vi) = Pr(Vi | vj ∧ c̃V +
i

) · Pr(vj | c̃V +
i

) + Pr(Vi | ¬vj ∧ c̃V +
i

) · Pr(¬vj | c̃V +
i

)

Now consider once more Figure 4.2 showing a fragment of the directed tree G of the
network. Using the d-separation criterion, we observe that 〈{Vi} | {Vj} |X〉dG for all sets

4.2 Probabilistic Inference 42

Figure 4.3: Exploiting d-Separation for Computing λVi(Vi).

of vertices X ⊆ V +
i . Since G is a directed I-map for the distribution Pr, we have that

I Pr({Vi}, {Vj},X) for all sets X ⊆ V +
i . Exploiting this observation, we find

πVi(Vi) = Pr(Vi | vj) · Pr(vj | c̃V +
i

) + Pr(Vi | ¬vj) · Pr(¬vj | c̃V +
i

)

The probabilities Pr(Vi | vj) and Pr(Vi | ¬vj) have been specified as function values of
the assessment function γVi and therefore are directly available to vertex Vi. In addition,
vertex Vi receives the probabilities Pr(vj | c̃V +

i
) and Pr(¬vj | c̃V +

i
) from its predecessor

Vj as function values of the causal parameter π
Vj

Vi
. The property stated in the lemma now

follows by substitution. �

A vertex can further compute its compound diagnostic parameter from the separate di-
agnostic parameters it receives from its successors in the digraph. This property is stated
more formally in the following lemma.

Lemma 4.2.5 Let B = (G,Γ) be a Bayesian network where G = (VG,AG) is a directed
tree. Let Vi ∈ VG be an uninstantiated vertex with the successors σG(Vi) = {Vi1 , . . . , Vim},
m ≥ 1, in G. Furthermore, let λVi be the compound diagnostic parameter for vertex Vi
and, for each Vij ∈ σG(Vi), let λVi

Vij
be the diagnostic parameter from Vij to Vi. Then,

λVi(Vi) =
∏

j=1,...,m

λVi
Vij

(Vi)

Proof. Let Pr be the joint probability distribution defined by the Bayesian network B.
For each vertex V ∈ VG, let V − be as before. Since Vi is an uninstantiated vertex, we
have that c̃V −i

= c̃V −i
∧ · · · ∧ c̃V −im

. So,

λVi(Vi) = Pr(c̃V −i
| Vi) = Pr(c̃V −i

∧ · · · ∧ c̃V −im
| Vi)

Now consider Figure 4.3 showing a fragment of the directed tree G of the network. We ob-
serve that 〈X |{Vi}|Y 〉dG for all sets of vertices X ⊆ V −ij and Y ⊆

⋃
k=1,...,m,k 6=j V

−
ik

, j =

1, . . . ,m. Since G is a directed I-map for the distribution Pr, we have that I Pr(X, {Vi},Y)
for all sets X ⊆ V −ij , Y ⊆

⋃
k=1,...,m,k 6=j V

−
ik

, j = 1, . . . ,m. It follows that

λVi(Vi) = Pr(c̃V −i
| Vi) · . . . · Pr(c̃V −im

| Vi)

The probabilities Pr(c̃V −ij
| Vi) are sent to vertex Vi by its successor Vij through the values

of diagnostic parameter λVi
Vij

, j = 1, . . . ,m. The property stated follows by substitution. �

4.2 Probabilistic Inference 43

Introducing dummy successors Note that the previous lemma applies to uninstan-
tiated vertices only. However, the property mentioned in the lemma can be taken to hold
for an instantiated vertex Vi as well, if entering evidence for Vi into the network is mod-
elled by adding a ‘dummy’ successor D for vertex Vi that sends an appropriate diagnostic
parameter to Vi. For the evidence Vi = true, this ‘dummy’ successor sends the diagnostic
parameter λVi

D with λVi
D (vi) = 1 and λVi

D (¬vi) = 0 to Vi; an analogous observation holds
for the evidence Vi = false.

Computing Message Parameters in Directed Trees

So far, we have shown that a vertex can compute the probabilities of its values from its own
assessment function and the causal and diagnostic message parameters it receives from its
neighbours. Now observe that this vertex in turn has to compute message parameters
to send to its neighbours. The following lemma shows that a vertex can compute the
diagnostic message parameter to send to its predecessor from its own assessment function
and the diagnostic parameters it receives from its successors. In other words, for this
purpose it combines its own information about the joint probability distribution with the
information it receives concerning the evidence entered so far for its descendants.

Lemma 4.2.6 Let B = (G,Γ) be a Bayesian network where G = (VG,AG) is a directed
tree. Let Vi ∈ VG be a vertex with the predecessor Vj in G. Let λVi be the compound

diagnostic parameter for vertex Vi and let λ
Vj

Vi
be the diagnostic parameter from Vi to Vj.

Then,

λ
Vj

Vi
(Vj) =

∑
cVi

λVi(cVi) · γVi(cVi | Vj)

Proof. Let Pr be the joint probability distribution defined by the Bayesian network B.
For vertex Vi, let V −i be as before. Then, by definition we have that

λ
Vj

Vi
(Vj) = Pr(c̃V −i

| Vj)

By conditioning on the values of Vi, we find

λ
Vj

Vi
(Vj) = Pr(c̃V −i

| vi ∧ Vj) · Pr(vi | Vj) + Pr(c̃V −i
| ¬vi ∧ Vj) · Pr(¬vi | Vj)

Now consider once more Figure 4.2 showing a fragment of the directed tree G of the
network. Using the d-separation criterion, we observe that 〈X | {Vi} | {Vj}〉dG for all sets
of vertices X ⊆ V −i . Since G is a directed I-map for the distribution Pr, it follows that

I Pr(X, {Vi}, {Vj}) for all sets X ⊆ V −i . So,

λ
Vj

Vi
(Vj) = Pr(c̃V −i

| vi) · Pr(vi | Vj) + Pr(c̃V −i
| ¬vi) · Pr(¬vi | Vj)

The probabilities Pr(vi | Vj) and Pr(¬vi | Vj) have been specified as function values of the
assessment function γVi associated with vertex Vi and hence are directly available to Vi.
In addition, Vi computes the probabilities Pr(c̃V −i

| vi) and Pr(c̃V −i
| ¬vi) as function

values of its compound diagnostic parameter λVi . The property stated in the lemma now
follows by substitution. �

Similarly, a vertex can compute the causal parameter to send to a successor from its com-
pound causal parameter and the diagnostic parameters it receives from its other successors.
The following lemma states this property more formally.

4.2 Probabilistic Inference 44

Figure 4.4: Exploiting d-Separation for Computing πVi
Vij

(Vi).

Lemma 4.2.7 Let B = (G,Γ) be a Bayesian network where G = (VG,AG) is a directed
tree. Let Vi ∈ VG be an uninstantiated vertex with the successors σG(Vi) = {Vi1 , . . . , Vim},
m ≥ 1, in G. Furthermore, let πVi be the compound causal parameter for vertex Vi; for
each Vij ∈ σG(Vi), let πVi

Vij
be the causal parameter from Vi to Vij and let λVi

Vij
be the

diagnostic parameter from Vij to Vi. Then,

πVi
Vij

(Vi) = α · πVi(Vi) ·
∏

k=1,...,m,k 6=j

λVi
Vik

(Vi)

where α is a normalisation constant.

Proof. Let Pr be the joint probability distribution defined by the Bayesian network B.
For each vertex V ∈ VG, let V + and V − be as before. Then, by definition we have that

πVi
Vij

(Vi) = Pr(Vi | c̃V +
ij

)

Using Bayes’ Theorem, we find

πVi
Vij

(Vi) =

Pr(c̃V +
ij

| Vi) · Pr(Vi)

Pr(c̃V +
ij

)

Now consider Figure 4.4 showing a fragment of the directed tree G of the network. Since
Vi is an uninstantiated vertex, we have that c̃V +

ij

= c̃V +
i
∧ (
∧

k=1,...,m,k 6=j c̃V −ik
). So,

πVi
Vij

(Vi) =
Pr(c̃V +

i
∧ (
∧

k=1,...,m,k 6=j c̃V −ik
) | Vi) · Pr(Vi)

Pr(c̃V +
ij

)

Furthermore, using the d-separation criterion, we observe that 〈X | {Vi} |Y 〉dG for all sets
of vertices X ⊆ V +

i and Y ⊆ V −ik , k = 1, . . . ,m, and for all sets of vertices X ⊆ V −ik and

4.2 Probabilistic Inference 45

Y ⊆ V −il , k = 1, . . . ,m, l = 1, . . . ,m, k 6= l. Exploiting this observation, we find

πVi
Vij

(Vi) =
Pr(c̃V +

i
| Vi) ·

∏
k=1,...,m,k 6=j Pr(c̃V −ik

| Vi) · Pr(Vi)

Pr(c̃V +
ij

)
=

=
Pr(Vi | c̃V +

i
) ·
∏

k=1,...,m,k 6=j Pr(c̃V −ik
| Vi) · Pr(c̃V +

i
)

Pr(c̃V +
ij

)

The probabilities Pr(Vi | c̃V +
i

) equal the function values of the compound causal parameter

πVi for Vi. The probabilities Pr(c̃V −ik
| Vi) equal the function values of the diagnostic

parameter λVi
Vik

vertex Vi receives from its successor Vik . In addition, we observe that the

factor

Pr(c̃V +
i

)

Pr(c̃V +
ij

)
= 1

Pr(c̃V +
ij

| c̃V +
i

)

is dependent on the location of the variables Vi and Vij in the digraph but not on their
values. This factor may therefore be looked upon as a normalisation constant for Vi and
Vij , denoted as α; it can be computed from Pr(vi | c̃V +

ij

) + Pr(¬vi | c̃V +
ij

) = 1. The

property stated in the lemma now follows by substitution. �

The previous lemma applies to uninstantiated vertices only; the lemma, however, can be
taken to hold for instantiated vertices as described before.

Pearl’s Algorithm in Directed Trees

The data fusion lemma and the four computation rules provided by the Lemmas 4.2.4,
4.2.5, 4.2.6, and 4.2.7 with each other constitute Pearl’s algorithm for probabilistic infer-
ence with a Bayesian network comprising a directed tree for its qualitative part. Note that
Pearl’s algorithm provides for computing probabilities as well as for processing evidence
in such a Bayesian network. The computation rules for the separate causal and diagnostic
message parameters enable a vertex to pass on the impact of a piece of evidence correctly,
and allow for the evidence to spread throughout the network. Close examination of the
computation rules from the Lemmas 4.2.6 and 4.2.7 further reveals that a vertex that
sends an updated parameter will not receive a new parameter originating from the same
evidence. A causal parameter or a diagnostic parameter to a vertex is not affected by the
diagnostic parameter or the causal parameter, respectively, from that vertex. In addition,
the topological property that in a directed tree there is at most one chain between any
two vertices prohibits the process of parameter updating that originates from some vertex
to reach this vertex along another chain. These properties with each other guarantee that
feedback and circular reasoning are prevented and that evidence is propagated throughout
the network in a single pass.

We state an additional property concerning the compound diagnostic parameter for a
vertex that is useful for investigating the spreading of evidence. We call this the Identity
property for compound diagnostic parameters.

Lemma 4.2.8 Let B = (G,Γ) be a Bayesian network where G = (VG,AG) is a directed
tree. For each vertex Vi ∈ VG, let λVi(Vi) be the compound diagnostic parameter for Vi. If
c̃VG = True, then λVi(Vi) = 1 for all Vi ∈ VG.

4.2 Probabilistic Inference 46

Proof. The property stated in the lemma can be easily proven directly from the definition
of the compound diagnostic parameter (Definition 4.2.2). Here we present an alternative
proof by (reverse) induction on the depth of the directed tree G. Let n be the maximal
depth of the tree.

Induction Basis
The property holds for every leaf of the tree at depth n by definition.

Induction Hypothesis
For a specific d ≤ n, we assume that λVi(Vi) = 1 for all vertices Vi at depth d, d+1, . . . , n.

Induction Step
Now consider a vertex Vi at depth d − 1 in the tree. We distinguish between two cases.
If Vi is a leaf of the tree, then λVi(Vi) = 1 by definition. Now, suppose that Vi has m
successors Vi1 , . . . , Vim , m ≥ 1. From c̃VG = True, it follows that Vi is an uninstantiated
vertex. Therefore, it follows from the property stated in Lemma 4.2.5 that

λVi(Vi) =
∏

j=1,...,m

λVi
Vij

(Vi)

where λVi
Vij

is the diagnostic parameter from Vij to Vi, j = 1, . . . ,m. For each parameter

λVi
Vij

we have from the property stated in Lemma 4.2.6 that

λVi
Vij

(Vi) =
∑
cVij

λVij
(cVij

) · γVij
(cVij

| Vi)

Since vertex Vij is a successor of Vi, it is located at depth d in the directed tree G. From
the induction hypothesis we have that λVij

(Vij) = 1. So,

λVi
Vij

(Vi) =
∑
cVij

γVij
(cVij

| Vi) = 1

From λVi
Vij

(Vi) = 1 for all successors Vij of Vi, it follows that λVi(Vi) = 1. Since vertex Vi

has been chosen arbitrarily, it follows that for each vertex Vi ∈ VG, we have λVi(Vi) = 1.
�

It will be evident that the previous lemma can be taken to apply to subtrees of a directed
tree as well.

We conclude our discussion of Pearl’s algorithm for probabilistic inference so far with
an example.

Example 4.2.9 We consider the Bayesian network B = (G,Γ) shown in Figure 4.5. Let
Pr be the joint probability distribution defined by B. We address the computation of the
probabilities and different parameters for the various vertices in the network.

Vertex V1 sets out to compute the probabilities of its values by application of the data
fusion lemma:

Pr(v1) = α · πV1(v1) · λV1(v1) and Pr(¬v1) = α · πV1(¬v1) · λV1(¬v1)

To be able to compute the probabilities of interest from the lemma, vertex V1 needs to
compute its compound parameters πV1 and λV1 . Since no evidence has been entered into

4.2 Probabilistic Inference 47

V1

V2

V3 V4

γV1(v1) = 0.5

γV2(v2 | v1) = 0.8
γV2(v2 | ¬v1) = 0.4

γV3(v3 | v2) = 0.9
γV3(v3 | ¬v2) = 0.4

γV4(v4 | v2) = 0.3
γV4(v4 | ¬v2) = 0.05

Figure 4.5: An Example Bayesian Network.

the network as yet, we have from the Identity property stated in Lemma 4.2.8 that the
values of the compound diagnostic parameter λV1 equal

λV1(v1) = 1 and λV1(¬v1) = 1

Vertex V1 now turns to the computation of its compound causal parameter πV1 . Using the
computation rule from in Lemma 4.2.4, it finds the values of this parameter to be

πV1(v1) = 0.5 and πV1(¬v1) = 0.5

Substitution of the values of the compound parameters into the data fusion lemma and
subsequent elimination of the normalisation constant α yields

Pr(v1) = 0.5 and Pr(¬v1) = 0.5

Now observe that vertex V1 not just computes its probabilities, it also computes the
message parameter to send to its neighbour in the tree. Using the computation rule stated
in Lemma 4.2.7, it computes the values of the causal parameter πV1

V2
for its successor V2 to

be

πV1
V2

(v1) = 0.5 and πV1
V2

(¬v1) = 0.5

By sending the thus computed message parameter to vertex V2, vertex V1 provides V2 with
sufficient information about the represented probability distribution to enable vertex V2
to compute its probabilities.

Just as vertex V1, vertex V2 sets out to compute the probabilities of its values by
application of the data fusion lemma:

Pr(v2) = α · πV2(v2) · λV2(v2) and Pr(¬v2) = α · πV2(¬v2) · λV2(¬v2)

Vertex V2 now needs to compute its compound parameters πV2 and λV2 . Since no evidence
has been entered into the network as yet, we once more have from the Identity property
stated in Lemma 4.2.8 that the values of the compound diagnostic parameter equal

λV2(v2) = 1 and λV2(¬v2) = 1

Using the computation rule stated in Lemma 4.2.4, vertex V2 now computes the compound
causal parameter πV2 from its own probability assessment function γV2 and the causal
parameter πV1

V2
it receives from its predecessor. For the values πV2(v2) and πV2(¬v2), it

thus finds

πV2(v2) = γV2(v2 | v1) · πV1
V2

(v1) + γV2(v2 | ¬v1) · πV1
V2

(¬v1) =

= 0.8 · 0.5 + 0.4 · 0.5 = 0.6

πV2(¬v2) = γV2(¬v2 | v1) · πV1
V2

(v1) + γV2(¬v2 | ¬v1) · πV1
V2

(¬v1) =

= 0.2 · 0.5 + 0.6 · 0.5 = 0.4

4.2 Probabilistic Inference 48

Substitution of the values of the compound parameters into the data fusion lemma and
subsequent elimination of the normalisation constant α yields

Pr(v2) = 0.6 and Pr(¬v2) = 0.4

In addition to computing its own probabilities, vertex V2 computes the message parameters
to send to its neighbours in the tree. For its predecessor V1, vertex V2 computes the
diagnostic parameter λV1

V2
; the values of this message parameter equal

λV1
V2

(v1) = 1 and λV1
V2

(¬v1) = 1

Vertex V2 further computes a causal parameter for every one of its successors in the tree.
Using the computation rule stated in Lemma 4.2.7, it computes the values of the causal
parameter πV2

V3
for vertex V3 from

πV2
V3

(v2) = α · πV2(v2) · λV2
V4

(v2)

πV2
V3

(¬v2) = α · πV2(¬v2) · λV2
V4

(¬v2)

It is readily seen that the values of the diagnostic parameter λV2
V4

that vertex V2 receives
from vertex V4 both equal one. Substitution of the various parameter values and subse-
quent elimination of the normalisation constant α now yields

πV2
V3

(v2) = 0.6 and πV2
V3

(¬v2) = 0.4

For vertex V4, vertex V2 equally computes

πV2
V4

(v2) = 0.6 and πV2
V4

(¬v2) = 0.4

By sending the thus computed message parameters to its respective neighbours, vertex V2
enables these neighbours to compute their probabilities in turn. Vertex V3 now computes
the probabilities of its values to be

Pr(v3) = 0.7 and Pr(¬v3) = 0.3

Vertex V4 computes its probabilities to be

Pr(v4) = 0.2 and Pr(¬v4) = 0.8

Processing evidence Now, suppose that the evidence V4 = true is observed and entered
into the Bayesian network B. We address the computation of the posterior probabilities
and the different parameters for the various vertices in the network using Pearl’s algorithm.
Vertex V4 once more sets out to compute the probabilities of its values by application of
the data fusion lemma:

Prv4(v4) = α · πV4(v4) · λV4(v4) and Prv4(¬v4) = α · πV4(¬v4) · λV4(¬v4)

Since the evidence V4 = true has been entered for a dummy successor of vertex V4, and
V4 has no other successors, V4 finds the values of its compound diagnostic parameter λV4

to be

λV4(v4) = 1 and λV4(¬v4) = 0

resulting in

Prv4(v4) = 1 and Prv4(¬v4) = 0

4.2 Probabilistic Inference 49

as expected. In addition to updating its own probabilities, vertex V4 computes a new
message parameter to send to its neighbour in the tree. Using the computation rule
stated in Lemma 4.2.6, vertex V4 computes the values of the diagnostic parameter λV2

V4
for

its predecessor V2 to be

λV2
V4

(v2) = γV4(v4 | v2) · λV4(v4) + γV4(¬v4 | v2) · λV4(¬v4) =

= 0.3 · 1 + 0.7 · 0 = 0.3

λV2
V4

(¬v2) = γV4(v4 | ¬v2) · λV4(v4) + γV4(¬v4 | ¬v2) · λV4(¬v4) =

= 0.05 · 1 + 0.95 · 0 = 0.05

By sending the thus computed message parameter to vertex V2, vertex V4 informs V2 of
the newly entered evidence, enabling it to update its probabilities.

As before, vertex V2 sets out to compute the probabilities of its values by application
of the data fusion lemma:

Prv4(v2) = α · πV2(v2) · λV2(v2) and Prv4(¬v2) = α · πV2(¬v2) · λV2(¬v2)

Since no evidence has been entered for vertex V2’s non-descendants, its compound causal
parameter πV2 is not affected and remains to be

πV2(v2) = 0.6 and πV2(¬v2) = 0.4

Using the computation rule stated in Lemma 4.2.5, vertex V2 computes the values of its
compound diagnostic parameter to be

λV2(v2) = λV2
V3

(v2) · λV2
V4

(v2) and λV2(¬v2) = λV2
V3

(¬v2) · λV2
V4

(¬v2)

It is readily seen from the Identity property that the values of the diagnostic parameter
λV2
V3

that vertex V2 receives from vertex V3 both equal one. Substitution of the various
parameter values now yields

λV2(v2) = 0.3 and λV2(¬v2) = 0.05

Vertex V2 substitutes the values of its compound parameters πV2 and λV2 into the data
fusion lemma to find

Prv4(v2) = α · 0.6 · 0.3 = α · 0.18 and Prv4(¬v2) = α · 0.4 · 0.05 = α · 0.02

After eliminating the normalisation constant α it finds

Prv4(v2) = 0.9 and Prv4(¬v2) = 0.1

In addition to updating its own probabilities, vertex V2 computes new message parameters
to send to its other neighbours than vertex V4. Using the computation rule stated in
Lemma 4.2.7, vertex V2 computes the values of the causal parameter πV2

V3
for its successor

V3 to be

πV2
V3

(v2) = α · πV2(v2) · λV2
V4

(v2) = α · 0.6 · 0.3 = 0.9

πV2
V3

(¬v2) = α · πV2(¬v2) · λV2
V4

(¬v2) = α · 0.4 · 0.05 = 0.1

Using the computation rule stated in Lemma 4.2.6, vertex V2 computes the values of the
diagnostic parameter λV1

V2
for its predecessor V1 to be

λV1
V2

(v1) = γV2(v2 | v1) · λV2(v2) + γV2(¬v2 | v1) · λV2(¬v2) =

= 0.8 · 0.3 + 0.2 · 0.05 = 0.25

λV1
V2

(¬v1) = γV2(v2 | ¬v1) · λV2(v2) + γV2(¬v2 | ¬v1) · λV2(¬v2) =

= 0.4 · 0.3 + 0.6 · 0.05 = 0.15

4.2 Probabilistic Inference 50

By sending the thus computed parameters to vertex V3 and vertex V1, respectively, vertex
V2 enables these vertices to compute their updated probabilities. Vertex V3 computes the
updated probabilities of its values to be

Prv4(v3) = 0.85 and Prv4(¬v3) = 0.15

Vertex V1 computes its updated probabilities to be

Prv4(v1) = 0.625 and Prv4(¬v1) = 0.375

�

4.2.2 Singly Connected Digraphs

So far, we have only discussed Pearl’s algorithm for probabilistic inference for Bayesian
networks comprising a directed tree for their qualitative part. In this section, we extend
the algorithm to apply to Bayesian networks of which the qualitative part is a singly
connected digraph more in general. Before detailing the computations involved in the
extended algorithm, we introduce some new terminology and notational conventions that
we will use in the sequel. We consider a singly connected digraph G. For this graph G, we
observe that removal of any arc splits the graph into two separate components. From this
property we have that in the digraph G we can identify for a vertex Vi with m neighbours,
m subgraphs of G each containing a neighbour of Vi such that, after removal of Vi and
all its incoming and outgoing arcs, there does not exist a path from one such subgraph
to another. The following definition introduces these subgraphs more formally; Figure 4.6
illustrates the basic idea.

Figure 4.6: Upper and Lower Graphs.

Definition 4.2.10 Let G = (VG,AG) be a singly connected directed graph. For each arc
(Vi, Vj) ∈ AG, let G(Vi,Vj) = (VG,AG\{(Vi, Vj)}) be the digraph that results after removing
arc (Vi, Vj) from G. Now, let Vi ∈ VG be a vertex in G. For each predecessor Vj ∈ ρG(Vi)
of Vi, let G+

(Vj ,Vi)
be the component of G(Vj ,Vi) that includes Vj in its vertex set; G+

(Vj ,Vi)

is called an upper graph of vertex Vi. For each successor Vk ∈ σG(Vi) of Vi, let G−(Vi,Vk)

be the component of G(Vi,Vk) that includes Vk in its vertex set; G−(Vi,Vk)
is called a lower

graph of Vi.

4.2 Probabilistic Inference 51

In the previous section, we have detailed Pearl’s computation rules for probabilistic in-
ference with a Bayesian network comprising a directed tree: we recall that these rules
address the computation of the different parameters for the various vertices in the tree.
The proofs of the lemmas that we have presented show that these computation rules de-
rive from exploiting independences. These independences are read from the qualitative
part of a Bayesian network by local inspection of a vertex’ incoming and outgoing arcs
only. The computation rules therefore make use explicitly of the property that in the
network’s digraph there is at most one chain between any two vertices. Since singly con-
nected digraphs share this property with directed trees, Pearl’s tree algorithm is extended
straightforwardly to apply to Bayesian networks comprising a singly connected digraph
for their qualitative part. In fact, only the computation rules for the compound causal
parameter and for the diagnostic message parameters are adapted to account for a vertex
having multiple predecessors; all other computation rules remain unaltered. For the sake
of completeness, we will review all computation rules involved.

Defining Compound Parameters

We begin by addressing the computation of probabilities from a Bayesian network com-
prising a singly connected digraph. It will be evident that the probabilities of the values
of a vertex of interest are dependent upon all evidence entered into the network so far. As
we have seen for the vertices in a directed tree, the probabilities of the values of a vertex in
a singly connected digraph can be written in terms of two factors. These factors describe
the combined influence on the vertex’ probabilities of evidence entered for the vertices in
its upper graphs and of evidence entered for the vertices in its lower graphs, respectively.
We redefine the compound causal and diagnostic parameters for a vertex to capture these
factors in view of singly connected digraphs.

Definition 4.2.11 Let B = (G,Γ) be a Bayesian network where G = (VG,AG) is a singly
connected digraph, and let Pr be the joint probability distribution defined by B. Let Vi ∈ VG
be a vertex in G, and let V +

i =
⋃

Vj∈ρG(Vi)
VG+

(Vj,Vi)
and V −i = VG \ V +

i . The compound

causal parameter πVi for vertex Vi is the function πVi : Vi → [0, 1] defined by

πVi(Vi) = Pr(Vi | c̃V +
i

)

The compound diagnostic parameter λVi for Vi is the function λVi : Vi → [0, 1] defined by

λVi(Vi) = Pr(c̃V −i
| Vi)

Note that this redefinition of the compound parameters differs from Definition 4.2.2 with
respect to the sets V +

i and V −i for a vertex Vi. The basic idea of the parameters, however,
remains unaltered. The compound causal parameter for a vertex describes the combined
influence on its probabilities of all evidence that has been entered ‘above’ it in the digraph;
the compound diagnostic parameter for the vertex describes the combined influence of all
evidence that has been entered ‘below’ it in the digraph.

Special cases and data fusion reconsidered Note that again, for a vertex W without
any incoming arcs, we once more find πW (W) = Pr(W); for a vertex V without any
outgoing arcs, we again have λV (V) = 1. We will refer to such vertices as roots and leafs,
respectively, even in de context of a singly connected graph.

Using the redefinition of the compound causal and diagnostic parameters for a vertex,
the data fusion lemma now applies to a Bayesian network comprising a singly connected
digraph for its qualitative part: for each vertex Vi in the network, we once more have

Pr(Vi | c̃VG) = α · πVi(Vi) · λVi(Vi) with normalisation constant α.

4.2 Probabilistic Inference 52

Defining Message Parameters

The compound diagnostic and causal parameters for a vertex specify probabilistic informa-
tion from its lower graphs combined and from all its upper graphs combined, respectively.
We observe that to be able to exploit the qualitative part of a Bayesian network as a
computational architecture, these compound parameters once again have to be computed
from causal and diagnostic message parameters originating from the various neighbours
of the vertex. We redefine these message parameters before addressing the computation
of the compound ones.

Definition 4.2.12 Let B = (G,Γ) be a Bayesian network where G = (VG,AG) is a singly
connected digraph, and let Pr be the joint probability distribution defined by B. Let Vi
be a vertex with a successor Vk in G and let G+

(Vi,Vk)
be as before. The causal (message)

parameter πVi
Vk

from Vi to Vk is the function πVi
Vk

: Vi → [0, 1] defined by

πVi
Vk

(Vi) = Pr(Vi | c̃V
G+
(Vi,Vk)

)

Now, let Vi be a vertex having a predecessor Vj in G and let G−(Vj ,Vi)
be as before. The

diagnostic (message) parameter λ
Vj

Vi
from Vi to Vj is the function λ

Vj

Vi
: Vj → [0, 1] defined

by

λ
Vj

Vi
(Vj) = Pr(c̃V

G−
(Vj,Vi)

| Vj)

The causal and diagnostic message parameters defined above once again are the messages
that the vertices send one another through the communication channels of the computa-
tional architecture and, hence, may again be looked upon as associated with the arcs of
the digraph of the Bayesian network at hand.

Computing Compound Parameters

The following lemma now shows that a vertex can compute its compound causal parameter
from its own assessment function and the causal message parameters it receives from its
various predecessors.

Lemma 4.2.13 Let B = (G,Γ) be a Bayesian network where G = (VG,AG) is a singly
connected digraph. Let Vi ∈ VG be a vertex with the predecessors ρG(Vi) = {Vj1 , . . . , Vjn},
n ≥ 1, in G. Furthermore, let πVi be the compound causal parameter for vertex Vi and,

for each Vjk ∈ ρG(Vi), let π
Vjk
Vi

be the causal parameter from Vjk to Vi. Then,

πVi(Vi) =
∑

cρG(Vi)

γVi(Vi | cρG(Vi)) ·
∏

k=1,...,n

π
Vjk
Vi

(cVjk
)

where cρG(Vi) =
∧

k=1,...,n cVjk
.

Proof. Let Pr be the joint probability distribution defined by the Bayesian network B.
For vertex Vi, let V +

i =
⋃

k=1,...,n VG+
(Vjk

,Vi)
be as before. Then, by definition we have that

πVi(Vi) = Pr(Vi | c̃V +
i

) = Pr(Vi | c̃V
G+
(Vj1

,Vi)

∧ · · · ∧ c̃V
G+
(Vjn ,Vi)

)

4.2 Probabilistic Inference 53

Vj1 Vjn

Vi

. . .

V (G+
(Vj1

,Vi)
) V (G+

(Vjn ,Vi)

Figure 4.7: Exploiting d-Separation for Computing πVi(Vi).

By conditioning on the various configurations of the set ρG(Vi) of Vi’s predecessors, we
find

πVi(Vi) =
∑

cρG(Vi)

Pr(Vi | cρG(Vi) ∧ c̃VG+
(Vj1

,Vi)

∧ · · · ∧ c̃V
G+
(Vjn ,Vi)

)·

·Pr(cρG(Vi) | c̃VG+
(Vj1

,Vi)

∧ · · · ∧ c̃V
G+
(Vjn ,Vi)

)

Now consider Figure 4.7 showing a fragment of the singly connected digraph G of the
network. Using the d-separation criterion, we observe that 〈{Vi}|ρG(Vi) |X〉dG for all sets
of vertices X ⊆ V +

i . Since G is a directed I-map for the distribution Pr, it follows that

I Pr({Vi},ρG(Vi),X) for all sets X ⊆ V +
i . Exploiting this observation, we find

πVi(Vi) =
∑

cρG(Vi)

Pr(Vi | cρG(Vi)) · Pr(cρG(Vi) | c̃VG+
(Vj1

,Vi)

∧ · · · ∧ c̃V
G+
(Vjn ,Vi)

)

By once more using the d-separation criterion, we find that I Pr(X, {Vjk},Y) for all sets
of vertices X ⊆ VG+

(Vjk
,Vi)

, Y ⊆ VG+
(Vjl

,Vi)
, l = 1, . . . , n, k = 1, . . . , n, k 6= l. Exploiting this

observation, we find

πVi(Vi) =
∑

cρG(Vi)

Pr(Vi | cρG(Vi)) · Pr(cVj1
| c̃V

G+
(Vj1

,Vi)

) · . . . · Pr(cVjn
| c̃V

G+
(Vjn ,Vi)

)

where cρG(Vi) =
∧

k=1,...,n cVjk
. The probabilities Pr(Vi | cρG(Vi)) have been specified as

function values of the assessment function γVi and therefore are directly available to vertex
Vi. In addition, Vi receives the probabilities Pr(cVjk

| c̃V
G+
(Vjk

,Vi)

) from its predecessor Vjk

as function values of the causal parameter π
Vjk
Vi

, k = 1, . . . , n. The property stated in the
lemma now follows by substitution. �

A vertex can further compute its compound diagnostic parameter from the diagnostic mes-
sage parameters it receives from its successors in the digraph. This property is analogous
to the property stated in Lemma 4.2.5, that is, for an uninstantiated vertex Vi ∈ VG with
successors σG(Vi) = {Vi1 , . . . , Vim}, m ≥ 1, in the digraph, we have that

λVi(Vi) =
∏

j=1,...,m

λVi
Vij

(Vi)

The property can be taken to apply to instantiated vertices using dummy vertices as out-
lined before. The Identity property stated in Lemma 4.2.8 also holds for singly connected
digraphs.

4.2 Probabilistic Inference 54

Computing Message Parameters

A vertex in turn has to compute message parameters to send to its various neighbours.
A vertex Vi can compute the diagnostic parameter to send to a predecessor Vjk from its
own probability assessment function, its compound diagnostic parameter, and the causal
message parameters it receives from its other predecessors.

Lemma 4.2.14 Let B = (G,Γ) be a Bayesian network where G = (VG,AG) is a singly
connected graph. Let Vi ∈ VG be a vertex with predecessors ρG(Vi) = {Vj1 , . . . , Vjn},
n ≥ 1, in G. Let λVi be the compound diagnostic parameter for vertex Vi, and let π

Vjl
Vi

be

the causal parameter from Vjl ∈ ρG(Vi) to Vi. Futhermore, for each Vjk ∈ ρG(Vi), let λ
Vjk
Vi

be the diagnostic parameter from Vi to Vjk . Then,

λ
Vjk
Vi

(Vjk) = α ·
∑
cVi

λVi(cVi) ·

 ∑
cρG(Vi)\{Vjk}

(
γVi(cVi | cρG(Vi)\{Vjk

} ∧ Vjk)·

·
∏

l=1,...,n,l 6=k

π
Vjl
Vi

(cVjl
)

where cρG(Vi)\{Vjk

} =
∧

l=1,...,n,l 6=k cVjl
and α is a normalisation constant.

Proof. Let Pr be the joint probability distribution defined by the Bayesian network B.
Let V −i , G− and G+ be as before. Then, by definition we have that

λ
Vjk
Vi

(Vjk) = Pr(c̃V
G−
(Vjk

,Vi)

| Vjk) = Pr(c̃V −i
∧ c̃

V
+\k
i

)
| Vjk),

where V
+\k
i =

⋃
h=1,...,n,h 6=k VG+

(Vjh
,Vi)

captures the vertices in the upper graphs of all

predecessors of Vi except Vjk .
By conditioning on the values of Vi, we now find

λ
Vjk
Vi

(Vjk) =
∑
cVi

Pr(c̃V −i
∧ c̃

V
+\k
i

| cVi ∧ Vjk) · Pr(cVi | Vjk)

Using d-separation, it now follows that given Vi, V
−
i is independent of V \ V −i . So,

λ
Vjk
Vi

(Vjk) =
∑
cVi

Pr(c̃V −i
| cVi ∧ Vjk) · Pr(c̃

V
+\k
i

| cVi ∧ Vjk) · Pr(cVi | Vjk) =

=
∑
cVi

Pr(c̃V −i
| cVi) · Pr(cVi | Vjk) ·

Pr(cVi | c̃V +\k
i

∧ Vjk) · Pr(c̃
V

+\k
i

| Vjk)

Pr(cVi | Vjk)

=
∑
cVi

Pr(c̃V −i
| cVi) · Pr(cVi | c̃V +\k

i

∧ Vjk) · Pr(c̃
V

+\k
i

| Vjk)

Vertex Vi computes the probabilities Pr(c̃V −i
| cVi) as function values of its compound

diagnostic parameter λVi . d-Separation tells us that all predecessors of Vi are independent
of each other, so

Pr(c̃
V

+\k
i

| Vjk) =
∏

h=1,...,n,h 6=k

Pr(c̃V
G+
(Vjh

,Vi)

)

4.2 Probabilistic Inference 55

The latter factor is constant with respect to the values of Vjk and may therefore be looked
upon as a normalisation constant, which we denote by α.2

We now focus on the term Pr(cVi | c̃V +\k
i

∧ Vjk) and condition on the values of all

predecessors of Vi except Vjk :∑
cρG(Vi)\{Vjk}

Pr(cVi | c̃V +\k
i

∧ Vjk ∧ cρG(Vi)\{Vjk
}) · Pr(cρG(Vi)\{Vjk

} | c̃V +\k
i

∧ Vjk)

Using d-separation, it now follows that given Vi’s predecessors, Vi is independent of V \V −i ;
in addition, recall that all predecessors of Vi are independent of each other. So the above
term reduces to∑

cρG(Vi)\{Vjk}

Pr(cVi | Vjk ∧ cρG(Vi)\{Vjk
}) ·

∏
l=1,...,n,l 6=k

Pr(cVjl
| c̃
V

+\k
i

∧ Vjk)

=
∑

cρG(Vi)\{Vjk}

Pr(cVi | Vjk ∧ cρG(Vi)\{Vjk
}) ·

∏
l=1,...,n,l 6=k

Pr(cVjl
| c̃V

G+
(Vjl

,Vi)

)

The probabilities Pr(cVi | Vjk ∧ cρG(Vi)\{Vjk
}) have been specified as function values of the

assessment function γVi associated with vertex Vi and hence are directly available to Vi.
In addition, Vi receives the probabilities Pr(cVjl

| c̃V
G+
(Vjl

,Vi)

) from each of its predecessors

ρG(Vi) \ {Vjk} as function values of their causal parameters π
Vjl
Vi

. The property stated in
the lemma now follows by substitution. �

Finally, if we consider a vertex Vi with successors σG(Vi) = {Vi1 , . . . , Vim} in the digraph,
then the causal message parameter vertex Vi has to send to a successor, is computed from
its compound causal parameter and the diagnostic parameters it receives from its other
successors; this property is analogous to the property stated in Lemma 4.2.7:

πVi
Vij

(Vi) = α · πVi(Vi) ·
∏

k=1,...,m,k 6=j

λVi
Vik

(Vi)

where α once more is a normalisation constant.

Pearl’s Algorithm in Singly Connected Graphs

The data fusion lemma and the four computation rules mentioned above with each other
constitute Pearl’s algorithm for probabilistic inference with a Bayesian network comprising
a singly connected digraph for its qualitative part. Once more, these computation rules
provide for computing probabilities as well as for processing evidence in such a Bayesian
network. The computation rules for the causal and diagnostic message parameters enable a
vertex to correctly pass on the impact of a piece of evidence to its neighbours. As feedback
and circular reasoning once more are excluded, evidence is thus propagated throughout
the network in a single pass.

Example 4.2.15 We consider once more the Bayesian network B = (G,Γ) from Exam-
ple 4.1.2; for ease of reference, the network is reproduced in Figure 4.8. Note that the
digraph G of B is not a directed tree, yet is singly connected.

2Note that in this case α cannot be trivially computed, since λ
Vjk
Vi

(vjk) + λ
Vjk
Vi

(¬vjk) typically does not
equal 1. For this reason, in applying Pearl’s algorithm, normalisation is usually postponed to the final step
of data-fusion.

4.2 Probabilistic Inference 56

V1

V3

V2

V4

γV1(v1) = 0.25 γV2(v2) = 0.5

γV3(v3 | v1 ∧ v2) = 0.75
γV3(v3 | ¬v1 ∧ v2) = 0.4

γV3(v3 | v1 ∧ ¬v2) = 0.25
γV3(v3 | ¬v1 ∧ ¬v2) = 0.2

γV4(v4 | v3) = 0.8
γV4(v4 | ¬v3) = 0

Figure 4.8: The Example Bayesian Network Reproduced.

Let Pr be the joint probability distribution defined by the network B. We address the
computation of the probabilities Pr(v3) and Pr(¬v3) using Pearl’s algorithm. Vertex V3
sets out to compute the probabilities of interest by application of the data fusion lemma:

Pr(v3) = α · πV3(v3) · λV3(v3) and Pr(¬v3) = α · πV3(¬v3) · λV3(¬v3)

Vertex V3 now needs to compute its compound parameters πV3 and λV3 . Since no evidence
has been entered into the network as yet, we have that the values of the compound
diagnostic parameter λV3 equal

λV3(v3) = 1 and λV3(¬v3) = 1 (Identity property)

Vertex V3 computes the values of its compound causal parameter πV3 from

πV3(v3) = γV3(v3 | v1 ∧ v2) · πV1
V3

(v1) · πV2
V3

(v2)+

+ γV3(v3 | ¬v1 ∧ v2) · πV1
V3

(¬v1) · πV2
V3

(v2)+

+ γV3(v3 | v1 ∧ ¬v2) · πV1
V3

(v1) · πV2
V3

(¬v2)+
+ γV3(v3 | ¬v1 ∧ ¬v2) · πV1

V3
(¬v1) · πV2

V3
(¬v2)

πV3(¬v3) = γV3(¬v3 | v1 ∧ v2) · πV1
V3

(v1) · πV2
V3

(v2)+

+ γV3(¬v3 | ¬v1 ∧ v2) · πV1
V3

(¬v1) · πV2
V3

(v2)+

+ γV3(¬v3 | v1 ∧ ¬v2) · πV1
V3

(v1) · πV2
V3

(¬v2)+
+ γV3(¬v3 | ¬v1 ∧ ¬v2) · πV1

V3
(¬v1) · πV2

V3
(¬v2)

It can be readily shown that vertex V3 receives from its predecessor V1 the causal parameter
πV1
V3

with the values

πV1
V3

(v1) = πV1(v1) = γV1(v1) = 0.25 and πV1
V3

(¬v1) = 0.75

The above steps follow from the property of Causal parameter equivalence (introduced in
Exercise 4.3(c)) and the fact that V1 is a root vertex. Likewise, vertex V3 receives from its
predecessor V2 the causal parameter πV2

V3
with the values

πV2
V3

(v2) = 0.5 and πV2
V3

(¬v2) = 0.5

Substitution now yields the following values for V3’s compound causal parameter:

πV3(v3) = 0.75 · 0.25 · 0.5 + 0.4 · 0.75 · 0.5 + 0.25 · 0.25 · 0.5 + 0.2 · 0.75 · 0.5 =
= 0.35

πV3(¬v3) = 0.25 · 0.25 · 0.5 + 0.6 · 0.75 · 0.5 + 0.75 · 0.25 · 0.5 + 0.8 · 0.75 · 0.5 =
= 0.65

Subsequent substitution of the values of the compound parameters into the data fusion
lemma and elimination of the normalisation constant α yields

Pr(v3) = 0.35 and Pr(¬v3) = 0.65

4.2 Probabilistic Inference 57

Processing evidence Now, suppose that the evidence V3 = true is observed and en-
tered into the Bayesian network. We address the computation of the posterior probabilities
Prv3(v1) and Prv3(¬v1) using Pearl’s algorithm. Vertex V1 sets out to compute the prob-
abilities of interest by application of the data fusion lemma:

Prv3(v1) = α · πV1(v1) · λV1(v1) and Prv3(¬v1) = α · πV1(¬v1) · λV1(¬v1)

Root vertex V1 now has to compute its compound parameters πV1 and λV1 . For the
compound causal parameter, it finds the values

πV1(v1) = 0.25 and πV1(¬v1) = 0.75

The values of the compound diagnostic parameter λV1 are computed from

λV1(v1) = λV1
V3

(v1) and λV1(¬v1) = λV1
V3

(¬v1)

From its successor V3, vertex V1 receives the diagnostic parameter λV1
V3

. The computation
rule for this parameter includes compound parameter λV3(V3) that is set through the 0-1
message V3 receives from its dummy successor to reflect its instantiation. In addition, it
includes causal message parameter πV2

V3
(V2), which is not affected by the instantiation and

remains unchanged. We therefore find the following values

λV1
V3

(v1) = λV3(v3) ·
[
γV3(v3 | v1 ∧ v2) · πV2

V3
(v2) + γV3(v3 | v1 ∧ ¬v2) · πV2

V3
(¬v2)

]
+ λV3(¬v3) ·

[
γV3(¬v3 | v1 ∧ v2) · πV2

V3
(v2) + γV3(¬v3 | v1 ∧ ¬v2) · πV2

V3
(¬v2)

]
= γV3(v3 | v1 ∧ v2) · πV2

V3
(v2) + γV3(v3 | v1 ∧ ¬v2) · πV2

V3
(¬v2) =

= 0.75 · 0.5 + 0.25 · 0.5 = 0.5

λV1
V3

(¬v1) = λV3(v3) ·
[
γV3(v3 | ¬v1 ∧ v2) · πV2

V3
(v2) + γV3(v3 | ¬v1 ∧ ¬v2) · πV2

V3
(¬v2)

]
+ λV3(¬v3) ·

[
γV3(¬v3 | ¬v1 ∧ v2) · πV2

V3
(v2) + γV3(¬v3 | ¬v1 ∧ ¬v2) · πV2

V3
(¬v2)

]
= γV3(v3 | ¬v1 ∧ v2) · πV2

V3
(v2) + γV3(v3 | ¬v1 ∧ ¬v2) · πV2

V3
(¬v2)

= 0.4 · 0.5 + 0.2 · 0.5 = 0.3

From the diagnostic parameter λV1
V3

it receives from its successor V3, vertex V1 now finds
the values of its compound diagnostic parameter to be

λV1(v1) = 0.5 and λV1(¬v1) = 0.3

Substitution of the values of the compound parameters into the data fusion lemma yields

Prv3(v1) = α · 0.25 · 0.5 = α · 0.125
Prv3(¬v1) = α · 0.75 · 0.3 = α · 0.225

After elimination of the normalisation constant α (note that we postponed all normalisa-
tion until this last step!), vertex V1 finds

Prv3(v1) = 0.357 and Prv3(¬v1) = 0.643

�

Complexity of Pearl’s Algorithm

To conclude our discussion of Pearl’s algorithm so far, we take a (superficial) look at the
algorithm’s computational complexity. An analysis of the computation rules involved in
the algorithm serves to show that it has a worst-case computational time complexity that

4.2 Probabilistic Inference 58

is exponential in the number of vertices in a network’s digraph. We consider, in a Bayesian
network with n vertices, a vertex Vi with O(n) predecessors and O(n) successors. For this
vertex, computing the compound causal parameter requires at most O(2n) computations;
computing its compound diagnostic parameter requires at most O(n) computations. Ver-
tex Vi can therefore compute the probabilities of its values in at most O(2n) time. The
computation of a single diagnostic message parameter from Vi requires at most O(2n) com-
putations; the computation of a single causal message parameter requires only constant
time. Vertex Vi can therefore compute all parameters to send to its various neighbours in
at most O(n · 2n) time. Propagating a single piece of evidence throughout the network
may thus require O(n2 · 2n) computations. The exponential factor in the computational
time complexity of Pearl’s algorithm arises solely from the number of predecessors a vertex
can have in a network’s digraph: if the predecessor sets are bounded in size by a constant,
then the algorithm has a linear runtime complexity.

4.2.3 Multiply Connected Digraphs

In the previous section, we have detailed Pearl’s algorithm for probabilistic inference with
a Bayesian network comprising a singly connected digraph for its qualitative part. We will
now extend the algorithm to apply to Bayesian networks of which the qualitative part is
a multiply connected digraph.

We recall from our discussion of Pearl’s algorithm so far, that the computation rules
for probabilistic inference with a Bayesian network comprising a singly connected digraph
derive from exploiting independences that are read from the network’s graph by local
inspection of a vertex’ incoming and outgoing arcs. These computation rules therefore
make use explicitly of the property that in a singly connected digraph there is at most
one chain between any two vertices. We observe that this property does not hold in a
multiply connected digraph as in such a graph there may be multiple chains between
vertices. Local inspection of a vertex’ incident arcs now no longer suffices for reading
independences from a Bayesian network’s digraph. In fact, application of Pearl’s algo-
rithm discussed so far to a Bayesian network comprising a multiply connected digraph
inevitably leads to various problems due to the presence of loops in the network’s di-
graph [Suermondt & Cooper, 1990]: vertices may indefinitely send newly updated mes-
sages, originating from the same evidence, to their neighbours, causing the network never
to reach a new equilibrium, and even if the network does reach an equilibrium, it is not
guaranteed to reflect the correct updated joint probability distribution. Pearl’s algorithm,
therefore, cannot be extended based on similar ideas as before to apply to networks with
a multiply connected digraph: the algorithm has to be supplemented with an additional
method for coping with the loops in such a digraph.

The best-known method for coping with loops in probabilistic inference is the method
of loop cutset conditioning [Pearl, 1988]. The idea underlying the method of loop cutset
conditioning is that of reasoning by assumption. For a multiply connected digraph of a
Bayesian network, vertices are selected that, upon instantiation, with each other effectively
‘cut’ all loops of the digraph and cause it to ‘behave’ as if it were singly connected; the
selected vertices are said to constitute a loop cutset for the network’s digraph. During
probabilistic inference with the network, each configuration of the selected loop cutset
is looked upon as a (compound) assumption on which reasoning is performed: for each
vertex, the probabilities of its values are computed by conditioning successively on all
possible configurations of the loop cutset and subsequently weighting the results obtained
with the probabilities of these configurations. Since upon instantiation of the loop cutset
the digraph behaves as if it were singly connected, the probabilities of a vertex’ values can
simply be computed from the network using Pearl’s basic algorithm for Bayesian networks

4.2 Probabilistic Inference 59

V1

V2

V3

V5

V4

V6

V7

V8

V9

V10 V11

V12

Figure 4.9: An Example Multiply Connected Digraph.

with a singly connected digraph.

Loop Cutsets

We begin our discussion of the method of loop cutset conditioning by detailing the concept
of a loop cutset for a Bayesian network’s multiply connected digraph. A loop cutset has
to provide, upon instantiation, for the multiply connected digraph to behave as if it were
singly connected, regardless of the evidence that has been entered into the network at
hand. Note that a loop cutset then serves to prevent, at any time, probabilistic information
originating at a single vertex in the digraph to reach another vertex along multiple chains.
For this purpose, a loop cutset has to cut, or block, every cyclic chain, or loop, in the
network’s digraph. Note that it does not suffice to block a cyclic chain by the empty set
as this chain may become unblocked as further evidence is entered into the network. From
these observations, we find that a loop cutset has to block all cyclic chains in the digraph
in such a way that each such chain contains at least one vertex from the loop cutset that
has an outgoing arc on the chain.

Definition 4.2.16 Let G = (VG,AG) be an acyclic multiply connected digraph. A set
of vertices LG ⊆ VG is called a loop cutset for G if each loop s in G contains three
consecutive vertices X1, X2, X3, for which one of the following conditions holds:

� arcs (X2, X1) and (X2, X3) are on the loop s, and X2 ∈ LG;

� arcs (X1, X2) and (X2, X3) are on the loop s, and X2 ∈ LG.

Note that a Bayesian network’s multiply connected digraph G may allow several different
loop cutsets; in fact, any superset of a loop cutset for G is also a loop cutset for G. Also
note that any loop cutset for G is a non-empty set of vertices.

Example 4.2.17 We consider the multiply connected digraphG shown in Figure 4.9. The
sets of vertices {V2, V6, V9}, {V3, V4, V9}, and {V2, V8, V10, V11} are example loop cutsets for
G. �

4.2 Probabilistic Inference 60

Loop Cutset Conditioning

After having detailed the concept of a loop cutset, we now turn to the method of loop
cutset conditioning itself. To this end, we consider a Bayesian network B = (G,Γ) where
G = (VG,AG) is an acyclic multiply connected digraph; let Pr be the joint probability
distribution defined by B. Furthermore, suppose that we have the loop cutset LG for the
digraph G of the network, as defined above. We now address computing the probabilities of
the values of some vertex Vi in G, that is, we consider the computation of the probabilities
Pr(Vi | c̃VG). As the digraph G is multiply connected, these probabilities cannot be
computed directly from the network using Pearl’s algorithm. Since the loop cutset has
been chosen so as to block, upon instantiation, all cyclic chains in the digraph, we observe
that any probability that is conditioned on a configuration of (at least)the loop cutset can
be computed from the network directly. Now, by conditioning the probabilities Pr(Vi | c̃VG)
of interest on the various configurations of the loop cutset LG for G, we find

Pr(Vi | c̃VG) =
∑
cLG

Pr(Vi | c̃VG ∧ cLG
) · Pr(cLG

| c̃VG)

The probabilities Pr(Vi | c̃VG ∧ cLG
) are now conditioned on a configuration of (at least)

the loop cutset and therefore can be computed directly from the Bayesian network using
Pearl’s basic algorithm. The probabilities Pr(cLG

| c̃VG), however, cannot be computed
from the Bayesian network directly. For computing these probabilities, the following
recursive computation rules are used:

� the prior probabilities Pr(cLG
) are computed from the joint probability distribution

Pr using the property stated in Proposition 4.1.3 [Suermondt & Cooper, 1991].

� for the first piece of evidence e1 entered into the Bayesian network, the (updated)
probabilities of the configurations of the loop cutset are computed from

Pr(cLG
| e1) = α · Pr(e1 | cLG

) · Pr(cLG
)

where α is a normalisation constant. The probabilities Pr(e1 | cLG
) are computed di-

rectly from the network using Pearl’s basic algorithm for singly connected digraphs;
the probabilities Pr(cLG

) have been computed before and, hence, are already avail-
able.

� for the j-th piece of evidence ej entered into the network, the (updated) probabilities
of the configurations of the loop cutset are computed from

Pr(cLG
| e1 ∧ · · · ∧ ej) = α · Pr(ej | cLG

∧ e1 ∧ · · · ∧ ej−1)·
·Pr(cLG

| e1 ∧ · · · ∧ ej−1)

where α once more is a normalisation constant. The probabilities Pr(ej | cLG
∧

e1 ∧ · · · ∧ ej−1) are computed directly from the Bayesian network using Pearl’s basic
algorithm; the probability Pr(cLG

| e1 ∧ · · · ∧ ej−1) has been computed before in the
previous step of the recursion and need not be re-computed.

Note that the probabilities of the configurations of a digraph’s loop cutset involve in-
formation from the probability distribution concerning various vertices combined. These
probabilities therefore cannot be computed from the network by local message passing
between neighbouring vertices alone. For this purpose, the computational architecture is
enhanced with a global supervisor that is capable of performing the recursive computation
rules outlined above.

We briefly illustrate the method of loop cutset conditioning by means of an example.

4.2 Probabilistic Inference 61

Example 4.2.18 We consider the Bayesian network B = (G,Γ) shown in Figure 4.10.
Let Pr be the joint probability distribution defined by B. We address the computation of
the probabilities Pr(v4) and Pr(¬v4) using Pearl’s algorithm.

V1

V2

V3 V4

V5

γV1(v1) = 0.6

γV2(v2 | v1) = 0.1
γV2(v2 | ¬v1) = 0.35

γV3(v3 | v2) = 0.9
γV3(v3 | ¬v2) = 0.4

γV4(v4 | v2) = 0.6
γV4(v4 | ¬v2) = 0.1

γV5(v5 | v2 ∧ v4) = 0.25
γV5(v5 | ¬v2 ∧ v4) = 0.7

γV5(v5 | v2 ∧ ¬v4) = 0.15
γV5(v5 | ¬v2 ∧ ¬v4) = 0.7

Figure 4.10: An Example Bayesian Network.

We begin by observing that the digraph G of the Bayesian network is multiply connected.
To compute the probabilities of interest from the network, we extend Pearl’s algorithm
with the method of loop cutset conditioning. Suppose that for this purpose we choose for
the digraph G the loop cutset LG = {V2}. The global supervisor of the architecture now
starts the computation by computing the probabilities of the configurations of the loop
cutset. To this end, it employs the factorisation property stated in Proposition 4.1.3 to
find from Γ that

Pr(v2) = Pr(v1 ∧ v2) + Pr(¬v1 ∧ v2) =
= γV2(v2 | v1) · γV1(v1) + γV2(v2 | ¬v1) · γ(¬v1) =
= 0.1 · 0.6 + 0.35 · 0.4 = 0.2

Pr(¬v2) = Pr(v1 ∧ ¬v2) + Pr(¬v1 ∧ ¬v2) =
= γV2(¬v2 | v1) · γV1(v1) + γV2(¬v2 | ¬v1) · γ(¬v1) =
= 0.9 · 0.6 + 0.65 · 0.4 = 0.8

The probabilities of interest are now computed by conditioning on the different configu-
rations of the chosen loop cutset:

Pr(v4) = Pr(v4 | v2) · Pr(v2) + Pr(v4 | ¬v2) · Pr(¬v2)
Pr(¬v4) = Pr(¬v4 | v2) · Pr(v2) + Pr(¬v4 | ¬v2) · Pr(¬v2)

The global supervisor provisionally enters the value true for vertex V2 into the network
to enable vertex V4 to compute the probabilities Pr(v4 | v2) and Pr(¬v4 | v2). Using the
computation rules for a single connected graph, vertex V4 computes these probabilities to
be

Pr(v4 | v2) = 0.6 and Pr(¬v4 | v2) = 0.4

The global supervisor now retracts the value true for vertex V2 and subsequently enters
the value false for the vertex. It now requests vertex V4 to compute the probabilities
Pr(v4 | ¬v2) and Pr(¬v4 | ¬v2). Vertex V4 returns

Pr(v4 | ¬v2) = 0.1 and Pr(¬v4 | ¬v2) = 0.9

The global supervisor substitutes the probabilities returned by vertex V4 and the proba-
bilities it has itself computed for the loop cutset, into the conditioning formula to find

Pr(v4) = 0.6 · 0.2 + 0.1 · 0.8 = 0.2 and Pr(¬v4) = 0.4 · 0.2 + 0.9 · 0.8 = 0.8

4.2 Probabilistic Inference 62

Processing evidence Now suppose that the evidence V3 = true is observed and entered
into the Bayesian network B. We address the computation of the updated probabilities of
the values of vertex V4. The global supervisor begins with updating the probabilities of
the configurations of the loop cutset according to the recursive computation rule (page 60)

Pr(v2 | v3) = α · Pr(v3 | v2) · Pr(v2) and
Pr(¬v2 | v3) = α · Pr(v3 | ¬v2) · Pr(¬v2)

where α is a normalisation constant. The supervisor requests from vertex V3 the proba-
bilities Pr(v3 | v2) and Pr(v3 | ¬v2); to enable vertex V3 to compute these probabilities,
it provisionally enters and retracts the values true and false for vertex V2, respectively.
Vertex V3 computes the requested probabilities to be

Pr(v3 | v2) = 0.9 and Pr(v3 | ¬v2) = 0.4

After substitution and subsequent elimination of the normalisation constant α, the global
supervisor finds

Pr(v2 | v3) = 0.36 and Pr(¬v2 | v3) = 0.64

The probabilities of interest are now computed by conditioning as before:

Prv3(v4) = Pr(v4 | v2 ∧ v3) · Pr(v2 | v3) + Pr(v4 | ¬v2 ∧ v3) · Pr(¬v2 | v3) =
= 0.6 · 0.36 + 0.1 · 0.64 = 0.28

Prv3(¬v4) = Pr(¬v4 | v2 ∧ v3) · Pr(v2 | v3) + Pr(¬v4 | ¬v2 ∧ v3) · Pr(¬v2 | v3) =
= 0.4 · 0.36 + 0.9 · 0.64 = 0.72

�

Complexity of Enhancing Pearl’s Algorithm with Loop Cutset Conditioning

To conclude our discussion of the enhancement of Pearl’s algorithm for probabilistic in-
ference with the method of loop cutset conditioning, we take a (superficial) look at the
algorithm’s computational complexity. We recall that analysis of Pearl’s algorithm for
Bayesian networks comprising a singly connected digraph has revealed that a vertex can
compute the probabilities of its values in at most O(2n) time, where n is the number of
vertices in the network’s digraph. Propagating a piece of evidence throughout the net-
work may require as many as O(n2 · 2n) computations. An analysis of the method of
loop cutset conditioning now serves to show that the method adds a factor to the basic
algorithm’s computational complexity that is exponential in the size of the loop cutset
employed. Initialising the probabilities for the loop cutset’s configurations requires O(2l)
computations, where l is the number of vertices in the loop cutset. Computing the prob-
abilities of a vertex’ values now takes O(2n+l) time, since these probabilities have to be
computed conditioned on every possible configuration of the loop cutset. Propagating a
piece of evidence requires at most O(n2 · 2n+l) computations.

Finding a Loop Cutset

In the foregoing, we have argued that the computational complexity of Pearl’s algorithm
enhanced with loop cutset conditioning, for probabilistic inference with Bayesian networks
comprising a multiply connected digraph, is exponential in the size of the loop cutset
employed. From a computational point of view, therefore, the best loop cutset to use
in practical applications is a loop cutset having the smallest number of vertices. A loop
cutset with the smallest number of vertices is called an optimal loop cutset; we define the
concept of an optimal loop cutset more formally.

4.2 Probabilistic Inference 63

Definition 4.2.19 Let G be an acyclic multiply connected digraph. A loop cutset LG for
G is called minimal for G if no proper subset of LG is a loop cutset for G; the loop cutset
LG is called optimal for G if for any other loop cutset L′G for G we have that |LG| ≤ |L′G|.

Note that an optimal loop cutset for a multiply connected digraph also is a minimal loop
cutset for this digraph; the reverse in general is not true. Also note that an optimal loop
cutset for a digraph need not be unique.

Example 4.2.20 We consider again the multiply connected digraph G from Figure 4.9.
The sets of vertices {V2, V6, V9} and {V3, V4, V9} are optimal loop cutsets for G. The set
of vertices {V2, V8, V10, V11} is a minimal loop cutset for G, but not optimal. The set of
vertices {V2, V4, V8, V9} is a loop cutset that is neither optimal nor minimal for G. �

Unfortunately, the problem of finding an optimal loop cutset for an acyclic multiply con-
nected digraph is known to be NP-hard [Suermondt & Cooper, 1990]; hence, it is not likely
that a generally applicable polynomial-time algorithm for this problem will be found. For
the purpose of finding a good loop cutset for a given multiply connected digraph, therefore,
generally a heuristic algorithm is used. The best known among these algorithms is a heuris-
tic algorithm designed by H.J. Suermondt and G.F. Cooper [Suermondt & Cooper, 1990].

The Suermondt & Cooper heuristic The loop-cutset algorithm of Suermondt and
Cooper takes an acyclic multiply connected digraph G for its input and yields a loop cutset
LG for G as its output. The algorithm is composed of two basic phases that are alternated
recursively. In the first phase, the algorithm deletes from the digraph G as many vertices
as possible that are not included in any loop; such vertices need not be considered as
candidates for the loop cutset as upon instantiation they will never block any loops in G.
For this purpose, all vertices that have at most one incident arc are removed recursively
from G, along with their incident arcs. The second phase of the algorithm is entered with
a reduced digraph G′ in which each vertex has at least two incident arcs. From among this
digraph’s vertices, a single vertex is selected for inclusion in the loop cutset in the making.
The selection of this vertex is based on a heuristic criterion that aims at selecting a vertex
that upon instantiation blocks as many loops from the reduced digraph G′ as possible.
This heuristic criterion is based on the idea that a vertex with a larger number of incident
arcs in G′ is likely to be included in more loops than a vertex with a smaller number
of incident arcs; however, a vertex with two incoming arcs on a loop does not serve to
block this loop. The heuristic criterion therefore selects a vertex Vi with highest degree
having at most one predecessor. The thus selected vertex is included in the loop cutset in
the making. The vertex Vi is subsequently removed from the digraph, along with all its
incident arcs. Note that in the thus reduced digraph all loops that are blocked by vertex Vi
are effectively cut, leaving only loops that are yet unblocked. The algorithm then returns
to the first phase. The two phases of the algorithm are thus alternated recursively until
no more vertices remain to be considered in the reduced graph. Figure 4.11 summarises
the heuristic loop-cutset algorithm of Suermondt and Cooper in pseudo-code.

We illustrate the heuristic loop-cutset algorithm outlined above through an example.

Example 4.2.21 We consider once again the multiply connected digraph G from Fig-
ure 4.9 and address the construction of a loop cutset for G using Suermondt and Cooper’s
heuristic algorithm. The algorithm sets out by initialising the loop cutset in the making
with the empty set: LG = ∅. The algorithm now notes that the digraph G comprises
a single vertex with at most one incident arc — this is the vertex V1. The algorithm
selects this vertex and removes it, along with its incident arc, from G. The thus reduced
digraph G1 is shown in Figure 4.12 (a). From the digraph G1, the algorithm selects all

4.2 Probabilistic Inference 64

procedure loop-cutset(G,LG)

LG := ∅;
while VG 6= ∅ do

if there is a vertex V ∈ VG with degree(V) ≤ 1
then select vertex V
else K := {Vi | Vi ∈ VG and Vi has indegree(Vi) ≤ 1};

select from K a vertex V with degree(V) ≥ degree(Vi) for all Vi ∈K;
LG := LG ∪ {V }

fi;

VG := VG \ {V };
AG := AG ∩ (VG × VG)

od

end

Figure 4.11: The Loop-cutset Algorithm of Suermondt and Cooper.

V2

V3

V5

V4

V7

V6

V8

V9

V10 V11

V12

(a)

V4

V6

V8

V9

V7

V10 V11

V12

(b)

V9

V10 V11

V12

(c)

Figure 4.12: Application of the Loop-cutset Algorithm.

vertices with at most one incoming arc. These vertices constitute the set of candidates for
inclusion in the loop cutset in the making:

K1 = {V2, V3, V4, V5, V6, V8, V10, V11}

From among these candidates, the algorithm selects a vertex with highest degree. We
suppose that the algorithm selects vertex V2 to include it in the loop cutset in the making:

LG = {V2}

The algorithm proceeds by removing from G1 the selected vertex along with its incident
arcs. After subsequently removing all vertices with at most one incident arc, the reduced
digraph G2 shown in Figure 4.12 (b) results. From the digraph G2, the algorithm once
more selects the set of candidates for inclusion in the loop cutset:

K2 = {V4, V6, V7, V8, V10, V11}

4.2 Probabilistic Inference 65

From among these candidates, the algorithm selects a vertex with highest degree. We
suppose that it selects vertex V6. Vertex V6 is now added to the loop cutset in the making:

LG = {V2, V6}

After removal of vertex V6 and its incident arcs from G2, and recursive removal of all
vertices with at most one incident arc, the reduced digraph G3 shown in Figure 4.12 (c)
is yielded. From the digraph G3, the algorithm selects the set of candidates to be

K3 = {V9, V10, V11}

From among these candidates, the algorithm selects vertex V9 for inclusion in the loop
cutset as it has the highest degree:

LG = {V2, V6, V9}

After removing vertex V9 with its incident arcs from G3, subsequent removal of all vertices
with at most one incident arc results in the empty graph. The algorithm halts and yields
the loop cutset LG = {V2, V6, V9} for the digraph G. Note that the loop cutset yielded by
the algorithm is an optimal loop cutset for G. �

The heuristic loop-cutset algorithm of Suermondt and Cooper is correct in the sense that,
for any acyclic multiply connected digraph, the algorithm will halt and yield a set of
vertices that is a loop cutset of the digraph [Suermondt & Cooper, 1990]. The heuristic
algorithm, however, is not guaranteed to always yield an optimal loop cutset. Experimental
results have shown that for randomly generated acyclic multiply connected digraphs, the
algorithm finds an optimal loop cutset in approximately 70% of the studied digraphs
[Suermondt & Cooper, 1990].

4.2.4 Other Algorithms for Probabilistic Inference

In the previous sections, we have discussed Pearl’s basic belief propagation algorithm
and its enhancement for general probabilistic inference with a Bayesian network. Pearl’s
algorithm, however, is not the only algorithm designed for this purpose: various algorithms
have been proposed in the course of the preceding decades. In general, an algorithm for
exact probabilistic inference with a Bayesian network is built from two basic procedures:

� a procedure for (efficiently) computing probabilities of interest from a Bayesian net-
work, and

� a procedure for processing evidence, that is, for entering evidence into the network
and subsequently (efficiently) computing the updated joint probability distribution
given the evidence.

Note that in Pearl’s algorithm these basic procedures are combined into a single set of
computation rules where they cannot easily be distinguished. In most other algorithms,
however, these basic procedures are more readily discernible. The algorithms proposed
further have two important properties in common: the qualitative part of a Bayesian
network is exploited more or less directly as a computational architecture, and after a
piece of evidence has been processed in the network, again a Bayesian network results.
Note that the latter property allows for recursive processing of evidence.

4.2 Probabilistic Inference 66

Join-tree propagation Although all algorithms proposed for probabilistic inference
build on the same notion of a Bayesian network, they differ considerably with respect
to their underlying concepts. To support this observation, we briefly review another al-
gorithm for probabilistic inference with a Bayesian network, designed by S.L. Lauritzen
and D.J. Spiegelhalter [Lauritzen & Spiegelhalter, 1988]. Lauritzen and Spiegelhalter have
observed that, after a piece of evidence has become available, updating the joint proba-
bility distribution generally entails going against the ‘direction’ of the initially assessed
conditional probabilities. From this observation they have concluded that the directed
qualitative part of a Bayesian network is not suitable as an architecture for probabilis-
tic inference directly. Their algorithm therefore builds on an undirected representation
of a joint probability distribution. Prior to probabilistic inference, the original Bayesian
network is transformed into a so-called decomposable probabilistic network. A decompos-
able probabilistic network again consists of a qualitative part and a quantitative part.
The qualitative part is a decomposable, or chordal, graph; the quantitative part is a set
of marginal distributions on the vertex sets of the cliques of this graph. The computa-
tional architecture for the algorithm derives from the qualitative part of this decomposable
probabilistic network in the following sense: the cliques of the decomposable graph are
the autonomous objects in the architecture, and the clique intersections give rise to its
communication channels. From a decomposable probabilistic network, a probability of
interest is computed by further marginalisation of an appropriate marginal distribution.
Processing evidence is performed per clique and by message-passing between neighbouring
cliques in the architecture.

Complexity The various algorithms proposed for probabilistic inference with a Bayesian
network also differ with respect to their computational complexity. We note that proba-
bilistic inference with Bayesian networks without any topological restrictions is known to
be NP-hard [Cooper, 1990]. All algorithms proposed therefore have an exponential worst-
case computational complexity. However, the algorithms can be shown to behave polyno-
mially under certain restrictions. These restrictions concern the topology of a Bayesian
network’s digraph and differ among the various algorithms. In general, the sparser the
digraph of a Bayesian network, the better most algorithms perform. Experience with con-
structing Bayesian networks for real-life applications so far has indicated that in fact a
Bayesian network’s digraph tends to be sparse.

Approximate inference For very large networks, or applications that require fast real-
time inference, exact inference can be infeasible. In that case, approximate inference can
be used, although even approximate inference is NP-hard when we want guarantees on
the error bound [Dagum & Luby, 1993]. Approximate inference can be achieved in mul-
tiply connected graphs by letting Pearl’s algorithm loop. Many approximate inference
algorithms, however, are typically based upon stochastic simulation, such as logistic or
weighted sampling of the network distribution. The more sophisticated MCMC algo-
rithms take an evolutionary approach to sampling by generating new samples through
making random changes to previous samples, rather than continuously sampling the net-
work distribution [Korb & Nicholson, 2010]. These algorithms are also suitable for PGMs
in general, including those with continuous variables. The same applies to variational
approaches that iteratively optimize an approximation to the posterior distribution of in-
terest. Please see [Salmerón et al., 2018] for a review of exact and approximate inference
algorithms.

Exercises 4 67

Exercises

Exercise 4.1

Consider the following acyclic digraph G = (VG,AG):

V1

V2 V3

V5V4

V6

Now suppose that the graph G is a (minimal) directed I-map for the independence relation
of the joint probability distribution Pr on VG. State which (conditional) probabilities from
the distribution Pr have to be associated with G to arrive at a Bayesian network comprising
G for its qualitative part.

* Exercise 4.2

Consider the Bayesian network B = (G,Γ) where G is the digraph below

V1

V3

V2

V4

and Γ = {γVi | Vi ∈ VG} is defined as:

γV1(v1) = 0.25 γV2(v2) = 0.5

γV3(v3 | v1 ∧ v2) = 0.75 γV4(v4 | v3) = 0.8
γV3(v3 | ¬v1 ∧ v2) = 0.4 γV4(v4 | ¬v3) = 0
γV3(v3 | v1 ∧ ¬v2) = 0.25
γV3(v3 | ¬v1 ∧ ¬v2) = 0.2

Let Pr be the joint probability distribution defined by B. Compute the following probabilities
by exploiting the property stated in Proposition 4.1.3:

a. Pr(v1 ∧ v2 ∧ v3);

b. Pr(v2 ∧ v3);

c. Pr(v1 | v2 ∧ v3);

d. Pr(v1 ∨ v2 ∨ ¬v3 ∨ v4).

* Exercise 4.3

Let B = (G,Γ) be a Bayesian network where G = (VG,AG) is a singly connected graph.
Suppose that Pearl’s algorithm is employed for probabilistic inference with B. For each
vertex Vi ∈ VG, let V −i be as defined in Definition 4.2.11 and let G−(Vj ,Vi)

, Vj ∈ ρG(Vi), be

as defined in Definition 4.2.10.

a. Let λVi (Vi) be the compound diagnostic parameter for a vertex Vi. Show that if
c̃V −i

= True, then λVi (Vi) = 1.

Exercises 4 68

b. Let λ
Vj

Vi
(Vj) be the diagnostic message Vi computes for its parent Vj. Show that if

c̃G−
(Vj ,Vi)

= True, then λ
Vj

Vi
(Vj) = 1. We call this the Identity property for diagnostic

message parameters.

c. Let πVi(Vi) and πVi
Vk

(Vi), for Vk ∈ σG(Vi), be the compound causal parameter and a
causal message computed by vertex Vi, respectively. Show that if c̃V −i

= True, then

πVi
Vk

(Vi) = πVi(Vi). We call this the Causal parameter equivalence property.

* Exercise 4.4

Consider the Bayesian network B = (G,Γ) where G = (VG,AG) is the digraph below

and Γ = {γVi | Vi ∈ VG} is defined as

γV1(v1) = 0.5 γV2(v2) = 0.4

γV3(v3 | v1 ∧ v2) = 0.9 γV4(v4 | v3) = 0.5
γV3(v3 | ¬v1 ∧ v2) = 0.6 γV4(v4 | ¬v3) = 0.65
γV3(v3 | v1 ∧ ¬v2) = 0.2
γV3(v3 | ¬v1 ∧ ¬v2) = 0.8

γV5(v5 | v4) = 0.25 γV6(v6 | v4) = 0.6
γV5(v5 | ¬v4) = 0.3 γV6(v6 | ¬v4) = 0.1

Let Pr be the joint probability distribution defined by the Bayesian network B. Suppose
that Pearl’s algorithm is employed for probabilistic inference with B.

a. Compute the probabilities Pr(v4) and Pr(¬v4) for vertex V4 from the Bayesian net-
work B.

b. Suppose that the evidence V6 = true is observed and entered into the network. Com-
pute the updated probabilities Prv6(v4) and Prv6(¬v4) for vertex V4.

c. Now, suppose that after processing the evidence V6 = true, the evidence V2 = false is
obtained. For each vertex in the network, examine whether or not this new evidence
can influence the probabilities of its values.

* Exercise 4.5

Consider the Bayesian network B = (G,Γ) where G = (VG,AG) is the digraph below

and Γ = {γVi | Vi ∈ VG} is defined as

γV1(v1) = 0.8 γV2(v2) = 0.5

γV4(v4) = 0.3

γV3(v3 | v1 ∧ v2) = 0.2 γV6(v6 | v3 ∧ v4) = 0.3
γV3(v3 | ¬v1 ∧ v2) = 0.6 γV6(v6 | ¬v3 ∧ v4) = 0.8
γV3(v3 | v1 ∧ ¬v2) = 0.5 γV6(v6 | v3 ∧ ¬v4) = 0.2
γV3(v3 | ¬v1 ∧ ¬v2) = 0.1 γV6(v6 | ¬v3 ∧ ¬v4) = 0.1

γV5(v5 | v3) = 0.6 γV7(v7 | v5) = 0.9
γV5(v5 | ¬v3) = 0.4 γV7(v7 | ¬v5) = 0.8

Exercises 4 69

Let Pr be the joint probability distribution defined by the Bayesian network B. Suppose
that Pearl’s algorithm is employed for probabilistic inference with B.

a. Compute the probabilities Pr(v5) and Pr(¬v5) for vertex V5 from the Bayesian net-
work B.

b. Suppose that the evidence V3 = true is observed and entered into the Bayesian net-
work B. Compute the updated probabilities Prv3(v5) and Prv3(¬v5) for vertex V5 from
the network.

c. For each vertex in the network, examine whether or not the evidence V3 = true may
influence the probabilities of this vertex’ values.

* Exercise 4.6

Consider the Bayesian network B = (G,Γ) where G = (VG,AG) is the digraph below

V1

V2 V3

V5 V6

V4

V7

and Γ = {γVi | Vi ∈ VG} is defined as

γV1(v1) = 0.5 γV5(v5 | v3) = 0.2
γV5(v5 | ¬v3) = 1

γV2(v2 | v1) = 0.35
γV2(v2 | ¬v1) = 0.1 γV6(v6 | v3 ∧ v4) = 0.75

γV6(v6 | ¬v3 ∧ v4) = 0.3
γV3(v3 | v1) = 0.5 γV6(v6 | v3 ∧ ¬v4) = 0.25
γV3(v3 | ¬v1) = 0 γV6(v6 | ¬v3 ∧ ¬v4) = 0.2

γV4(v4) = 0.5 γV7(v7 | v6) = 0.8
γV7(v7 | ¬v6) = 0

Let Pr be the joint probability distribution defined by the Bayesian network B. Suppose
that Pearl’s algorithm is employed for probabilistic inference with B.

a. Suppose that the evidence V7 = true has been entered into the network B. Compute
the probabilities Prv7(v1) and Prv7(¬v1) for vertex V1 from the Bayesian network B.

b. Now suppose that the evidence V4 = true is entered into the network as well. Does
the probability Prv7,v4(v1) differ from the probability Prv7(v1) ?

c. Suppose that, for the application for which the Bayesian network B has been de-
veloped, the probability Prv7,v4(v1 ∧ ¬v2) needs to be computed. Explain how this
probability can be computed from the network efficiently.

Exercises 4 70

* Exercise 4.7

Consider the Bayesian network B = (G,Γ) where G = (VG,AG) is the digraph below

V1

V3 V4

V2

V5 V6

V7

and Γ = {γVi | Vi ∈ VG} is defined as:

γV1(v1) = 0.05 γV5(v5 | v3) = 0.35
γV5(v5 | ¬v3) = 0

γV2(v2) = 0.3

γV3(v3 | v1) = 0.75 γV6(v6 | v3) = 0.8
γV3(v3 | ¬v1) = 0.4 γV6(v6 | ¬v3) = 0.6

γV4(v4 | v1 ∧ v2) = 0.1 γV7(v7 | v6) = 0.5
γV4(v4 | ¬v1 ∧ v2) = 0.25 γV7(v7 | ¬v6) = 0.45
γV4(v4 | v1 ∧ ¬v2) = 0.8
γV4(v4 | ¬v1 ∧ ¬v2) = 0.95

Let Pr be the joint probability distribution defined by the Bayesian network B. Suppose
that Pearl’s algorithm is employed for probabilistic inference with B.

a. Suppose that the evidence V1 = true and V6 = false has been entered into the
Bayesian network B. Compute the probabilities Prv1,¬v6(v3) and Prv1,¬v6(¬v3) for
vertex V3 from B.

b. Suppose that, for the application for which the Bayesian network B has been de-
veloped, the probability Prv1,¬v6(v2 ∧ v5) needs to be computed. Explain how this
probability can be computed from the network efficiently.

c. Now suppose that, for the application for which the Bayesian network has been de-
veloped, the probability Prv1,¬v6(v2 ∨ v4) needs to be computed. Explain how this
probability can be computed from the network efficiently.

* Exercise 4.8

Let B = (G,Γ) be a Bayesian network where G = (VG,AG) with VG = {V1, . . . , Vn}, n ≥ 1,
and AG = {(Vi, Vi+1) | i = 1, . . . , n− 1} is the following digraph:

Let Pr be the joint probability distribution defined by the Bayesian network B. Furthermore,
let B′ = (G,Γ′) be the Bayesian network that is obtained from B by substituting for a vertex
Vk, k > 1, the function value γVk

(vk | vk−1) by γVk
(vk | vk−1) + ε, for some small ε > 0.

Let Pr′ be the joint probability distribution defined by B′. Show that |Pr′(Vi)−Pr(Vi)| ≤ ε,
for all Vi ∈ VG, i = 1, . . . , n.

Exercises 4 71

Exercise 4.9

Consider the Bayesian network B = (G,Γ) where G = (VG,AG) is the digraph below

V1

V2 V3

V4

V5 V6

and Γ = {γVi | Vi ∈ VG} is defined as

γV1(v1) = 0.5

γV2(v2 | v1) = 0.9 γV3(v3 | v2) = 0.5
γV2(v2 | ¬v1) = 0.7 γV3(v3 | ¬v2) = 0.8

γV4(v4 | v2 ∧ v3) = 0.1 γV5(v5 | v2 ∧ v3) = 0.3
γV4(v4 | ¬v2 ∧ v3) = 0.25 γV5(v5 | ¬v2 ∧ v3) = 0.7
γV4(v4 | v2 ∧ ¬v3) = 0.6 γV5(v5 | v2 ∧ ¬v3) = 0.2
γV4(v4 | ¬v2 ∧ ¬v3) = 0.75 γV5(v5 | ¬v2 ∧ ¬v3) = 0.7

γV6(v6 | v3) = 0.45
γV6(v6 | ¬v3) = 0.65

Let Pr be the joint probability distribution defined by the Bayesian network B.

* a. Compute a loop cutset for the digraph G by employing the heuristic algorithm of
Suermondt and Cooper.

* b. Compute the probabilities Pr(v5) and Pr(¬v5) for vertex V5 from the Bayesian net-
work B by Pearl’s algorithm with loop cutset conditioning.

c. Suppose that the evidence V3 = false is observed and entered into the network. Fur-
thermore, suppose that after entering V3 = false into the network, the additional
evidence V1 = true is observed. For each vertex in the network, examine whether or
not this new evidence can influence the probabilities of its values.

* Exercise 4.10

Consider the Bayesian network B = (G,Γ) where G = (VG,AG) is the digraph below

V1

V2

V3 V4

V5

and Γ = {γVi | Vi ∈ VG} is defined as:

γV1(v1) = 0.9 γV5(v5 | v2 ∧ v3 ∧ v4) = 0.2
γV5(v5 | ¬v2 ∧ v3 ∧ v4) = 0.25

γV2(v2 | v1) = 0.125 γV5(v5 | v2 ∧ ¬v3 ∧ v4) = 0.7
γV2(v2 | ¬v1) = 0.875 γV5(v5 | v2 ∧ v3 ∧ ¬v4) = 0.6

γV5(v5 | ¬v2 ∧ ¬v3 ∧ v4) = 0.55
γV3(v3 | v2) = 0.7 γV5(v5 | ¬v2 ∧ v3 ∧ ¬v4) = 0.8
γV3(v3 | ¬v2) = 0.2 γV5(v5 | v2 ∧ ¬v3 ∧ ¬v4) = 0.3

γV5(v5 | ¬v2 ∧ ¬v3 ∧ ¬v4) = 0.15
γV4(v4 | v2) = 0.35
γV4(v4 | ¬v2) = 0.1

Let Pr be the joint probability distribution defined by the Bayesian network B.

a. Compute a loop cutset for the digraph G by employing the heuristic algorithm of
Suermondt and Cooper.

b. Compute the probabilities Pr(v3) and Pr(¬v3) for vertex V3 from the Bayesian net-
work B by Pearl’s algorithm with loop cutset conditioning.

Exercises 4 72

c. Suppose that the evidence V5 = true is entered into the network. Explain how the
probabilities Prv5(v3) and Prv5(¬v3) are computed from the network.

* Exercise 4.11

a. Consider a Bayesian network B = (G,Γ) where G is the following digraph:

V1

V3

V2

V4 V5

Compute a loop cutset for G by employing the heuristic algorithm of Suermondt and
Cooper.

b. The heuristic algorithm of Suermondt and Cooper aims at computing for a multiply
connected digraph an optimal loop cutset. Now consider a Bayesian network in
which the variables are not necessarily binary but may take a value from an arbitrarily
large finite set of values. Illustrate by means of an example that for such a Bayesian
network a non-optimal loop cutset may be a better choice for the purpose of loop
cutset conditioning than an optimal loop cutset.

c. In the heuristic algorithm of Suermondt and Cooper the number of values for the
various variables of a Bayesian network are not taken into consideration. Modify
the algorithm in such a way that the number of values is taken into consideration to
arrive at a ‘good’ loop cutset.

* Exercise 4.12

a. Consider the following digraph G:

V1

V2 V7

V3 V4 V5

V6

V9 V10

V12

V8

V11

V13

Compute a loop cutset for G by employing the heuristic algorithm of Suermondt and
Cooper.

b. Let G = (VG,AG) be an acyclic multiply connected digraph and let C ⊆ VG be a
set of vertices in G. Furthermore, let G′ be the digraph that is obtained from G
by deleting for each vertex from C its outgoing arcs, that is, G′ = (VG,A

′
G) with

A′G = AG \{(Vi, Vj) | Vi ∈ C}. Show that the set C is a loop cutset of G if and only
if G′ is a singly connected digraph.

Exercises 4 73

c. Upon employing the heuristic algorithm of Suermondt and Cooper for computing a
loop cutset for a multiply connected digraph G, a non-minimal loop cutset LG may
be yielded. Give a sketch of an algorithm that takes for its input the non-minimal
loop cutset LG and yields a minimal loop cutset L′G of G.

* Exercise 4.13

For probabilistic inference with a Bayesian network, sometimes Pearl’s algorithm is sup-
plemented with a method called evidence absorption. The basic idea of this method is to
dynamically modify a Bayesian network after evidence has been entered so as to reflect as
many of the new independences occasioned by the evidence as possible. Now consider a
Bayesian network B = (G,Γ) and suppose that the evidence Vi = true is entered for some
vertex Vi ∈ VG. Evidence absorption now amounts to modifying the digraph G of B by
deleting all outgoing arcs from vertex Vi; with the thus modified digraph G′ a new set Γ′

of assessment functions is constructed such that the new Bayesian network B′ = (G′,Γ′)
reflects the updated joint probability distribution.

a. Show that the digraphs G and G′ portray the same set of independences given Vi.

b. Show by means of an example that the digraphs G and G′ do not represent the same
set of independences.

c. Explain why repeated application of the method of evidence absorption reduces the
average-case computational complexity of reasoning with a Bayesian network.

*Exercise 4.14

In addition to the standard inference query (computing Pr(cH | cE)), in practice we are of-
ten interested in two additional queries: finding the so-called MAP (maximum a-posteriori
probability) assignment or the MPE (most probable explanation) for evidence cE:

MPE(cE) = arg max
cY

Pr(cY | cE) = arg max
cY

Pr(cY ∧ cE), where Y = VG \E

and for X ⊂ Y : MAP(X, cE) = arg max
cX

Pr(cX | cE) = arg max
cX

Pr(cX ∧ cE)

a. Consider the example network in Figure 4.1.
Let cE = v1 be the observed evidence. Compute MPE(cE) and MAP({V3, V4}, cE).

b. Which of the following statements comparing MPE and MAP assignments is correct:

A. computing an MPE is generally more efficient, since it involves all network
variables

B. computing a MAP assignment is generally more efficient, since it involves only
a subset of all network variables

C. computing MAP and MPE is equally (in)efficient:
let Y = X ∪W and MPE(cE) = c∗Y = c′X ∧ c′W for some configurations c′X
and c′W ; then c∗X = MAP(X, cE) follows immediately from c∗Y since c∗X = c′X

D. none of the above

Clearly explain your answer.

Part II

Towards BN applications

74

Chapter 5

Building a Bayesian Network

The Bayesian network framework generally is used for applying probability theory for
reasoning with uncertainty in knowledge-based systems. For employing the framework for
a real-life domain of application, relevant knowledge of the domain at hand is represented
in the Bayesian network formalism; the basic algorithms of the framework are taken as
building blocks for shaping the system’s intelligent problem-solving behaviour. In this
chapter we address the task of building a Bayesian network for a domain of application;
shaping intelligent problem-solving behaviour is one of the topics of the next chapter.

Building a Bayesian network for a domain of application involves various different
tasks. The first of these tasks is to identify the variables that are of importance in the do-
main at hand, along with their possible values. Once the important domain variables have
been identified, the qualitative part of the Bayesian network in the making is constructed:
the second task in building a Bayesian network therefore is to identify the independences
among the variables discerned and to express these in an acyclic digraph. After the qual-
itative part of the network has been established, the probability assessment functions are
defined: the last task in building a Bayesian network is to estimate the (conditional) prob-
abilities that are required to constitute the network’s quantitative part. The three tasks
are summarised in Figure 5.1. The various tasks in building a Bayesian network are, in

Identifying Variables
and Values

Constructing the Digraph

Assessing the Probabilities

Figure 5.1: The tasks in building a Bayesian network.

principle, performed one after the other. Building a network, however, often requires a
careful trade-off between the desire for a large and rich model to obtain accurate results
on the one hand, and the costs of construction and maintenance, and the complexity of
probabilistic inference on the other hand. In practice, therefore, building a Bayesian net-

75

5.1 Identifying Variables and Values 76

work is a cyclic process that iterates over these tasks until a network results that is deemed
satisfactory for the domain at hand. We would like to note that, although the Bayesian
network framework has been around for some time, methodologies for building real-life
Bayesian networks do not yet abound. Building a Bayesian network is an engineering task
and it therefore makes sense to adopt common practices from(software) engineering, es-
pecially for building large models [Laskey & Mahoney, 2000]. Recently, various Bayesian
networks have been built for environmental applications. This led to the publication of a
paper with guidelines to developing and evaluating Bayesian network models of environ-
mental systems [Chen & Pollino, 2012]; the paper summarises most of the steps detailed
in this section and includes lots of useful references.

In the following sections, we address the tasks involved in building a Bayesian network
separately. In Section 5.1 we address the identification of the important domain variables
and values. In Section 5.2 we discuss the construction of the qualitative part of a Bayesian
network in the making. Section 5.3 focuses on the assessment of the probabilities required
for the network’s quantitative part.

5.1 Identifying Variables and Values

The first task in building a Bayesian network for a domain of application is to identify
the variables that are of importance in the domain, along with their possible values.
Identifying the important domain variables is typically performed with the help of one or
more experts. Since a Bayesian network, as any model, necessarily is a simplification of
reality, well-founded decisions have to be taken as to which variables should be included in
the network and which may be omitted. We would like to note that this task is not reserved
for building Bayesian networks, but instead is quite common in engineering knowledge-
based systems. A knowledge engineer can therefore make use of the various elicitation
techniques designed for engineering knowledge-based systems in general. For example, the
use of ontologies was suggested to help structure the domain, its variables and the different
types of relations that exist between the variables [Helsper & Van der Gaag, 2002]. Such
ontologies have proved useful tools upon constructing a Bayesian network’s digraph, for
distilling the variables and their interrelationships that are important for the problem at
hand. We will not further elaborate on this task here and confine ourselves to emphasising
that it needs to be performed with care since the domain variables that are modelled in
the Bayesian network demarcate the scope of the resulting system.

Once the important domain variables have been identified, each of them has to be
expressed as a random variable to allow for inclusion in the Bayesian network in the
making. We recall that a random variable is characterised by its values being mutually
exclusive and collectively exhaustive. To allow for inclusion in a Bayesian network, a
random variable has to take its value from a finite set of discrete values. Only if the set
of values of a domain variable satisfies these properties, can the variable be included in
the network as it is. Otherwise, the domain variable is modelled in terms of one or more
random variables.

For modelling domain variables for inclusion in a Bayesian network, we distinguish
between the following types of variable:

� a single-valued domain variable that takes a value from a finite set of (discrete)
values;

� a single-valued domain variable that takes a value from an infinite set of values;

� a multi-valued domain variable.

5.1 Identifying Variables and Values 77

We begin by considering a single-valued domain variable that takes its value from a finite
set of discrete values. The values of this variable are mutually exclusive by definition.
Moreover, the variable’s values are easily rendered collectively exhaustive. A single-valued
domain variable can therefore be expressed straightforwardly as a random variable in the
Bayesian network in the making.

For a single-valued domain variable that takes its value from an infinite set of values,
we equally have that this variable’s values are mutually exclusive and are easily rendered
collectively exhaustive. However, its set of possible values being infinite prohibits including
the domain variable as it is in the Bayesian network in the making. To allow for inclusion
in the network, the set of values is discretised. To this end, the variable’s possible values
are clustered in a finite number of mutually exclusive and collectively exhaustive clusters
of values; these clusters then are taken as the values of a new single-valued variable that
is included in the Bayesian network in the making.

Example 5.1.1 Suppose that, in a medical domain of application, a patient’s temperature
has been identified as an important domain variable. This domain variable is single-valued,
taking its value from the (in essence) infinite range of values between, say, 35 ◦C and 41 ◦C.
This range of values can be discretised in, for example, the five intervals [35;36), [36;37),
[37;38), [38;40), and [40;41]. Note that these intervals can be looked upon as values that
are mutually exclusive and collectively exhaustive. For inclusion in the Bayesian network
in the making, the domain variable is now expressed as a random variable that takes its
value from among the five values mentioned above. �

In general, a domain variable’s set of values admits numerous discretisations. The dis-
cretisation best chosen is highly dependent on the purpose for which the Bayesian network
is being developed and has to be decided upon in consultation with one or more domain
experts.

A domain variable taking multiple values from a finite set of discrete values cannot be
expressed directly as a random variable since its values are not mutually exclusive. To
allow for inclusion in the Bayesian network in the making, such a domain variable needs
to be re-modelled so as to satisfy the properties of a random variables. Re-modelling may
be done by redefining the variable’s set of values in such a way that the new values are
mutually exclusive and collectively exhaustive.

Example 5.1.2 Suppose that, in a medical domain of application, a patient’s blood count
has been identified as an important domain variable. This domain variable is multi-valued,
taking its values from among the set of values {normal, lymphocytosis, lymphocytopenia,
leucocytosis, leucocytopenia}. The values lymphocytosis and lymphocytopenia refer to the
level of lymphocytes in a patient’s blood sample and the values leucocytosis and leuco-
cytopenia refer to the leucocyte level; these values are not mutually exclusive. Domain
knowledge now indicates that a patient’s blood count cannot take any arbitrary com-
bination of the values mentioned above. In fact, only nine combinations of values are
meaningful – these are {normal}, {lymphocytosis}, {lymphocytopenia}, {leucocytosis},
{leucocytopenia}, {lymphocytosis, leucocytosis},
{lymphocytosis, leucocytopenia}, {lymphocytopenia, leucocytosis}, and {lymphocytopenia,
leucocytopenia}. These combinations are now taken as the mutually exclusive values of a
new random variable, modelling a patient’s blood count, to be included in the Bayesian
network in the making. �

Multi-valuedness of a domain variable often arises from the variable being compound, that
is, implicitly built from several other domain variables. Instead of redefining its set of val-
ues, a compound variable may be modelled by decomposing it into the domain variables it

5.2 Constructing the Digraph 78

is built from and subsequently modelling these separate variables in the Bayesian network
in the making.

Example 5.1.3 We consider once more the domain variable expressing a patient’s blood
count as introduced in the previous example. We observe that this domain variable is a
compound variable built from two variables. One of these variables expresses the level of
lymphocytes in a patient’s blood sample, taking its value from the set of values {normal,
lymphocytosis, lymphocytopenia}; the other variable captures the level of leucocytes, taking
its value from the set of values {normal, leucocytosis, leucocytopenia}. Note that these
two variables are random variables, that can be included directly in the Bayesian network
in the making. The originally multi-valued domain variable is now decomposed into these
variables. �

Decomposing a compound variable requires considerable knowledge of the domain at hand
and therefore is best performed with the help of a domain expert.

After all important domain variables have been expressed as random variables for
inclusion in the Bayesian network in the making, the meanings of these random variables
have to be properly documented. While each random variable has a unique meaning in
the context of the Bayesian network at hand, its meaning may very well differ from the
meanings associated with variables with the same name in other models or in the literature
in the domain. The task of documenting the meanings of the random variables modelled
in the Bayesian network therefore is crucial to avoid any ambiguity in future reference.
This task is not typical for building Bayesian networks and has in fact been recognised as
vital in knowledge-engineering practice in general.

5.2 Constructing the Digraph

Once the domain variables of importance have been identified and expressed as random
variables, the construction of the qualitative part of the Bayesian network in the making
can commence. In principle, for constructing the network’s qualitative part, the indepen-
dence relation of the joint probability distribution on the variables discerned has to be
identified and represented in an acyclic digraph. In practice, however, the digraph typi-
cally is conceived without explicitly identifying independences: it is constructed directly,
either by hand or by learning from data.

5.2.1 Constructing the Digraph by Hand

For most domains of application, the qualitative part of a Bayesian network in the making
is largely handcrafted . For this purpose, one or more domain experts are interviewed. In
the interviews, the qualitative relationships between the variables discerned are elicited,
using the concept of causality as a heuristic guiding principle. Typical questions asked
during the interviews are “What could cause this effect ?”, “What manifestations could
this cause have ?” [Henrion, 1989]. The elicited causal relationships among the variables
are expressed in graphical terms by taking the direction of causality for directing the arcs
between related variables. The resulting graphical representation can then be taken as a
basis for further refinement.

Using the concept of causality as a guiding principle during the interviews with domain
experts may meet with some difficulties [Jensen & Nielsen, 2007, Ch. 3]. For example, not
every influential relationship among variables can be interpreted as causal. If a non-causal
influential relationship comes to the fore during an interview, a more elaborate analysis
of the independences involved is required before it can be expressed in graphical terms. A
tool that can support this analysis by visually and verbally explaining the (in)dependences

5.2 Constructing the Digraph 79

captured in the graphical structure is Matilda [Boneh et al., 2006]. Another problem that
may arise from building on causality concerns the creation of cycles in the graphical
representation. As the digraph of a Bayesian network has to be acyclic, any cycle that
has resulted from the interviews needs to be removed. There are several ways to deal with
cycles [Peek & Ottenkamp, 1997], the simplest being the deletion of a single arc from a
cycle to be removed. To conclude, the concept of causality may leave room for multiple
interpretations [Pearl, 2009].

Despite the fact that building on the concept of causality does not suffice in itself for
constructing the digraph of a Bayesian network in the making, it brings the advantage that
domain experts are allowed to express their knowledge in either the causal or diagnostic
direction. Since they are allowed to express their knowledge in a form they feel comfortable
with, the experts’ statements tend to be quite robust. Some experiences with the issues
discussed above in building a Bayesian network for a real-life application are described
in [Van der Gaag & Helsper, 2002].

We would like to note that the task of eliciting relationships among variables from
domain experts is not reserved for building Bayesian networks: the elicitation task has
parallels with engineering knowledge-based systems in general for which several method-
ologies have been developed [Boose & Gaines, 1988]. Recent research has focussed on
the use of knowledge expressed in ontologies, stories, Wigmore charts and structured ar-
guments to inform the construction of Bayesian networks[Helsper & Van der Gaag, 2002,
Vlek et al., 2014, Kadane & Schum, 1996, Wieten et al., 2019].

5.2.2 Learning the Digraph from Data

In more and more domains of application, data is collected and maintained over numerous
years of every-day problem solving. Such a data collection usually contains highly valuable
information about the relationships among the variables discerned, be it implicitly. If a
comprehensive data set is available in the domain for which a Bayesian network is devel-
oped, the construction of the network’s qualitative part may be performed automatically:
the basic idea of learning the qualitative part from data is to distil information from the
data set and exploit it for constructing a digraph.

The data set

For learning the qualitative part of a Bayesian network, a data set with information from
the domain at hand is required.

We formally define the concept of a database.

Definition 5.2.1 Let V be a set of variables. A data set D over V is a multi-set of
configurations of V . An element cV of D is called a case.

To be suitable for learning purposes, a data set has to satisfy various properties. First
of all, the data comprised in the data set must have been collected very carefully. Biases
that are introduced in the data set as a result of the data collection strategies used will
have impact on the topology of the resulting digraph, yet may not be desirable for the
purpose for which the Bayesian network is being developed; unfortunately, biases are not
easily detected in a once constructed network. Also, to be suitable for the purpose of
learning a Bayesian network’s digraph, the variables and associated values that occur in
the data set should match the variables and values that are to be modelled in the network,
or should at least admit easy translation into these variables and values. Moreover, the
data set should comprise enough data to allow for reliable identification of probabilistic
relationships among the variables discerned.

5.2 Constructing the Digraph 80

In addition to the general prerequisites outlined before, a data set should satisfy sev-
eral properties that are implicitly assumed by most algorithms for learning a Bayesian
network’s digraph from data. A property that is commonly assumed is that each case in
the data set specifies a value for every variable discerned, that is, there are no missing
values. Unfortunately, for most real-life data sets this property does not hold. To use
a data set with missing values for learning purposes, therefore, the missing values have
to be filled in, for example based upon (roughly) estimated prior probabilities for these
values or with the help of domain experts; the EM (Expectation-Maximisation) algorithm
is often used for this purpose [Dempster et al., 1977]. Other properties assumed by most
learning algorithms concern the real-life process that generated the cases comprised in the
data set at hand. It is assumed that this process generates cases independently, that is,
the values specified for the variables in a case are assumed not to be influenced in any
way by the values in previously generated cases. Also, it is assumed that the process is
not time-dependent, that is, the data set is assumed not to reflect information that varies
over time.

As we will discuss in the sequel, a data set of cases over a set of random variables
is used for estimating various conditional probabilities. These conditional probabilities
are used for analysing the strengths of various different relationships among the variables.
The conditional probabilities required for this purpose are obtained from the data set by
counting. We consider a data set D over the set of variables V , comprising N cases. For
each set of variables X ⊆ V , we will use N(cX) to denote the number of cases in D in
which the variables from X have adopted the conjunction of values cX ; for the empty set,
we take N(c∅) = N . For any two sets of variables X,Y ⊆ V , the probability distribution
Pr(X | Y) can now be estimated from the data set by

Pr(cX | cY) =
N(cX ∧ cY)

N(cY)

for all configurations cX and cY of X and Y , respectively.
Various algorithms exist for learning Bayesian networks from data. Roughly, two

approaches can be distinguished: one where statistical tests are applied to the data to
determine the independences; the other where the space of possible networks is searched
for a good scoring network. Here, we will focus on a score & search-based method that
lies at the basis of most algorithms that are popular today.

The quality measure

An algorithm for learning the qualitative part of a Bayesian network from data typically
generates various different acyclic digraphs and compares these as to their ability to de-
scribe or explain the data at hand. We will focus on the task of comparing digraphs before
turning to their generation.

For comparing digraphs as to their ability to describe the data from the database at
hand, a quality measure is employed. A quality measure is a function that assigns to a
digraph a numerical value expressing how well this digraph fits the data; this numerical
value is called the quality of the digraph given the database. In the literature, various
different quality measures have been proposed, originating from different theories. Here,
we will discuss only the MDL quality measure. This measure originates from coding theory
and is built on the minimum description length principle. For an overview of the most
popular quality measures in use for learning the qualitative part of a Bayesian network
from data, we refer the reader to [Bouckaert, 1995].

We define the MDL quality measure to pertain to an acyclic digraph and a database.

5.2 Constructing the Digraph 81

Definition 5.2.2 Let V = {V1, . . . , Vn}, n ≥ 1, be a set of random variables. Let D be a
data set over V and let N be the number of cases in D. Furthermore, let P be a probability
distribution over the set of acyclic digraphs with vertex set V . Let G = (VG,AG) be an
acyclic digraph with VG = V . Then, the quality of G given D, denoted Q(G,D), is defined
by

Q(G,D) = logP (G)−N ·H(G,D)− 1
2K · logN

where

H(G,D) = −
∑
Vi∈V

∑
cVi

∑
cρG(Vi)

(
N(cVi ∧ cρG(Vi))

N

)
· log

(
N(cVi ∧ cρG(Vi))

N(cρG(Vi))

)
and

K =
∑
Vi∈V

2|ρG(Vi)|

From the previous definition, we have that the quality Q(G,D) of an acyclic digraph G
given a data set D involves three terms: logP (G), −N ·H(G,D) and −1

2K · logN . We
will take a closer look at these terms separately.

In the first term, logP (G), of the quality of a digraph G given a data set D, the
probability P (G) denotes the prior probability of the digraph G being the qualitative part
of a Bayesian network that describes the joint probability distribution that generated the
data set D. This term therefore expresses information about the ‘real’ qualitative part
prior to observation of the database. In a real-life application of a learning algorithm, this
term is used for modelling domain knowledge. For example, if a domain expert suggests
existence of a specific arc in the qualitative part of the ‘real’ network, then digraphs that
adhere to this suggestion are given a higher prior probability than digraphs that do not.
In the sequel, we will assume that no prior domain knowledge is available and, hence, that
the probability distribution P is a uniform distribution.

The second term, −N ·H(G,D), of the quality of a digraph G given a data set D is
proportional to the probability of the data set D being generated by the joint probability
distribution represented by a Bayesian network B that involves the digraph G. Now, recall
that a Bayesian network not only involves a digraph but also includes a set of probability
assessment functions. To enhance the network’s ‘match’ with the data set, all conditional
probabilities required are assessed from the data: for each variable Vi ∈ V , we take

γVi(cVi | cρG(Vi)) =
N(cVi ∧ cρG(Vi))

N(cρG(Vi))

for all configurations cVi of Vi and all configurations cρG(Vi) of the set ρG(Vi) of Vi’s
predecessors in G. Now consider the probability of the data set D being generated by the
joint probability distribution Pr defined by the Bayesian network B = (G,Γ) where Γ is
the set of probability assessment functions estimated from D. Since we have assumed that
all cases in D have been generated independently, we have that the probability P ′(D | B)
of the data set D given the Bayesian network B equals

P ′(D | B) =
∏

cV ∈D
Pr(cV)

By exploiting the property stated in Proposition 4.1.3, we find that

P ′(D | B) =
∏

cV ∈D

∏
Vi∈V

γVi(cVi | cρG(Vi))

5.2 Constructing the Digraph 82

where
∧

Vi∈V (cVi ∧ cρG(Vi)) ≡ cV . By reordering terms, we ultimately find that

P ′(D | B) =
∏
Vi∈V

∏
cVi

∏
cρG(Vi)

γVi(cVi | cρG(Vi))
N(cVi∧cρG(Vi)

)

Substitution of the probability estimates for the function values of the various different
assessment functions now yields

P ′(D | B) =
∏
Vi∈V

∏
cVi

∏
cρG(Vi)

(
N(cVi ∧ cρG(Vi))

N(cρG(Vi))

)N(cVi∧cρG(Vi)
)

Hence,

logP ′(D | B) = N ·
∑
Vi∈V

∑
cVi

∑
cρG(Vi)

(
N(cVi ∧ cρG(Vi))

N

)
· log

(
N(cVi ∧ cρG(Vi))

N(cρG(Vi))

)

The result equals

logP ′(D | B) = −N ·H(G,D)

where H(G,D) denotes the mutual entropy of G and D.
Entropy is an information-theoretic measure of uncertainty. In general, the entropy of

a variable is maximal when the uncertainty concerning its value is maximal; the entropy
is zero when there is complete knowledge as to the variable’s value. Informally speaking,
we have, in the context of the MDL quality measure, that the better a digraph fits the
database, the lower their mutual entropy. In general, an acyclic digraph with more arcs
will have a lower entropy than an acyclic digraph with fewer arcs: a digraph with more arcs
expresses fewer independences and therefore is capable of capturing more of the nuances
reflected in the cases of the data set. So, for a tightly connected acyclic digraph G the
term −N ·H(G,D) in this digraph’s quality tends to approach zero.

For an acyclic digraph with more arcs more conditional probabilities have to be esti-
mated from the data set to define the probability assessment functions to be associated
with the digraph, than for a digraph with fewer arcs. The more probabilities have to be
estimated from the data set, the smaller the number of cases in the data set these estimates
can be based upon. So, the more probabilities have to be estimated the less reliable the
estimates will be. The third term, −1

2K · logN , of the quality Q(G,D) of a digraph G
given a database D captures this aspect. In this term, K expresses the number of prob-
abilities that have to be assessed from the data set to define the probability assessment
functions for the digraph at hand. So, the more arcs a digraph has, the larger K and the
smaller the term −1

2K · logN . The term −1
2K · logN is often referred to as the penalty

term as it imposes a penalty on adding arcs to the digraph in the making.
In the sequel, we shall see that an algorithm for learning the digraph of a Bayesian

network from data constructs a digraph by successively adding single arcs to an initially
arc-less graph. For the initial arc-less digraph, the entropy term −N · H(G,D) of its
quality will be extremely small and the term −1

2K · logN will be quite close to zero. On
successively adding arcs to the digraph, the term −N · H(G,D) will grow rapidly. The
term −1

2K · logN on the other hand will decrease as the digraph becomes more tightly
connected. As long as the entropy term increases more rapidly than the penalty term
decreases, the quality of the digraph in the making will increase. The increase of the
digraph’s quality upon successive arc addition continues until the increase of the entropy
term is dominated by the decrease of the penalty term.

5.2 Constructing the Digraph 83

The search heuristic

We have mentioned before that an algorithm for learning the qualitative part of a Bayesian
network from data generates various different acyclic digraphs and compares these digraphs
with respect to their quality given the database at hand. The basic purpose of the algo-
rithm is to select from among all possible acyclic digraphs a digraph with highest quality.
Unfortunately, it is not feasible from a computational point of view to generate all di-
graphs and compute their qualities. A learning algorithm therefore incorporates a search
heuristic that searches the set of all possible acyclic digraphs for digraphs that are likely
to have a high quality; only for these digraphs is the quality given the data set actually
computed. Several such search heuristics have been proposed in the literature. Here, we
will only discuss the B search heuristic. For an overview of various search heuristics and
their properties, we refer the reader once more to [Bouckaert, 1995].

Let V be the set of random variables of the Bayesian network in the making. The
B search heuristic for selecting a digraph of high quality from among all possible acyclic
digraphs with vertex set V commences with investigating the arc-less digraph G0 =
(V ,∅). To this initially arc-less graph, the search heuristic successively adds single arcs to
improve the digraph’s quality. Now, suppose that after adding some arcs, a digraph Gk =
(V ,AGk

) has resulted. For selecting a new arc to add to the digraph, the search heuristic
identifies all possible arcs that can be added to the digraph Gk without introducing a cycle.
For each identified arc (Vi, Vj), it computes the gain in quality that would be yielded by
adding this arc to the digraph in the making. So, it computes the difference in quality
between the new digraph Gk+1 = (V ,AGk

∪ {(Vi, Vj)}) and the digraph Gk. The search
heuristic then selects an arc that yields the highest gain in quality and adds this arc to the
digraph in the making. This process of arc addition is repeated until no gain in quality
can be achieved any more. Note that the B search heuristic is a greedy search heuristic in
the sense that it considers single arcs only.

From the informal outline of the B search heuristic, it will be evident that for selecting a
digraph with high quality, the search heuristic has to compare qualities of various different
digraphs. We observe, however, that for selecting the next arc to add to the digraph
in the making the search heuristic does not actually need to know the qualities of the
various digraphs considered since an arc is selected on the basis of differences in quality
between digraphs only. From B being a greedy search heuristic, we further have that
these differences are only computed for pairs of digraphs that differ in one arc. The B
search heuristic exploits these observations by only partially computing the qualities of
the digraphs concerned.

For the purpose of partially computing qualities, the B search heuristic makes use of
the concept of the quality of a vertex in a digraph.

Definition 5.2.3 Let V = {V1, . . . , Vn}, n ≥ 1, be a set of random variables. Let D be a
data set over V and let N be the number of cases in D. Let G = (VG,AG) be an acyclic
digraph with VG = V . For each vertex Vi ∈ VG, the quality of Vi in G given D, denoted
by q(Vi,ρG(Vi),D), is defined as

q(Vi,ρG(Vi),D) =
∑

cVi

∑
cρG(Vi)

N(cVi ∧ cρG(Vi)) · log
(
N(cVi∧cρG(Vi)

)

N(cρG(Vi)
)

)
+

− 1
2 · 2

|ρG(Vi)| · logN

The quality of an acyclic digraph given a data set can now be expressed in terms of the
qualities of its various vertices; this property is known as the sum property of a digraph’s
quality given a database and is stated more formally in the following lemma.

5.2 Constructing the Digraph 84

Lemma 5.2.4 Let V = {V1, . . . , Vn}, n ≥ 1, be a set of random variables. Let D be a
data set over V and let N be the number of cases in D. Let P be a probability distribution
over the set of all acyclic digraphs with vertex set V . Let G = (VG,AG) be such an acyclic
digraph with VG = V . Furthermore, let Q(G,D) be the quality of G given D and, for each
vertex Vi ∈ VG, let q(Vi,ρG(Vi),D) be the quality of Vi in G given D. Then,

Q(G,D) = logP (G) +
∑
Vi∈V

q(Vi,ρG(Vi),D)

Proof. The property stated in the lemma follows directly from Definition 5.2.2 and
Definition 5.2.3. �

Note that since we have assumed that the probability distribution P over the set of all
acyclic digraphs with a given vertex set is a uniform distribution, the term logP (G) in a
digraph’s quality is the same for every digraph G and therefore is a constant with respect
to learning the digraph of a Bayesian network from a data set.

Let V once more be the set of random variables discerned and let Gk = (V ,AGk
) be

a digraph that has resulted at some stage during application of the B search algorithm.
Now, consider a new digraph Gk+1 = (V ,AGk

∪{(Vi, Vj)}) that differs from Gk in the arc
(Vi, Vj) only. From Lemma 5.2.4 it is easily seen that the difference in quality between
these two digraphs equals the difference in quality of vertex Vj in the two digraphs only;
this property is stated in the following corollary.

Corollary 5.2.5 Let V = {V1, . . . , Vn}, n ≥ 1, be a set of random variables. Let D be a
database over V . Let G = (VG,AG) and G′ = (VG′ ,AG ∪ {(Vi, Vj)}) be acyclic digraphs
with VG = VG′ = V Furthermore, let Q(G,D) and Q(G′,D) be the quality of G given D
and the quality of G′ given D, respectively. For each Vk ∈ V , let q(Vk,ρG(Vk),D) and
q(Vk,ρG′(Vk),D) be the quality of vertex Vk in G and the quality of Vk in G′ given D,
respectively. Then,

Q(G′,D)−Q(G,D) = q(Vj ,ρG′(Vj),D)− q(Vj ,ρG(Vj),D)

The B search heuristic now exploits the property stated in Corollary 5.2.5 for computing
the gain in quality that would result from adding a new arc to the digraph in the making.

The following pseudocode summarises the B search heuristic.

procedure construct-digraph(V ,D,G)

for each variable Vi ∈ V do

ρG(Vi) := ∅
od;

repeat

for each (ordered) pair Vi, Vj ∈ V such that addition of the arc (Vi, Vj)
to G does not introduce a (directed) cycle do

diff (Vi, Vj) := q(Vj ,ρG(Vj) ∪ {(Vi, Vj)},D)− q(Vj ,ρG(Vj),D)
od;

select the pair Vi, Vj ∈ V for which diff (Vi, Vj) is maximal;

if diff (Vi, Vj) > 0 then

ρG(Vj) := ρG(Vj) ∪ {Vi}
fi

until diff (Vi, Vj) ≤ 0
end

5.3 Assessing Probabilities 85

To conclude, we would like to point out that the learning algorithm as outlined above is
not guaranteed to find a minimal I-map for the joint probability distribution underlying
the process that generated the database used. It will be evident that one reason for the
learning algorithm not finding such a digraph is that it incorporates a search heuristic that
considers only a limited number of possible acyclic digraphs and therefore incidentally may
skip the minimal I-maps. Yet another reason lies in the quality measure used, however.
For infinite size databases, the MDL-measure can be shown to prefer minimal I-maps
over all other acyclic digraphs. Unfortunately, this property is not retained for finite
size databases. So, by employing the MDL-measure for a finite size database, a digraph
that is not a minimal I-map can be selected, even if every possible acyclic digraph were
considered.

The methods presented in this section still lie at the basis of modern score-based al-
gorithms for unsupervised structure learning of Bayesian networks of general topology.
Numerous other types of algorithm have been applied to the general problem of Bayesian
network structure learning, see[Berzan, 2012] or [Stahlschmidt et al., 2013] for a nice
overview. In addition to structure learning, various approaches to learning the probability
assessment functions of a Bayesian network exist (see e.g. [Ji et al., 2015] for a review).
With the current interest in machine learning and the increasing availability of data sets,
a lot of research in the Bayesian network community is also focussed on learning, result-
ing in a huge body of literature on the topic. Since the focus of this syllabus is more on
knowledge representation and reasoning and not on data science, we hereby conclude the
discussion of learning models from data.

5.3 Assessing Probabilities

Only after the qualitative part of the Bayesian network in the making has been constructed
and is considered robust, is its quantitative part specified. Specifying the quantitative part
of a Bayesian network amounts to defining the probability assessment functions for the
variables modelled in the network. The task of assessing all required probabilities tends
to be by far the hardest task in Bayesian network building.

In order to facilitate the assessment task, approaches have been introduced that
first attach qualitative signs to the arcs of a network’s digraph, resulting in a so-called
qualitative Bayesian network [Wellman, 1990, Renooij, 2001]. The signs capture the di-
rection of change in (cumulative) conditional probability upon shifting from a lower
ordered value to a higher ordered value of a conditioning variable. The benefits are
that these qualitative signs are easily elicited from domain expert, for example by us-
ing the method described by [Van der Gaag & Helsper, 2004]; the ordering of probabil-
ities for different conditioning contexts was also found to be consistent over multiple
experts [Van der Gaag & et al., 2012]. In addition, the signs pose constraints on the
probability distributions to be assessed, which can be exploited upon further assessment
[Renooij & Van der Gaag, 2002]; different combinations of qualitative signs, for example,
can be an indication of disjunctive interaction patterns, such as the noisy-or described
in Section 5.3.2 [Lucas, 2005]. In the end, though, the Bayesian network requires point
probabilities for its specification.

5.3.1 Sources of Probabilistic Information

In most problem domains, at least some probabilistic information for Bayesian network
quantification is readily available, be it from literature or from domain experts. The most
common sources of probabilistic information are [Jensen, 1995]:

� literature on the domain of application (textbooks, journals, conferences);

5.3 Assessing Probabilities 86

� (statistical) data;

� (other) models of domain knowledge;

� interviews with domain experts.

Using literature Literature on the domain of application often provides abundant prob-
abilistic information. Unfortunately, this information is very seldom directly amenable to
encoding in the Bayesian network in the making: the information typically is not com-
plete, it concerns variables that are not causally related, and so on. Medical literature,
for example, often reports conditional probabilities of the presence of symptoms given a
disease, but not always the probabilities of these symptoms occurring in the absence of
disease; moreover, conditional probabilities for unobservable intermediate disease states
are usually lacking. An additional, commonly found problem that prohibits direct use
of probabilistic information from literature is that the characteristics of the population
from which the information is derived, is not properly described or deviates seriously from
the characteristics of the population for which the Bayesian network is being developed
[Korver & Lucas, 1993].

Using data If the literature on the domain at hand does not provide for sufficient
and reliable probability assessments for quantification of the network in the making, es-
timates may be obtained from statistical data or from other models of domain knowl-
edge. The discussed algorithm for learning structure from data, for example, also com-
putes the assessment fucntions as a (necessary) by-product. Unfortunately, experience
shows that even if comprehensive data collections and models are available, they very sel-
dom contribute significantly to the reliable quantification of detailed models[Jensen, 1995,
Korver & Lucas, 1993]. In a medical data collection, for example, unobservable interme-
diate patho-physiological states are typically not recorded. Although techniques exist to
discover such hidden or latent variables in data, their interpretation in the domain is
often unclear. In case of little data, Bayesian approaches to learning unknown quanti-
ties, such as model-parameters, are most promising[Murphy, 2022]. In such approaches,
a model-parameter γV for a variable V is itself represented as a random variable with a
prior distribution. For learning the actual value of the parameter, the observations in the
data are entered into the network case by case and probabilistic inference serves to update
the parameter’s value. The posterior is then taken as the new prior and the process is
repeated. This approach, where parameters are learned from data by means of updating
priors through probabilistic inference is called Bayesian inference and is typically used in
Probabilistic programming.

Using domain expertise Depending on the domain and the complexity of the model
under construction, we may be faced with a situation in which the majority of the probabil-
ities required will have to be assessed by domain experts. The problems encountered when
eliciting probabilities from experts are widely known [Tversky et al., 1982]; an expert’s as-
sessments may for example reflect various biases and may not be properly calibrated. The
next sections describe several approaches that attempt to counter these problems, at least
to some extent.

5.3.2 Simplifying Probability Assessment

The task of assessing all probabilities required for quantifying a Bayesian network can
often be simplified by assuming the presence of one or more disjunctive interactions in the
network [Pearl, 1988]. A disjunctive interaction pertains to two or more causes and their

5.3 Assessing Probabilities 87

common effect: it specifies that any of these causes in itself suffices to cause the effect and
that the likelihood of this cause causing the effect does not diminish when several other
causes are present simultaneously.

More formally, we consider a set of random variables V and an acyclic digraph G =
(VG,AG) with VG = V where (V1, V0), . . . , (Vm, V0) ∈ AG, for some vertices V0, V1, . . . , Vm,
m ≥ 1. Note that the digraph G expresses that V1, . . . , Vm model different causes of a
common effect modelled by V0. The variables V1, . . . , Vm are said to exhibit a disjunctive
interaction with respect to V0 if the variables V1, . . . , Vm adhere to the properties of ac-
countability and exception independence. The property of accountability expresses that
at least one of the causes modelled by V1, . . . , Vm needs to be present for V0 to adopt
the value true, or alternatively, that the variable V0 takes the value false whenever all its
causes are absent. The property of accountability is stated in terms of probabilities as

Pr(v0 | ¬v1 ∧ · · · ∧ ¬vm) = 0

We now turn to the property of exception independence. This property is best explained
in terms of a logical or-gate. Note that in a logical or-gate, the presence of any one of the
causes V1, . . . , Vm suffices for V0 to adopt the value true. Now, if the logical relationship
between V0 and its separate causes is perturbed, we say that the logical or-gate is noisy.
In a noisy or-gate, for each cause Vi a so-called exception mechanism may inhibit the
presence of the cause to result in V0 = true; such an exception mechanism is often termed
an inhibitor. The exception mechanisms in a noisy or-gate may be looked upon as random
variables. If the exception mechanism for a cause Vi has the value true, then it inhibits the
occurrence of the effect V0 = true; if Vi’s exception mechanism has the value false, then it
does not prevent the occurrence of the effect upon presence of the cause modelled by Vi.
We therefore can model the exception mechanism of a cause Vi by a random variable Ii
such that

Pr(v0 | ¬v1 ∧ · · · ∧ ¬vi−1 ∧ (vi ∧ ii) ∧ ¬vi+1 ∧ · · · ∧ ¬vm) = 0

and

Pr(v0 | ¬v1 ∧ · · · ∧ ¬vi−1 ∧ (vi ∧ ¬ii) ∧ ¬vi+1 ∧ · · · ∧ ¬vm) = 1

Exception independence for V1, . . . , Vm now is the property that random variables I1, . . . , Im
modelling the exception mechanisms for V1, . . . , Vm, respectively, are mutually indepen-
dent. Because of the analogy outlined above, a disjunctive interaction is often coined a
noisy or-gate.

The information that V1, . . . , Vm exhibit a disjunctive interaction with respect to V0
is not directly amenable to encoding in a Bayesian network. The information, however,
imposes strong restrictions on the probability assessment function γV0 for the vertex V0 in
the network. To support this observation, we consider the various values that have to be
assessed to define the function γV0 , separately:

� for the value γV0(v0 | ¬v1 ∧ · · · ∧ ¬vm), we have

γV0(v0 | ¬v1 ∧ · · · ∧ ¬vm) = 0

from the property of accountability of a disjunctive interaction;

� for i = 1, . . . ,m, let Ii be the inhibitor for cause Vi and let Pr(ii) = qi; then, we have
that

γV0(v0 | ¬v1 ∧ · · · ∧ ¬vi−1 ∧ vi ∧ ¬vi+1 ∧ · · · ∧ ¬vm) = 1− qi

5.3 Assessing Probabilities 88

� let c be an arbitrary configuration of the set of causes {V1, . . . , Vm} and let Tc = {i |
c ∧ vi 6≡ False}; then, we have that

γV0(v0 | c) = 1−
∏
i∈Tc

qi

from the property of exception independence of a disjunctive interaction.

From these observations we have that, once causes V1, . . . , Vm are known to exhibit a
disjunctive interaction with respect to V0, it suffices to assess only n probabilities to define
the probability assessment function γV0 for vertex V0.

Recall that a disjunctive interaction adheres to the properties of accountability and
exception independence. We take a closer look at the property of accountability. Recall
that this property states that all causes of an effect are known and explicitly modelled
in the Bayesian network in the making. We observe that this property is hardly ever
satisfied in real-life applications. Since incompleteness is inherent to any model of domain
knowledge, a Bayesian network will never be complete: there will always be possible causes
of an effect that are not explicitly modelled in the network. Unfortunately, if the property
of accountability is not satisfied, it is not possible to exploit the model of the noisy or-gate
as described above — not even it the property of exception independence is satisfied.

Consider the variables V1, . . . , Vm modelling different causes of a common effect ex-
pressed by V0. Now, assume that the property of exception independence is satisfied and
that the property of accountability is not: we have that

Pr(v0 | ¬v1 ∧ · · · ∧ ¬vm) = p

where p > 0. To be able to nevertheless exploit the model of the noisy or-gate, we can
extend the Bayesian network in the making with an extra random variable in such a way
that the property of accountability is enforced and the property of exception independence
is retained. To this end, we introduce a new variable Vm+1 into the network as modelling
an extra cause of the effect V0 — this variable then is taken to capture all causes of V0
that are not yet modelled in the original network. For this variable Vm+1, we then have

Pr(v0 | ¬v1 ∧ · · · ∧ ¬vm ∧ ¬vm+1) = 0

and

Pr(v0 | ¬v1 ∧ · · · ∧ ¬vm ∧ vm+1) = p

Furthermore, we take Vm+1 to be independent of V1, . . . , Vm. Note that the introduction
of the variable Vm+1 has not altered the meaning of the original causal mechanism. Also
note that the property of accountability is now satisfied by V1, . . . , Vm+1 and that the
model of the noisy or-gate applies.

Although the introduction of an extra variable as outlined before allows for exploiting
the model of the noisy or-gate in the case where the property of accountability is not
satisfied, adding an extra variable to the network is not satisfactory from a knowledge
representational point of view: the additional variable has no well-defined meaning and
therefore in a sense pollutes the Bayesian network. The model of the leaky noisy or-
gate now allows for capturing all yet unmodelled causes of a common effect implicitly
[Henrion, 1989]. Consider once more the variables V0, V1, . . . , Vm and assume that the
property of exception independence is satisfied and the property of accountability is not;
recall that we have that

Pr(v0 | ¬v1 ∧ · · · ∧ ¬vm) = p

5.3 Assessing Probabilities 89

where p > 0. The probability p is called a leak probability and is looked upon as expressing
the probability that the effect v0 occurs spontaneously. Now, by introducing an extra
inhibitor I0 with probability Pr(i0) = q0 = 1 − p similar observations apply to the leaky
noisy or-gate as for the noisy or-gate: the information that the variables V0, V1, . . . , Vm
constitute a leak noisy or-gate again imposes strong restrictions on the definition of the
probability assessment function γV0 for the variable V0:

� for the probability γV0(v0 | ¬v1 ∧ · · · ∧ ¬vm), we have

γV0(v0 | ¬v1 ∧ · · · ∧ ¬vm) = p

� for i = 1, . . . ,m, let Ii be the inhibitor for cause Vi and let Pr(ii) = qi; then, we have
that

γV0(v0 | ¬v1 ∧ · · · ∧ ¬vi−1 ∧ vi ∧ ¬vi+1 ∧ · · · ∧ ¬vm) = 1− qi

� let c be an arbitrary configuration of the set of causes {V1, . . . , Vm}, let Tc = {i |
c ∧ vi 6≡ False}, and let q0 = 1− p; then, we have that

γV0(v0 | c) = 1− q0 ·
∏
i∈Tc

(
qi
q0

)
from the property of exception independence of a disjunctive interaction.

Note that the values for the probability assessment function γV0 are defined much in the
same way as in the model of the noisy or-gate. Also note that, since in the Bayesian
network in the making the effect of a cause cannot be isolated from the spontaneous
occurrence of the effect, the probability assessments of the effect given a single cause are
adjusted to account for this spontaneous leak before they are combined.

5.3.3 Eliciting Probabilities from Experts

The field of decision analysis offers various techniques for the elicitation of judgemental
probabilities from experts[Von Winterfeldt & Edwards, 1986, Morgan & Henrion, 1990].
We briefly review the two techniques that are most often used for eliciting probabilities
for Bayesian networks. The simplest technique is the use of a numerical probability scale.
A probability scale is a horizontal or vertical line with the endpoints denoting a 0% and
a 100% chance, respectively, and a few numerical anchors in between, for example to de-
note a 50% chance; Figure 5.2 illustrates the basic idea. For each probability required, a
domain expert is asked to indicate his or her assessment on a separate scale. In communi-
cating a probability to be assessed to a domain expert, the probability is often transcribed
verbally in terms of frequencies. The expert is asked to envisage one hundred cases within
a specific context and assess the number of cases that exhibit a certain characteristic.
Experience shows that the use of a probability scale along with the frequency method pro-
vides experts little to go by and may result in highly inaccurate probability assessments
[Van der Gaag et al., 1999].

A more elaborate technique for the elicitation of judgemental probabilities is the use of
reference lotteries. A domain expert is presented with a choice between two lotteries, one

Figure 5.2: A numerical scale for probability elicitation.

5.3 Assessing Probabilities 90

of which pertains to the probability to be assessed and the other one serves as a reference.
The reference lottery yields a desired reward with probability p and a less desired outcome
with probability 1−p. The second lottery yields the same desired reward if a specific case
exhibits a certain characteristic and the less desired outcome otherwise.

Example 5.3.1 Suppose that, in a medical domain of application, an expert has to assess
the probability of a specific patient with metastatic cancer showing an increased level of
serum calcium. The domain expert is presented, for instance, with a choice between
a reference lottery and the lottery that yields $10,000 if the patient upon examination
shows an increased level of serum calcium and $1 if the level of serum calcium is not
increased in the patient. Figure 5.3 depicts this choice between lotteries. �

Figure 5.3: An example reference lottery.

The domain expert is asked to adjust the value of p in the reference lottery until he or she
is indifferent between the two lotteries. The resulting value of p then is taken to be the
conditional probability that had to be assessed. Experience shows that the use of reference
lotteries for eliciting probabilities from domain experts may avert to at least some extent
the problems of bias and poor calibration that are typically found in human probability
assessment. The use of lotteries, however, tends to be quite time-consuming and, in fact,
often turns out to be infeasible for probability elicitation for Bayesian networks as a result
of the large size and complexity of a network in the making.

While the use of lotteries for probability elicitation on the one hand tends to be in-
feasible for quantifying a Bayesian network, the use of a probability scale on the other
hand tends to yield assessments that are too much inaccurate. The use of a probability
scale, nonetheless, serves to yield an assessment, be it an inaccurate one, for every condi-
tional probability required. These assessments may then be used as a starting point for
further refinement. More details on probability elicitation methods, including a method
designed by Utrecht University researchers, which is based on the use of a verbal-numerical
probability scale, can be found in [Renooij, 2001b].

5.3.4 A Procedure for Probability Refinement

The assessments obtained for a Bayesian network are inevitably inaccurate, due to incom-
pleteness of data and partial knowledge of the problem under study. Particularly assess-
ments obtained from experts are known to be highly inaccurate [Tversky et al., 1982]. The
inaccuracies in the probability assessments for a Bayesian network influence the reliability
of the network’s output. Sensitivity analysis is a general technique for studying the effects
of the uncertainties in the parameters of a mathematical model on this model’s outcome

5.3 Assessing Probabilities 91

[Morgan & Henrion, 1990]. For a Bayesian network, sensitivity analysis provides, for ex-
ample, for studying the effects of the uncertainties in the assessments for the network’s
conditional probabilities on a probability of interest. There are various different types
of sensitivity analysis. For a Bayesian network, the simplest type of sensitivity analysis
amounts to systematically varying the assessment for one of the network’s probabilities
while keeping all other assessments fixed. Such an analysis serves to reveal the effect
of just the conditional probability whose assessment is being varied, on a probability of
interest. A sensitivity analysis in which a single assessment is varied, is termed a one-
way sensitivity analysis. In a two-way sensitivity analysis of a Bayesian network, two
probability assessments are varied simultaneously. In addition to the separate effects of
variation of the two assessments, a two-way sensitivity analysis reveals the joint effect of
their variation on a probability of interest. In essence, it is also possible to systematically
vary more than two probability assessments at the same time. The results of such an
analysis, however, are often hard to interpret.

Sensitivity analysis of a Bayesian network provides for studying the effects of the
uncertainties in the various probability assessments of the network on a probability of
interest. Studying these effects can to a large extent serve to support the elicitation of
probabilities, as it gives detailed insight into the level of accuracy that is required for the
various probabilities of the network, and as a result provides for focusing further elicitation
efforts. We describe an elicitation procedure in which, alternatingly, sensitivity analyses
are performed of a Bayesian network in the making and probability assessments are refined;
this procedure is summarised in Figure 5.4. We elaborate on the various different steps of
the procedure separately.

(Improved) Probability assessment
+ plausible interval

Is the result sensitive to the assessment?

Can the assessment be improved upon?

Is a new assessment cost-effective?

no

no

no

yes

yes

stop

stop

stop

yes

Start

Figure 5.4: A procedure for probability elicitation for Bayesian networks.

Step 1 In the first step of the elicitation procedure, initial assessments are acquired for
all conditional probabilities for a Bayesian network in the making. As we have argued
before, for most domains of application, experts will have to provide the majority of
these initial assessments. In this phase of the construction of the Bayesian network, we
apply an elicitation technique that aims at acquiring assessments within a short period
of time. To this end, in a limited number of interview sessions, experts are asked to

5.3 Assessing Probabilities 92

assess all probabilities required off the top of their heads, for example using a numerical,
or verbal-numerical, probability scale. In addition, they are asked to indicate plausible
intervals along with their assessments, that define a range of values in which the ‘true’
probability lies with reasonable certainty. These intervals should be pessimistic rather
than optimistic to ensure that the uncertainties in the various different assessments are
not underestimated. Since experts are thus allowed to express the uncertainties in their
assessments, they will tend to be less reluctant to provide numerical statements than when
they feel compelled to give exact numbers.

Instead of eliciting all probabilities required from domain experts, initial assessments
for at least some of these probabilities may be obtained from data, if available. If the data
at hand is known to be imperfect, incomplete, or biased, then the assessments should be
supplemented with fairly large plausible intervals to capture the uncertainties involved.

Step 2 The probability assessments obtained in the first step of the elicitation procedure
will in general be highly uncertain and should have considerably large plausible intervals.
For some of the probabilities, these initial assessments will nonetheless suffice. Other
probabilities, however, will require assessments with a higher level of accuracy. The second
step of our elicitation procedure is aimed at uncovering the latter probabilities. For this
purpose, the Bayesian network in the making is subjected to various sensitivity analyses.
In these analyses, every single probability assessment for the network is varied, as is
every pair of assessments. These analyses require a lot of computation and generate a
huge amount of data from which we need to decide which probability assessments require
further attention. This computational and informational burden, including the technical
details of sensitivity analysis, is further discussed in Section 6.1.

If performing all sensitivity analyses is too time-consuming to be practicable, the anal-
yses can be restricted to a moderate number of assessments. To this end, experts may be
asked to indicate the probability assessments that are the most likely to affect a probabil-
ity of interest or, alternatively, to indicate a number of conceptually related probability
assessments.

Step 3 In the second step of the elicitation procedure, various probability assessments
have been identified that induce a considerably large effect on a probability of interest (see
Section 6.1 on criteria for determining what ’large effect’ means). These assessments are
potential candidates for further refinement. In the third step of the procedure, the extent to
which these assessments can actually be refined is determined; this depends on the current
uncertainty in the assessment, indicated by the width of its plausible interval, and on the
elicitation techniques used to arrive at the assessment. A probability assessment with
a rather small plausible interval obtained from applying elaborate elicitation techniques
may not lend itself to further refinement. An assessment that is not yet very certain,
on the other hand, may be more easily improved upon. Refinement of such an uncertain
assessment, however, is only actually possible if reliable sources of probabilistic information
remain to be explored; examples of such sources of information include further literature
search, the use of a panel of experts, the use of more elaborate elicitation techniques,
and the study of data, for instance collected in a prospective study. From among the
potential candidates for further refinement, therefore, the assessments are identified that
have a considerable plausible interval and for which yet unexplored sources of probabilistic
information are available.

Step 4 The probability assessments that have been selected in the third step of the
elicitation procedure are assessments that can be refined. To actually refine these assess-
ments, an investment of time and money is required. In the fourth step of the elicitation

Exercises 5 93

procedure it is investigated for each of the selected assessments whether refinement is
cost-effective, by weighing the costs in terms of money and time to be invested with the
benefits of higher accuracy. The benefits of having an assessment of higher accuracy in
the Bayesian network in the making may be a higher accuracy of a computed probability
of interest and an improved performance more in general. For example, for a Bayesian
network that is to be used for diagnostic purposes, performance may be measured as the
percentage of correctly diagnosed cases. Refining a probability assessment for this net-
work would only be worthwhile if it would increase the number of correct diagnoses (see
Chapter6 on evaluation). Once a Bayesian network in the making exhibits satisfactory
overall behaviour, refining assessments may be found to be no longer cost-effective.

Recursive step The probability assessments that have been identified in the fourth step
of the elicitation procedure are known to induce a considerable effect on a probability of
interest; moreover, any such assessment can be cost-effectively refined. For these assess-
ments, the entire elicitation procedure is recursively repeated. The probabilities concerned
are assessed anew in the first step of the next cycle of the procedure, using yet unexplored
sources of probabilistic information. Since the plausible intervals of the initial assessments
for these probabilities do not underestimate the uncertainties involved, refinement is likely
to result in smaller plausible intervals for the new assessments. In the second step, once
again several sensitivity analyses are performed. These analyses should not only focus on
the new assessments, but also on previously investigated assessments as their effect on a
probability of interest upon variation may have changed as a result of the refinement of
the network. In addition, analyses may be performed with respect to assessments that
have not been investigated before. By recursively refining probability assessments, the
performance of the Bayesian network in the making is likely to gradually improve. The
elicitation procedure is stopped as soon as the costs of further elicitation outweigh the
improvement in the network’s performance or higher accuracy can no longer be attained
due to lack of knowledge. You have now finished constructing the first prototype of your
network and are ready for evaluating its practical use.

Exercises

* Exercise 5.1

In constructing the qualitative part of a Bayesian network for a domain of application,
a knowledge engineer aims at a digraph that is as sparse as possible. Give at least two
reasons for this goal.

* Exercise 5.2

In the construction of the qualitative part of a Bayesian network for a domain of appli-
cation, a cycle may arise. Describe at least two methods for removing the cycle from the
network in the making.

* Exercise 5.3

Suppose that you are asked to construct a Bayesian network for a major medical center
in Utrecht, to support specialists in the diagnosis and prognostication of various types of
vascular disease. The network is to be constructed by hand, with the help of a domain
expert.

Exercises 5 94

a. The expert indicates that there are four important types of vascular disease; these
types of disease are not mutually exclusive. Now, suppose that for pragmatical rea-
sons, the network should have just one hypothesis variable. Explain how the various
types of disease can be modelled in the network’s digraph.

b. Suppose that you decide to model a single-valued discrete domain variable by means
of two random variables. Explain how the relationship between these two variables
can be modelled.

c. After the digraph of the network has been completed, it becomes clear that it requires
simply too many probabilities for its quantification. Describe at least four ways to
reduce the number of probabilities required. For each of these, describe in which
situations it can lead to a substantial reduction of the number of probabilities required
and in which situations it cannot.

* Exercise 5.4

Suppose that for the hospitals in the Netherlands, a Bayesian network is being built for
the diagnosis of acute cardiac disorders and that the network is being handcrafted with the
help of domain experts.

a. For eliciting the topology of the digraph of the network in the making, the concept
of causality is used as a heuristic guiding rule. Give an example showing that the
concept of causality is not always suitable for this purpose.

Suppose that the digraph of the Bayesian network in the making comprises the following
subgraph:

Smoking
Blood

Pressure
Cholesterol

HeartAttack

For the variable Smoking the values true and false have been identified, denoted as s and
¬s, respectively; for the variable BloodPressure the values b and ¬b have been identified,
for the variable Cholesterol the values c and ¬c, and for the variable HeartAttack the
values h and ¬h.

b. Suppose that from an emergency medical center in New York, a data collection is
available with the medical records of 12738 patients with heart disease. Explain why
this data collection cannot be used just like that for the assessment of the probabilities
required for the variable HeartAttack in the network fragment above.

c. Before commencing with the elicitation of the required probabilities, you would like
to ask the domain expert whether or not a disjunctive interaction may be assumed
for the variable HeartAttack and its parents. Which questions would you pose?

d. Now suppose that the domain expert indicates that the variables Smoking, Blood-
Pressure and Cholesterol satisfy the property of exception independence with respect
to the variable HeartAttack. The domain expert further assesses the following prob-

Exercises 5 95

abilities:

Pr(h | ¬s ∧ ¬b ∧ ¬c) = 0.05
Pr(h | s ∧ ¬b ∧ ¬c) = 0.6
Pr(h | ¬s ∧ b ∧ ¬c) = 0.8
Pr(h | ¬s ∧ ¬b ∧ c) = 0.9

Is it possible to specify a complete probability assessment function for the variable
HeartAttack on the basis of the available information ? If no, then which information
is missing; if yes, then give the complete assessment function.

* Exercise 5.5

Contrary to other exercises, this exercise is not representative of an exam question. It
is mainly used to illustrate the kind of issues you can run into when you try to gather
probabilistic information from various sources. Moreover, in answering the question you
can once again practice al the BN basics: how is the network defined, how can I appy
different rules from probability theory while exploiting the independences encoded in the
graph? Be sure to draw the described graph.

Suppose that with the help of a domain expert, a digraph of a Bayesian network is con-
structed consisting of the variables V1, V2, V3, and V4, and the arcs (V1, V2), (V2, V3), and
(V2, V4). From the literature on the domain under study, the following probabilistic infor-
mation is available about the four variables:

Pr(v1 ∧ v2) = 0.25
Pr(¬v1 ∧ ¬v2) = 0.3
Pr(v2 ∧ ¬v3) = 0.2
Pr(v2 ∧ v3) = 0.25
Pr(¬v2 ∧ v3) = 0.15
Pr(v3 | ¬v1 ∧ v2 ∧ v4) = 0.4
Pr(v4) = 0.8

No further information has been found and the information provided is not completely
coherent. Construct the assessment functions for as many variables as possible from the
available information. Note that some assessment functions can be constructed in multiple
ways, possibly resulting in different probabilities due to the incoherencies.

* Exercise 5.6

Consider the following procedure for eliciting probability assessments from domain experts:

� the expert is asked to use his own keywords and phrases to indicate his assessments
for the various probabilities;

� the expert is then asked to rank order the keywords and phrases he used;

� the knowledge engineer subsequently associates numerical probabilities with the var-
ious keywords and phrases.

Describe the strengths and weaknesses of this procedure.

Exercises 5 96

* Exercise 5.7

a. Let V = {V1, V2, V3} be a set of binary random variables. Let D be a database over
V comprising the following cases:

v1 ∧ ¬v2 ∧ ¬v3 ¬v1 ∧ v2 ∧ v3
v1 ∧ v2 ∧ v3 ¬v1 ∧ ¬v2 ∧ ¬v3
v1 ∧ ¬v2 ∧ ¬v3 v1 ∧ ¬v2 ∧ ¬v3
v1 ∧ v2 ∧ v3 ¬v1 ∧ ¬v2 ∧ v3
v1 ∧ ¬v2 ∧ ¬v3 ¬v1 ∧ ¬v2 ∧ ¬v3
¬v1 ∧ ¬v2 ∧ v3 v1 ∧ v2 ∧ v3
¬v1 ∧ v2 ∧ ¬v3 v1 ∧ v2 ∧ v3
v1 ∧ ¬v2 ∧ ¬v3 v1 ∧ v2 ∧ ¬v3
v1 ∧ ¬v2 ∧ ¬v3 v1 ∧ v2 ∧ v3
v1 ∧ ¬v2 ∧ v3 v1 ∧ v2 ∧ v3

There is no other information available on the variables V1, V2 and V3.

Suppose that the database D is exploited for automated construction of a Bayesian
network. For constructing the network, the B search heuristic is used in combination
with the MDL quality measure. Now suppose that at some stage, the following digraph
is constructed:

V1 V2

V3

Compute the difference in quality that is achieved by adding the arc (V1, V2) to this
digraph.

b. In practical applications, the B search heuristic is applied not only in combination
with the MDL quality measure, but also in combination with other quality measures.
An example of such a measure is the Akaike information criterion; this criterion is
defined as

QA(G,D) = logP (G)−N ·H(G,D)−K

where G,D, P,N,H and K have the same meaning as in the MDL quality measure.
Now, for a given database D, let GA be the digraph that is yielded by the B search
heuristic with the Akaike information criterion and let GMDL be the digraph that is
yielded by the heuristic with the MDL quality measure. Describe in which respect the
digraphs GA and GMDL will differ in general.

* Exercise 5.8

Consider the automated construction of a Bayesian network for the domain of classical
swine fever.

a. Suppose you have available a sufficiently large, but incomplete data set. To use this
data set for learning a Bayesian network, we need to cope with these ’missing values’.
Describe at least two approaches to doing so.

b. Indicate what the effects of filling in missing values can be on the structure learnt
with MDL and the B-search algorithm.

Exercises 5 97

c. In the domain of classical swine fever, numerous variables have more than two values.
The penalty term 1

2 ·K · logN discussed with the MDL measure assumes all variables
are binary-valued. Does it make sense to adapt this penalty term for non-binary
variables? If not: explain why not. If so: explain how to adapt the penalty term and
what the effect of this adaptation on your structure will be.

* Exercise 5.9

Suppose we want to model a disjunctive interaction that is more restrictive than noisy-OR:
the effect V0 can only be present when exactly one uninhibited cause Vi is present, instead
of when at least one uninhibited cause is present. That is, we want to model a noisy-XOR
gate.

Since a noisy-XOR gate captures a disjunctive interaction, albeit more restricted than the
noisy-OR, the properties of accountability and exception independence still apply. Now,
let c be any configuration for the m causes V1,. . . ,Vm. Let Tc denote the set of indices of
present causes in c, that is, Tc = {i | c ∧ vi 6≡ False}.

Note that for a noisy-XOR, we still have that if a single cause is present (|Tc| = 1), then
the effect is present, unless the cause is inhibited, so

γ(v0 | ¬v1 ∧ . . . ∧ ¬vi−1 ∧ vi ∧ ¬vi+1 ∧ . . . ∧ ¬vm) = 1− qi

where i = 1, . . . ,m and qi is the probability that cause Vi is inhibited.

Consider an arbitrary configuration c for V1,. . . ,Vm with at least two causes present (|Tc| ≥
2). Now the effect should occur only if all but one of the present causes are inhibited.
Explain in detail how you would compute Pr(v0 | c) for a noisy-XOR gate.

* Exercise 5.10

a. What is the rationale behind indirect probability elicitation methods such as proba-
bility wheels, betting models and lottery models?

b. What is a general drawback of all three methods?

c. What is the main difference between a betting and a lottery model? Give drawbacks
of these specific models.

d. What is the rationale behind the tailored tool for assessing probabilities for a Bayesian
network?

* Exercise 5.11

Consider a Bayesian network B = (G,Γ), with acyclic digraph G = (VG,AG). Let VG =
{X1, X2, X3, Y } correspond to a set of binary-valued variables, with value assignments
xi,¬xi, denoting Xi = true and Xi = false, i = 1, 2, 3, respectively. Similarly, y,¬y denote
Y = true and Y = false, respectively. In addition, let AG = {X1 → Y,X2 → Y,X3 → Y },
i.e. X1, X2 and X3 are direct parents of Y in the graph.

Suppose that Y is defined as the disjunction of its three parents X1, X2 and X3. (Note:
here a true logical disjunction is meant; this has nothing to do with a disjunctive interac-
tion/ noisy-or!)

Exercises 5 98

a. Specify the complete assessment function γY for Y , for example in a CPT (condi-
tional probability table):

X1 X2 X3 γY (Y | X1 ∧X2 ∧X3)

¬y y

false false false
.

One of the modelling techniques related to the structure of a Bayesian network is referred
to as parent divorcing. For network B, parent divorcing would amount to introducing an
intermediate variable H between Y and a true subset X of its parents X1, X2 and X3. As
a result, variables X are ’divorced’ from (and no longer co-parents with) the remaining
parents of Y .

b. Perform parent divorcing on network B, in the following two steps:

b1. select a set X ⊂ πG(Y) with two or more variables to divorce from the remaining
parents πG(Y) \X of Y and draw the digraph G′ with VG′ = VG ∪ {H} that
results after parent divorcing;

b2. specify the new assessment functions γH and γY for the new intermediate,
binary-valued variable H, and for variable Y , respectively. Explain your an-
swers.

c. Answer the following questions concerning the described technique of parent divorc-
ing:

c1. What is the intended purpose or benefit of parent divorcing?

c2. When would parent divorcing be unadvisable?

Chapter 6

Bringing Bayesian Networks into
Practice

In various domains of application, ranging from medicine to meteorology, decision-support
systems are being developed that build upon a Bayesian network for their knowledge rep-
resentation. The previous chapter has dealt with the construction of such a Bayesian
network. In this chapter, we discuss two issues that are concerned with enabling ac-
tual use of a Bayesian network in practice. Before a Bayesian network is introduced into
practice, it should be analysed whether the network behaves as expected, and produces
acceptable output. There are very few standard validity tests for Bayesian networks, es-
pecially for expert-elicited networks. Existing tests or analyses focus on the graphical
structure (d-separation analyses), or on concepts such as ‘sensitivity to findings’ and ‘sen-
sitivity to model parameters’ [Jensen & Nielsen, 2007]. Recently, a validation framework
was introduced that suggests to include more than above-mentioned criteria for reliability
and predictive validity [Pitchforth & Mengersen, 2013]. In Section 6.1, we will discuss
sensitivity analysis as a general method for studying a Bayesian network’s robustness. In
Section 6.2, we discuss the evaluation of the practical value of a Bayesian network, by
providing some measures for establishing a network’s quality.

As experience with applying the Bayesian network framework increased, it became
apparent that, although the framework offers many advantages over earlier approaches
to automated reasoning with uncertainty, it lacks with regard to intelligent control over
reasoning. A Bayesian network provides for computing probabilities only, whereas in prac-
tice often decisions, such as what diagnostic tests to perform (known as test-selection, or
adaptive testing) or what therapy to instil, are to be based on the computed probabil-
ities. The provision of control over reasoning is generally considered one of the main
contributions of artificial intelligence research to automated reasoning: knowledge-based
systems thank their success to a large extent to their ability to apply specialised knowl-
edge for pruning search spaces and for selectively gathering evidence. In Section 6.3, we
describe a problem-solving architecture that allows for automated control over reasoning
with Bayesian networks.

A crucial factor in bringing Bayesian networks into practice is user-acceptance. For
a user to accept a system built on the network, it should not only be proven valid and
reliable, but the system should also be able to explain and motivate the outcomes to
the user. Section 6.4 very briefly addresses explanation of Bayesian networks: a topic
which has received too little attention over the past decades, but will hopefully profit
from current interests in explainable AI.

99

6.1 Sensitivity Analysis 100

MC

B ISC

CCT

SH

γ(mc) = 0.20 γ(isc | mc) = 0.80
γ(isc | ¬mc) = 0.20

γ(b | mc) = 0.20
γ(b | ¬mc) = 0.05 γ(ct | b) = 0.95

γ(ct | ¬b) = 0.10
γ(c | b, isc) = 0.80
γ(c | ¬b, isc) = 0.80 γ(sh | b) = 0.80
γ(c | b,¬isc) = 0.80 γ(sh | ¬b) = 0.60
γ(c | ¬b,¬isc) = 0.05

Figure 6.1: An example Bayesian network

6.1 Sensitivity Analysis

The reliability of the output of a Bayesian network can be investigated by studying its
robustness. Robustness pertains to the extent to which the network’s conditional probabil-
ities influence the output when deviations from the specified assessments are assumed. In
a medical application, for example, erroneous diagnoses or non-optimal treatment recom-
mendations may result from building upon inaccurate assessments. For gaining detailed
insight in output robustness, a Bayesian network can be subjected to a model-parameter
sensitivity analysis. In the previous chapter, sensitivity analysis was mentioned as part
of a probability elicitation procedure. Sensitivity analysis, in addition, can be used as a
technique underlying model-parameter tuning, that is, changing probability assessments
so that the network gives the desired output. Perhaps most importantly, sensitivity anal-
ysis can give insight into the range of probability assessments, or even evidence profiles,
for which the outcome of the network is valid.

A sensitivity analysis of a mathematical model basically amounts to stepwise variation
of one or more model parameters and computing the output of the model in each step. This
is a very demanding process from a computational point of view. Fortunately, the output
probability of interest in a Bayesian network relates to the model parameters varied by a
simple mathematical function which can be computed quite efficiently from the network
under study [Kjærulff & Van der Gaag, 2000, Coupé & Van der Gaag, 2002]. The form of
this function heavily depends on how the variables corresponding to the model parameters
of interest and output of interest are located relative to each other in the network, as well
as on the evidence entered.

In this syllabus we restrict the discussion to one-way and two-way sensitivity analyses,
where only one or two independent model parameters (i.e. from different conditional
distributions), respectively, are varied simultaneously. Upon varying a model parameter,
we have to make sure that the probabilities pertaining to the same conditional distribution
from which we take the model parameter continue to sum to one. Upon varying a single
model parameter, we adopt the standard assumption of proportional scaling : the other
model parameters are co-varied such that their mutual proportional relationship is kept
constant; other co-variation schemes can also be applied (see [Renooij, 2014] for different
schemes and their properties). We will consider the general form of the functions, followed
by some properties, criteria for selecting interesting model parameters, and examples.

Example 6.1.1 As a running example we now consider the network in Figure 6.1, de-
scribing a piece of (fictitious and incomplete) medical information. The fragment describes
the problems of metastatic cancer (denoted MC) for an arbitrary patient, with regard to
the development of a brain tumour. Metastatic cancer may be detected by an increased

6.1 Sensitivity Analysis 101

level of serum calcium (ISC). The presence of a brain tumour (B) may be established from
a CT scan (CT). Severe headaches (SH) are indicative of the presence of a brain tumour.
Both a brain tumour and an increased level of serum calcium are likely to ultimately cause
a patient to fall into a coma (C). The strengths of these dependences are described by
the conditional probabilities. The probabilities specified for the variable ISC , for example,
express that knowing whether or not metastatic cancer is present has a considerable influ-
ence on the probability of an increased level of serum calcium in an arbitrary patient. On
the other hand, severe headaches are expressed as quite common in both patients with and
without a brain tumour. Severe headaches thus have a low predictive value for a brain tu-
mour. From the conditional probabilities specified for vertex C , we see that in the absence
of both a brain tumour and an increased level of serum calcium, there is only a very small
probability of a patient falling into a coma. The presence of either one of these causes in
an arbitrary patient, however, suffices to render the probability of this patient falling into
a coma in the near future quite high. Note that the two causes do not contribute to this
probability independently: if one of the causes is present, then the presence of the other
cause has no further influence on the probability of a patient falling into a coma. The two
causes are said to exhibit a (negative) synergistic influence on their common effect.

6.1.1 What to Analyse?

A sensitivity analysis with respect to a prior output probability of interest allows for as-
sessing the quality and robustness of a Bayesian network in its reflecting a prior probability
distribution for the domain of application. In the presence of case-specific observations,
however, a Bayesian network may show very different sensitivities. To reveal these sensi-
tivities, a sensitivity analysis may be performed with respect to a posterior output prob-
ability, conditioned on case-specific evidence. Such an analysis allows for validating the
network’s behaviour for specific cases or profiles, for example, profiles of typical patient
populations in a medical application.

It is clear that a full-blown sensitivity analysis quickly becomes infeasible as it requires
analysing the relation between each model parameter, or combination of model parameters,
in the network, and every possible output probability of interest. The number of different
output probabilities is exponential in the number of variables in the network. Fortunately,
not every theoretically possible output probability will be of interest in the domain of
application. In addition, for a given probability of interest, not every model parameter
has to be varied. In fact, only model parameters pertaining to variables in the sensitivity
set for a variable of interest need to be included in the sensitivity analysis. Given evidence
e for a set of variables E, the sensitivity set for a variable of interest A contains all
variables whose model parameters may affect the posterior probability distribution for A
upon variation. More precisely, the sensitivity set is the set of variables V ∈ V for which
none of the following holds:

� V 6∈ ρ∗G(A) and σ∗G(V) ∩E = ∅;

� V ∈ ρ∗G(A) and 〈{V } ∪ ρG(V) |E |{A}〉dG;

� V 6∈ ρ∗G(A), 〈{V } ∪ ρG(V) |E |{A}〉dG and σ∗G(V) ∩E 6= ∅;

A sensitivity set clearly depends to a large extent on the case-specific observations that
have been entered into the network. In our example Bayesian network, for instance, once
the presence or absence of a metastatic cancer has been established in a patient, varying the
probability assessments for the variable ISC can no longer influence Pr(b). The sensitivity
set can be readily identified using d-separation properties of the network’s graph extended
with auxiliary nodes (more details can be found in [Coupé & Van der Gaag, 2002]) or by

6.1 Sensitivity Analysis 102

applying the Bayes-Ball algorithm [Shachter, 1998] to the original graph (details are given
in [Meekes et al., 2015]).

6.1.2 One-way Sensitivity Analysis

For a Bayesian network, sensitivity analysis basically amounts to establishing, for each of
the network’s conditional probabilities, the sensitivity function that expresses a probability
of interest in terms of the model parameter under study.

In the sequel, we denote the probability of interest by Pr(A = a | e), or Pr(a | e) for
short, where e denotes the available evidence. The network’s parameters are denoted by
x = γ(bi | ρ), where bi is a value of a variable B and ρ is a combination of values for the
predecessors of B. We use fPr(a|e)(x) to denote the function that expresses the probability
Pr(a | e) in terms of model parameter x; we often omit the subscript for f , as long as
ambiguity cannot occur.

Defining the sensitivity function

Under the assumption of proportional scaling, any sensitivity function is a quotient of two
functions that are (multi-)linear in the model parameters under study. The numerator of
the quotient describes the probability Pr(a∧e) as a function of the model parameters and
the denominator describes Pr(e) as a function of the model parameters. More formally,
in a one-way analysis, the function takes the form

f(x) =
c1 · x+ c2
c3 · x+ c4

where the constants cj , j = 1, . . . , 4, are built from the assessments for the numerical
model parameters that are not being varied.

If no evidence is entered into a Bayesian network, then the prior probability of interest
relates linearly to any network parameter. Moreover, if the model parameter under study
pertains to a variable that is an ancestor of the variable of interest in the network’s
qualitative part, and the network parameter’s variable has no observed descendants, then
the sensitivity function reduces to a linear function as well (c3 = 0). For any model
parameter associated with a variable outside the sensitivity set of the variable of interest,
the sensitivity function is constant. We conclude that a sensitivity function is either a
linear function or a fragment of a rectangular hyperbola:

f(x) =
r

x− s
+ t, with s = −c4

c3
, t =

c1
c3
, and r =

c2
c3

+ s · t

A rectangular hyperbola has two branches and two asymptotes. Figure 6.2 illustrates the
locations of the possible hyperbola branches relative to the two asymptotes. For r < 0, the
branches lie in the second (II) and fourth (IV) quadrants relative to the asymptotes x = s
and f(x) = t; for r > 0, the branches are found in the first (I) and third (III) quadrants.
Since any sensitivity function is continuous for x ∈ [0, 1], a hyperbolic sensitivity function
is actually a fragment of one of the four possible hyperbola branches.

Computing the sensitivity function

There basically exist three methods for computing the constants of a sensitivity function.
In the first method, the constants are determined by computing from the network the
probability of interest for up to three values for the model parameter under study, and sub-
sequently solving the resulting system of linear equations [Coupé & Van der Gaag, 2002];
for the network computations, any of the standard propagation algorithms can be used. A

6.1 Sensitivity Analysis 103

√|2r|

center
(s,t)

• vertex

r < 0
s > 1
t ≤ 1

r < 0
s < 0
t ≥ 0

r > 0
s < 0
t ≤ 1

r > 0
s > 1
t ≥ 0

I

IVIII

II

Figure 6.2: Hyperbolas and their constants (the constraints on s and t are specific for
sensitivity functions)

tailored version of the propagation algorithm that builds upon junction trees can establish
the constants of a sensitivity function more efficiently [Kjærulff & Van der Gaag, 2000] by
basically exploiting the fact that the constants can be expressed as sums of multiplications
of network parameters. Both these approaches are illustrated with the example below. A
third approach, the differential approach, is based on the observation that the constants
of the linear expressions in the numerator and denominator of the sensitivity function can
be obtained from the first derivatives of these expressions [Darwiche, 2000].

Example 6.1.2 We illustrate performing a one-way sensitivity analysis of our example
network. We begin by taking the prior Pr(c) for our probability of interest. We address
the one-way analyses with respect to the model parameters γ(b | mc), γ(isc | mc), and
γ(isc | ¬mc), respectively. The results of these three prior analyses are shown in Figure 6.3.
The figure displays, for example, the probability of interest Pr(c) as a function of the
network parameter x = γ(isc | ¬mc), that is,

fPr(c)(x) = 0.57 · x+ 0.21

0 .0 0 .2 0 .4 0 .6 0 .8 1 .0

p(b | m c)

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

P
r(

c)

0 .0 0 .2 0 .4 0 .6 0 .8 1 .0

p(isc | m c)

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

P
r(

c)

0 .0 0 .2 0 .4 0 .6 0 .8 1 .0

p(isc |�m c)

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

P
r(

c)

Figure 6.3: A one-way sensitivity analysis of the example Bayesian network for output
probability Pr(c) and three different model parameters (note that the labels on the x-axes
use p rather than γ).

6.1 Sensitivity Analysis 104

Analytical approach We can analytically derive this expression, by marginalisation,
from the factorisation of the joint distribution of our example network:

Pr(c) =
∑
cMC

∑
cB

∑
cISC

∑
cCT

∑
cSH

Pr(cMC , cB, cISC , c, cCT , cSH)

=
∑
cMC

∑
cB

∑
cISC

∑
cCT

∑
cSH

γ(c | cB, cISC) · γ(cB | cMC) · γ(cISC | cMC) · γ(cMC) ·

· γ(cCT | cB) · γ(cSH | cB)

=
∑
cMC

∑
cB

∑
cISC

γ(c | cB, cISC) · γ(cB | cMC) · γ(cISC | cMC) · γ(cMC) ·

·
∑
cCT

γ(cCT | cB) ·
∑
cSH

γ(cSH | cB)

Note that the latter two factors each sum to 1 and can therefore be omitted. We now
write out the summations over cISC and cMC to reveal our x.

Pr(c) =
∑
cMC

∑
cB

∑
cISC

γ(c | cB, cISC) · γ(cB | cMC) · γ(cISC | cMC) · γ(cMC)

=
∑
cMC

∑
cB

γ(c | cB, isc) · γ(cB | cMC) · γ(isc | cMC) · γ(cMC)

+
∑
cMC

∑
cB

γ(c | cB,¬isc) · γ(cB | cMC) · γ(¬isc | cMC) · γ(cMC)

=
∑
cB

γ(c | cB, isc) · γ(cB | mc) · γ(isc | mc) · γ(mc)

+
∑
cB

γ(c | cB, isc) · γ(cB | ¬mc) · γ(isc | ¬mc) · γ(¬mc)

+
∑
cB

γ(c | cB,¬isc) · γ(cB | mc) · γ(¬isc | mc) · γ(mc)

+
∑
cB

γ(c | cB,¬isc) · γ(cB | ¬mc) · γ(¬isc | ¬mc) · γ(¬mc)

=
∑
cB

γ(c | cB, isc) · γ(cB | mc) · γ(isc | mc) · γ(mc)

+
∑
cB

γ(c | cB, isc) · γ(cB | ¬mc) · x · γ(¬mc)

+
∑
cB

γ(c | cB,¬isc) · γ(cB | mc) · γ(¬isc | mc) · γ(mc)

+
∑
cB

γ(c | cB,¬isc) · γ(cB | ¬mc) · (1− x) · γ(¬mc)

We observe that fPr(c)(x) = c1 · x+ c2 with constants c1 and c2 defined by

c1 =
∑
cB

(
γ(c | cB, isc)− γ(c | cB,¬isc)

)
· γ(cB | ¬mc) · γ(¬mc)

c2 =
∑
cB

γ(c | cB, isc) · γ(cB | mc) · γ(isc | mc) · γ(mc)

+
∑
cB

γ(c | cB,¬isc) · γ(cB | mc) · γ(¬isc | mc) · γ(mc)

+
∑
cB

γ(c | cB,¬isc) · γ(cB | ¬mc) · γ(¬mc)

6.1 Sensitivity Analysis 105

0 .0 0 .2 0 .4 0 .6 0 .8 1 .0

p(m c)

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

P
r(

b
 |

sh
)

0 .0 0 .2 0 .4 0 .6 0 .8 1 .0

p(b |�m c)

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

P
r(

b
 |

sh
)

0 .0 0 .2 0 .4 0 .6 0 .8 1 .0

p(sh |�b)

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

P
r(

b
 |

sh
)

Figure 6.4: A one-way sensitivity analysis of the example Bayesian network for output
probability Pr(b | sh) and three different model parameters (note that the labels on the
x-axes use p rather than γ).

From this analytical expression and the network specification you can now straightfor-
wardly compute the constants c1 ≈ 0.57 and c2 ≈ 0.21. Designing an algorithm that does
exactly these computations exists, but is not straightforward [Kjærulff & Van der Gaag, 2000].

Approach using standard inference An alternative approach to the analytical ap-
proach is to use a standard inference algorithm to compute Pr(c) from the network for
two different values of model parameter x, e.g. x1 and x2 (note that this requires actually
changing the assessment function γISC !), resulting in two different output probabilities p1
and p2; the constants c1 ≈ 0.57 and c2 ≈ 0.21 then follow by solving the following system
of linear equations:

p1 = c1 · x1 + c2

p2 = c1 · x2 + c2

Note that you choose any values for x1 and x2 in the zero-one interval, and subsequently
compute the probabilities p1 and p2 from the network. The above system therefore contains
two expressions with two unknowns, c1 and c2, and can be uniquely solved.

Next, we take for the probability of interest the posterior probability Pr(b | sh). By
doing so, we assess the robustness of the diagnosis of a brain tumour for an arbitrary
patient with a primary tumour who is suffering from severe headaches. We address the
one-way analyses with respect to the model parameters γ(mc), γ(b | ¬mc), and γ(sh | ¬b),
respectively. The results of these posterior analyses are shown in Figure 6.4. The figure
shows, for example, the probability of interest Pr(b | sh) as a function of the network
parameter x = γ(b | ¬mc), that is,

fPr(b|sh)(x) =
fPr(b∧sh)(x)

fPr(sh)(x)
=

0.64 · x+ 0.032

0.16 · x+ 0.608
=

4 · x+ 0.20

x+ 3.80

Note that, in contrast with the prior analyses discussed before, the analyses for the
posterior probability of interest reveal a non-linear relationship between the probability
assessment that is being varied and the probability of interest. �

Selecting Model Parameters Deserving Attention

Sensitivity analyses for a large number of model parameters and several outputs of interest
will typically result in a huge number of sensitivity functions that are to be examined. A
number of criteria can be used to decide whether or not the effect of a network param-
eter can be considerable enough to warrant further consideration, either for refining its

6.1 Sensitivity Analysis 106

assessment as discussed in Chapter 5, or for determining the implications of the analysis
for the employability of the network in the domain of application. Here we will briefly
discuss the following selection criteria: absolute effect, plausible effect, sensitivity value,
vertex proximity, and admissible deviation.

Absolute effect The absolute effect of changing a model parameter on an output prob-
ability is simply the absolute difference |f(0)− f(1)|.

Example 6.1.3 We continue our example analysis. Figure 6.3(a) shows that varying the
assessment for the probability γ(b | mc) from 0 to 1 has a negligible effect on the probability
of interest Pr(c): the prior probability of a patient falling into a coma within the next
three years increases from 0.31 to 0.34, approximately. Figure 6.3(b) shows that varying
the initial assessment for the probability γ(isc | mc) has a somewhat stronger effect on
the probability of interest: Pr(c) now ranges from 0.22 to 0.34. From Figure 6.3(c), to
conclude, it is seen that varying the assessment for the probability γ(isc | ¬mc) has an even
stronger effect on Pr(c): the prior probability of a coma ranges from 0.21 to 0.78. Note
that the three analyses reveal the linear relationship between the probability assessment
that is being varied and the probability of interest. �

Plausible effect So far we have treated the probability assessments of our Bayesian
network as exact point probabilities. As for most applications, however, the initially
obtained assessments are quite uncertain. If this uncertainty is captured by supplementing
each probability assessment with a plausible interval that defines a range of values in which
the ‘true’ probability lies with reasonable certainty, then we can select model parameters
of interest based upon their plausible effect on the probability of interest. The plausible
effect is now defined as the absolute effect within the plausible interval; the plausible effect
is bounded by the absolute effect.

Example 6.1.4 In the prior analyses, for the three probability assessments under study
in our example network, the plausible intervals are indicated in Figure 6.3 by shading. The
figure shows that plausible variation of the model parameter γ(isc | ¬mc) has the strongest
effect on the probability of interest Pr(c). Varying the model parameters γ(b | mc) and
γ(isc | mc), respectively, within their plausible intervals results in a rather small effect on
the probability of interest. We recall from Figure 6.3 that the effect on Pr(c) of varying
the assessment for γ(b | mc) from 0 to 1 is smaller than the effect of varying γ(isc | mc)
from 0 to 1. By taking the plausible intervals into consideration, however, variation of the
assessment for γ(b | mc) has the stronger plausible effect. Especially since the plausible
interval for this assessment is quite large, for example further elicitation efforts may better
be directed at the probability γ(b | mc) than at the probability γ(isc | mc). �

Sensitivity value The sensitivity value of a model parameter x with respect to a prob-
ability of interest is defined as |∂f∂x (x0)|, the absolute value of the first derivative of the
sensitivity function at the original value x0 of the network parameter. The sensitivity value
thus captures the effect of infinitely small shifts in the model parameter on the probability
of interest.

Example 6.1.5 For the sensitivity function describing the posterior probability Pr(b | sh)
as a function of the model parameter x = γ(b | ¬mc) (see Figure 6.4(b)), we find for
example that

f ′(x) =
0.384

(0.16 · x+ 0.608)2
;

6.1 Sensitivity Analysis 107

the model parameter has an original value of 0.05, so the sensitivity value for this model
parameter is |f ′(0.05)| = 1.01. Alternatively, if we consider the effect of varying network
parameter x = γ(sh | ¬b) on our posterior probability of interest (Figure 6.4(c)), then the
sensitivity value equals∣∣∣∣ −0.059

(0.92 · 0.60 + 0.064)2
)

∣∣∣∣ = 0.155.

�

Vertex proximity The problem of using the sensitivity value as a measure of robust-
ness, is that it often gives insight only in the effect of very small changes to the model
parameter. The effects of larger model-parameter shifts are of course captured by the
absolute and plausible effects, but can also be studied by examining the vertex proximity.

The vertex of a hyperbola branch is the point (xv, f(xv)) where |f ′(xv) = 1|. The
proximity of a model parameter’s original value x0 to the x-value of the hyperbola’s ver-
tex is an indication of possible sensitivity of the output of interest to variation of the
model parameter. The vertex-proximity can be easily computed from the constants of the
sensitivity function:

xv =

{
s+

√
|r|, if s < 0

s−
√
|r|, if s > 1

Example 6.1.6 Again consider our example sensitivity functions in Figure 6.4. For the
hyperbola branch describing the output probability as a function of model parameter
γ(b | ¬mc) with original value 0.05, we have that xv = −3.8 +

√
15 = 0.07; the vertex

of the function is therefore very close to the model parameter’s original value, indicating
that non-infinitesimal variation of the model parameter could possibly have large effects
on the output probability of interest. For model parameter γ(sh | ¬b), on the other hand,
the x-value of the vertex is found around 0.19, which can be considered quite distant from
the model parameter’s original value of 0.60. If the original value of the latter network
parameter had been 0.20, however, then its sensitivity value (0.96) would perhaps deem
the model parameter irrelevant for further inspection, whereas the vertex-proximity would
warn us for possibly significant effects of variation. �

Admissible deviation An admissible deviation for a variable of interest and a given
model parameter, is a pair of real numbers (α, β) that describe the shifts to smaller
values and to larger values, respectively, that are allowed in the model parameter without
inducing a change in the most likely value of the variable of interest. For a model parameter
with an original value of x0, the admissible deviation (α, β) thus indicates that the model
parameter can be safely varied within the interval [x0 − α, x0 + β]. To express that the
network parameter can be varied as far as the bounds of the probability interval, the
symbol ∞ is used.

For establishing an admissible deviation, the intersections of a sensitivity function
relating one value of the output variable of interest to a network parameter, and those
pertaining to the other values of the output variable, are computed. More specifically, the
admissible deviation is established by computing the x-coordinates of the points where
the sensitivity function fPr(ai|e)(x) for some variable of interest A, intersects with the
sensitivity functions fPr(aj |e)(x), j 6= i. We note that if the variable of interest has only
two values, then the two sensitivity functions always intersect for f(x) = 0.5. For so-
called threshold decision making (see Section 6.3.1), instead of considering a change in
most likely value, we can determine when some outcome probability of interest becomes

6.1 Sensitivity Analysis 108

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Pr
(B

)

p(b | m c)

B = b

B = b

x0

(a)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Pr
(B

 |
sh

)

p(sh | b)

B = b

B = b

x0

(b)

Figure 6.5: The sensitivity functions for the two possible values of the variable of interest B
as a function of (a) network parameter γ(b | ¬mc), and (b) network parameter γ(sh | ¬b),
given a severe headache.

smaller or larger than some pre-specified threshold; this basically amounts to establishing
the intersections of a sensitivity function with the constant functions associated with the
values of the threshold probabilities.

Example 6.1.7 We illustrate investigating the robustness of decisions by computing ad-
missible deviations for our example Bayesian network. First, consider an arbitrary patient.
The effects of varying model parameter x = γ(b | ¬mc) with original value x0 = 0.05 on
the probabilities of disease Pr(B) are shown in Figure 6.5(a) and are described by

fPr(b)(x) = 0.80 · x+ 0.04, and fPr(¬b)(x) = −0.80 · x+ 0.96.

The sensitivity functions intersect for x = 0.575, resulting in an admissible deviation of
(∞, 0.525). The patient is most likely to not suffer from a brain tumour and this diagnosis
is quite robust to variation of the model parameter under study. Now consider a patient
with severe headaches. The effects of varying network parameter x = γ(sh | ¬b) with
original value x0 = 0.60 on the posterior probabilities of disease Pr(B | sh) are shown in
Figure 6.5(b) and are described by

fPr(b|sh)(x) =
0.064

0.92 · x+ 0.064
, and fPr(¬b |sh)(x) =

0.92 · x
0.92 · x+ 0.064

.

The sensitivity functions intersect for x = 0.0696, resulting in an admissible deviation of
(0.53,∞). We conclude that the patient is most likely not to suffer from a brain tumour
and this diagnosis again is quite robust to variation of the model parameter under study.
�

6.1.3 Two-way Sensitivity Analysis

We now address a two-way sensitivity analysis of a Bayesian network. In a two-way
sensitivity analysis, two probability assessments are varied simultaneously to reveal their
joint effect on a probability of interest. Recall that under the assumption of proportional
co-variation, any sensitivity function is a quotient of two functions that are (multi-)linear
in the model parameters under study. In a two-way analysis, the function is bi-linear and
takes the general form

f(x, y) =
c1 · x · y + c2 · x+ c3 · y + c4
c5 · x · y + c6 · x+ c7 · y + c8

6.1 Sensitivity Analysis 109

where the constants cj , j = 1, . . . , 8, are again built from the assessments for the numerical
network parameters that are not being varied.

As remarked before, two model parameters can have a synergistic effect on the prob-
ability of interest; this means that the joint effect of varying the two model parameters
is different from the sum of their individual effects. Not every pair of varied model pa-
rameters will have such an interaction effect on a probability of interest, however. For
example, any two model parameters that pertain to incompatible probabilities, in the
sense of specifying complementary values for the same variable, will not interact. The
function expressing the probability of interest in terms of two such assessments will lack
a product term. A two-way sensitivity analysis involving assessments for incompatible
probabilities does not reveal any unanticipated effects on a probability of interest beyond
the effects shown by one-way sensitivity analyses for the two assessments separately. Any
such pair of assessments can therefore be excluded from the analysis.

Two-way sensitivity analysis in Bayesian networks has received far less attention by
researchers than one-way analysis. No details are as yet known about the possible shapes
of the two-way functions. It is obvious though that if either one of the model parameters
is fixed to an arbitrary value, then the two-way function degenerates to a one-way function
in the other model parameter, which is either monotonically increasing or monotonically
decreasing; as a result, the minimum and maximum function values are still found for
the extreme network parameter values 0 and 1. Research, in addition, has not addressed
selection criteria. Here we will therefore limit our discussion to the selection criteria that
trivially apply.

Selecting Model Parameters Deserving Attention

For selecting network parameters from a two-way analysis that deserve further attention,
we can use the absolute effect, the plausible effect, and the sensitivity value as before. In
addition, we can use contour distance as a selection criterion.

Absolute and plausible effect The absolute effect of network parameters x and y on
a probability of interest is captured by the largest absolute difference found between the
function values of the sensitivity function in the ’corners’ (0, 0), (0, 1), (1, 0), and (1, 1)
of the domain: max{f(i, j) − f(k, l) | i, j, k, l ∈ {0, 1}}. The plausible effect is defined
analogously where the ’corners’ of the domain are given by the plausible intervals for the
two parameters.

Sensitivity value The sensitivity value of two model parameters x and y with respect
to a probability of interest can be defined in terms of a directional derivative (for details,
see [Bolt & Renooij, 2014]). Note that for a surface in 3D, the gradient in a certain point
will typically depend on the direction under consideration, so we in fact have an infinite
number of sensitivity values; the maximal gradient in a point, however, equals the length
of the gradient vector in that point. The maximum 2-way sensitivity value at the original
values x0 and y0 of the model parameters therefore equals

|∇f(x0, y0)| =

√(∂f
∂x

(x0, y0)
)2

+
(∂f
∂y

(x0, y0)
)2

Contour distance Two-way sensitivity functions are most easily interpreted using con-
tour plots, in which contour lines connect the combinations of values for the two network
parameters that result in the same value for the probability of interest. The distance
between two contour lines indicates the variation necessary in the two assessments to shift

6.1 Sensitivity Analysis 110

the probability of interest from one contour line to another. If the contour lines are very
close to one another, then a small variation in the model parameters under study suffices
to have a strong effect on the probability of interest; if, in contrast, the contour lines are
further apart, then the probability of interest is not very sensitive to variation of the two
assessments.

Example 6.1.8 We illustrate performing a two-way sensitivity analysis for our example
network. For our probability of interest, we once again take the prior probability Pr(c).
We first address an analysis with respect to the model parameters x = γ(b | mc) and
y = γ(isc | mc). The corresponding sensitivity function equals

Pr(c) = −0.15 · x · y + 0.15 · x+ 0.15 · y + 0.194

From this function it is readily seen that the two probability assessments under study upon
variation have a negative interaction effect on the probability of interest. The function
is depicted in Figure 6.6a. We observe from the figure that the distances between the
contour lines differ, indicating that varying the model parameters γ(b | mc) and γ(isc | mc)
simultaneously has a joint effect on the probability of interest Pr(c) beyond the effects of
their separate variation; this joint effect is due to the synergistic influence of the variables
B and ISC on the variable C outlined before. We further observe that the contour lines
are closer to one another in the lower left part of the figure than in the upper right part. If
the assessments for the network parameters γ(b | mc) and γ(isc | mc) are both quite small,
therefore, their variation will have a stronger effect on the probability of interest than if the
initial assessments have a higher value. To variation within the plausible intervals of the
assessments γ(b | mc) = 0.2 and γ(isc | mc) = 0.8, as indicated by shading in Figure 6.6a,
the probability of interest shows a relatively low sensitivity. We further observe that the
absolute effect of their joint variation on Pr(c) is not too strong.

(a)

0 .0 0 0 .2 0 0 .4 0 0 .6 0 0 .8 0 1 .0 0

p(b | mc)

0 .0 0

0 .2 0

0 .4 0

0 .6 0

0 .8 0

1 .0 0

p
(i

sc
 |

 �m
c)

0 .75

0 .2
0 .25

0 .3

0 .35

0 .4

0 .45

0 .5

Pr(c)

0 .55

0 .6

0 .65

0 .7

0 .8

(b)

0 .0 0 0 .2 0 0 .4 0 0 .6 0 0 .8 0 1 .0 0

p(b | � mc)

0 .0 0

0 .2 0

0 .4 0

0 .6 0

0 .8 0

1 .0 0

p
(s

h
 |

b
)

0 .05

0 .1

0 .15
0 .2

0.25
0 .3

0 .3 5

0 .4
0 .45

0 .5

Pr(b | sh)

0 .55

0 .6
0 .6 5

0 .7

0 .8

(c)

Figure 6.6: A two-say sensitivity analysis of the example Bayesian network.

Now we address an analysis pertaining to the assessments for the model parameters
γ(b | mc) and γ(isc | ¬mc); note that the two assessments under study pertain to in-
compatible probabilities, since they are conditioned on two different values of the same
variable. The corresponding sensitivity function equals

Pr(c) = 0.03 · x+ 0.57 · y + 0.204

This function is depicted in Figure 6.6b. We observe from the figure that the contour lines,
once again indicating values for the probability of interest Pr(c), are equidistant. Equi-
distance of contour lines indicates that simultaneously varying the probability assessments

6.2 Evaluating Bayesian Networks 111

under study has no joint effect on the probability of interest beyond the effects of their
separate variation. The two-way analysis therefore does not provide any information in
addition to the information yielded by one-way analyses for the separate assessments.

To conclude, we performed a two-way sensitivity analysis of our example network with
respect to the posterior probability of interest Pr(b | sh). We first address the analysis
of varying the assessments for the model parameters x = γ(b | ¬mc) and y = γ(sh | b)
simultaneously. The corresponding two-way sensitivity function equals

Pr(b | sh) =
1.10005 · x · y − 0.00056 · x+ 0.0559 · y − 0.00034

x · y − 0.6268 · x+ 0.0835 · y + 0.7811

In this function, the terms −0.00056 · x and −0.6268 · x pertain to the effect of variation
of just the probability assessment p(b | mc); the terms 0.0559 · y and 0.0835 · y pertain to
the assessment p(isc | mc). The terms 1.10005 · x · y and x · y with each other capture the
interaction effect of the two assessments on the network’s probability of interest. These
terms provide information that cannot be revealed by one-way analyses with respect to
the two assessments separately. The function is depicted in Figure 6.6c. Note that the
contour lines are closest to one another in the lower right part of the figure, indicating a
high sensitivity of the posterior probability of interest to high values for the probability
γ(b | ¬mc) and low values for the probability γ(sh | b). For variation, within the plausible
intervals of the initial assessments γ(b | ¬mc) = 0.05 and γ(sh | b) = 0.8, as indicated by
shading in Figure 6.6c, however, the probability of interest is relatively stable. �

6.2 Evaluating Bayesian Networks

To establish its practical value, a real-life Bayesian network is typically subjected to an
evaluation study using data from the domain of application. Such a study amounts to
entering the data available for each problem case into the network and computing the
most likely outcome. This outcome is then compared against a given standard of validity.
The results of the study are often summarised in the percentage of correctly computed
outcomes. This percentage correct or accuracy is generally taken to convey the practical
value of the network. For a medical diagnostic application, for example, a percentage
correct of 85% is taken to indicate that the network is likely to establish the correct
diagnosis for 85 out of every 100 patients. For many applications, this percentage would
convey the information that the network performs quite satisfactorily.

Unfortunately, interpretation of the percentage correct of a Bayesian network is not as
straightforward as is often suggested. The percentage should be interpreted with respect
to a specific data collection. Now, each data collection is likely to include errors and
to reflect the biases exhibited by the experts who collected the data or as a result of
considering different (sub)populations[Krak & Van der Gaag, 2014]. Moreover, the data
will include the effects of random variation, especially in domains of a scientific nature. In
the medical domain, for example, there is random variation in patient data, arising from
biological differences between patients in the progression of pathological processes and from
differences in the physicians’ interpretation of symptoms and signs [Fletcher et al., 1996].
When two outcomes are almost equally likely for a patient, chance determines, to at least
some extent, which outcome is entered into the patient’s medical record as the most likely
one. Random variation may thus affect a network’s percentage correct, but the extent to
which it does so is not expressed by the percentage.

Bayesian networks in essence do not yield a deterministic outcome. Rather, they
produce a posterior probability distribution for their outcome variable. To determine a
percentage correct, therefore, an additional classification rule is required to map a proba-
bility distribution into a single value for the outcome variable of interest. The distribution

6.2 Evaluating Bayesian Networks 112

computed by the Bayesian network reveals the extent of uncertainty in the outcome and
reflects the network’s doubt as to the most likely outcome. This, however, is not taken into
account in the percentage correct. To incorporate the network’s doubt in the assessment
of its practical value, evaluation scores from the field of statistical forecasting can be used.
The use and interpretation of such a score is illustrated by means of an evaluation study
of a real-life Bayesian network for the staging of oesophageal cancer.

6.2.1 The Percentage Correct and its Shortcomings

With the help of two experts in gastrointestinal oncology from the Netherlands Cancer
Institute, Antoni van Leeuwenhoekhuis, a Bayesian network for the staging of oesophageal
cancer has been constructed. The network captures the state-of-the-art knowledge about
oesophageal cancer in the oesophagus network ; for details on the network and its construc-
tion, see [Van der Gaag et al., 2002]. For studying the ability of the oesophagus network
to correctly predict the stage of a patient’s cancer, the medical records of 156 patients
diagnosed with oesophageal cancer are available. For each patient, between 6 and 21 of
the 25 symptoms and test results modelled in the network are available. For each patient,
also the stage of his or her cancer, as established by the attending physician, is recorded.
This stage can be either I, IIA, IIB, III, IVA, or IVB, in the order of advanced disease.
The tumour’s stage is indicative of the effects and complications to be expected from the
different available therapeutic alternatives.

In general, to establish the practical value of a Bayesian network, for each case the
outcome with highest posterior probability is determined from the network and compared
against a given standard of validity. The results of such an evaluation study are sum-
marised in the percentage of cases for which the network yields the correct outcome as
the most likely one. To establish the practical value of the oesophagus network, for each
patient all diagnostic symptoms and test results available were entered and the most likely
stage for the patient’s cancer was computed from the Bayesian network. The computed
stage was then compared with the stage recorded in the data. The results from this com-
parison are shown in the matrix of Figure 6.7. The numbers on the diagonal of the matrix
are the numbers of patients per stage for whom the network yields the same stage as the
one recorded in the data. Taking the stages from the medical records as a standard of
validity, we find that the network establishes the correct stage for 133 of the 156 patients,
that is, the network has a percentage correct of 85%.

As Bayesian networks in general, the oesophagus network in essence does not pro-
duce a deterministic outcome. Rather, it yields a probability distribution for its outcome
variable. More specifically, it yields, for each patient, a posterior probability distribution

network
I IIA IIB III IVA IVB total

I 2 0 0 0 0 0 2
IIA 0 37 0 1 0 0 38

data IIB 0 1 0 3 0 0 4
III 1 10 0 36 0 0 47
IVA 0 0 0 4 35 0 39
IVB 0 0 0 3 0 23 26

total 3 48 0 47 35 23 156

Figure 6.7: The results from the evaluation study, expressed in terms of the numbers of
correctly and incorrectly staged patients.

6.2 Evaluating Bayesian Networks 113

patient 1, stage IVA

stage I 0
stage IIA 0
stage IIB 0.0159
stage III 0.0882
stage IVA 0.8245
stage IVB 0.0714

patient 2, stage III

stage I 0
stage IIA 0
stage IIB 0.0002
stage III 0.3616
stage IVA 0.3498
stage IVB 0.2884

patient 3, stage III

stage I 0.0222
stage IIA 0.3753
stage IIB 0.0459
stage III 0.3714
stage IVA 0.0916
stage IVB 0.0936

Figure 6.8: The posterior probabilities of the six stages for three different patients.

over the six possible stages of his or her cancer. As an example, Figure 6.8 shows the
distributions that are computed for three different real patients. Now, for some patients
the computed posterior distribution clearly points to a single most likely stage. For other
patients, however, the posterior distribution can reveal considerable uncertainty. It is not
unlikely, therefore, that incorrect conclusions of a network can be attributed to the effect
of random variation, rather than to, for example, a modelling error. In the percentage
correct reported for a network, however, the distribution of uncertainty over the various
different outcomes is not taken into account. For example, for the patients shown in Fig-
ure 6.8, the oesophagus network’s outcome is classified simply as correct for the first two
patients and as incorrect for patient 3.

6.2.2 An Evaluation Score

As mentioned previously, Bayesian networks typically yield a probability distribution for
their outcome variable. While for some cases from the domain of application the computed
posterior distribution will point to a single most likely outcome, it may reveal considerable
uncertainty for other cases. The percentage correct as a summary of evaluation results
does not take these uncertainties into account. For assessing the practical value of a
network, however, not just the most likely outcome but also the posterior distribution
over the various possible outcomes should be taken into consideration.

Bayesian networks basically are probabilistic forecasters, as they repeatedly present
predictions for an outcome variable in terms of probabilities. For the oesophagus net-
work, for example, the posterior probability distribution that is computed for a specific
patient can be looked upon as a forecast for the stage of this patient’s cancer. Estab-
lishing the practical value of a Bayesian network thus amounts to assessing its quality
as a forecaster. The quality of a probabilistic forecaster is often expressed in terms of
its calibration, that is, the degree to which its forecasts match the true distribution of
outcomes. For the oesophagus network, more specifically, we can say that it is (empir-
ically) well calibrated if, among the patients for whom the network predicts a specific
stage S with probability xS , the proportion of patients who in fact have stage S, denoted
x′S , equals xS . The smaller the difference between xS and x′S , that is, the closer the
network’s distribution matches the true distribution, the better calibrated the network
is [Dawid, 1985, DeGroot & Fienberg, 1983]. Building upon this concept of calibration,
various scores for expressing the quality of a forecaster have been developed in the field of
statistics.

Among the best-known evaluation scores is the Brier score [Panofsky & Brier, 1968].
The basic idea of this score is illustrated for our oesophagus network. For each patient i,
the network yields a forecast of posterior probabilities pij over the stages j = I , . . . , IVB.
The Brier score Bi of this forecast is defined as

Bi =
∑

j=I,...,IVB

(pij − sij)2

6.2 Evaluating Bayesian Networks 114

where sij = 1 if the medical record of patient i states stage j, and sij = 0 otherwise. If the
network would yield the correct stage with certainty, that is, if the network would yield
a correct deterministic forecast for the patient, then the associated Brier score would be
equal to 0. If the network would yield an incorrect deterministic forecast, the score would
be 2. For the forecast for a single patient, therefore, the Brier score ranges between 0
and 2, and the better the forecast, the lower the score. The Brier scores for the network’s
forecasts for the three patients from Figure 6.8 now are:

B1 = 0.04 B2 = 0.61 B3 = 0.56

These scores reveal that the quality of the forecast for the first patient is very good, as
expected. The other scores show that the forecasts for the patients 2 and 3 are of less
quality. Recall that for patient 3 the forecast is unequivocal as a result of two stages
being almost equally likely, among which is the correct stage. For patient 2, there is even
more uncertainty in the forecast, as there are three almost equally likely stages. These
observations are reflected in the associated Brier scores: the score B3 for patient 3 indicates
higher quality than the score B2 for the second patient. While in terms of the numbers
of correctly and incorrectly staged patients the forecast for patient 2 is correct and the
forecast for patient 3 is incorrect, the Brier score results in a more balanced and, hence, a
more insightful quality assessment. Figure 6.9 summarises the Brier scores averaged over
all, correctly and incorrectly staged, patients.

network
I IIA IIB III IVA IVB

I 0.21 – – – – –
IIA – 0.28 – 1.52 – –

data IIB – 1.17 – 0.98 – –
III 1.40 0.89 – 0.26 – –
IVA – – – 0.75 0.08 –
IVB – – – 0.87 – 0.06

Figure 6.9: The results from the evaluation study, expressed in terms of average Brier
scores.

The quality of the oesophagus network as a forecaster can now be expressed in an
overall score that is computed from the scores of the separate forecasts for our collection
of patients. For n patients, the overall Brier score B is defined as

B =
1

n

∑
i=1,...,n

Bi

It is readily seen that the overall Brier score again ranges between 0 and 2, and the better
the forecaster, the lower the score. For the oesophagus network, an overall Brier score
of 0.29 is found. To interpret this number, we compare the score with the overall scores
obtained for two uninformed forecasters. The first forecaster gives a uniform probability
distribution for each patient; this forecaster has an overall Brier score of 0.83. The second
forecaster gives for each patient the prior distribution over the stages recorded in the data;
this forecaster has an overall Brier score of 0.76 and is therefore slightly more informed
than the uniform forecaster. The much lower Brier score of the oesophagus network now
conveys the information that the network is quite informed and indeed builds upon its
knowledge of oesophageal cancer to arrive at relatively good forecasts.

6.3 A Problem-Solving Architecture 115

The percentage correct and the Brier score provide two ways of evaluating the practical
value of a Bayesian network. The percentage correct treats outcomes as deterministic,
whereas the Brier score takes the actual uncertainties into account.

6.3 A Problem-Solving Architecture

In this section, we describe a problem-solving architecture that allows for automated con-
trol over reasoning. The main purpose of exerting control over reasoning is to shape
efficient and intelligent problem-solving behaviour. Exerting control involves monitoring
and reflecting upon the reasoning process as it develops and taking decisions as to how
it should proceed. To this end, strategic knowledge about the domain at hand is em-
ployed. As this knowledge may be non-probabilistic in nature, control over Bayesian
network reasoning generally cannot be implemented in the framework in itself. The
Bayesian network framework can therefore be embedded in a general problem-solving ar-
chitecture [Van der Gaag & Wessels, 1994a].

The Bayesian network problem-solving architecture is composed of two layers. The
first layer offers the Bayesian network formalism and a variety of associated algorithms.
The algorithms in this layer are characterised by their operating on a Bayesian network
directly: various algorithms for probabilistic inference are comprised in the layer as are
algorithms for example for reading independences from the qualitative part of a network.
This layer is called the probabilistic layer of the architecture. The second layer of the
problem-solving architecture is designed to provide for control over reasoning — it is
termed the control layer. This layer offers a variety of methods for control for different
types of problem solving and provides formalisms for representing the additional knowl-
edge used by these methods. The layer for example can offer methods for selectively
gathering evidence for diagnostic applications as well as methods for intelligently pruning
and focusing Bayesian network inference. These control methods are the basic building
blocks for shaping complex, domain-dependent problem-solving behaviour. The two layers
of the architecture are strictly separated and communicate in a highly restricted fashion.
The control layer queries the probabilistic layer for information about the represented joint
probability distribution and the evidence entered so far, and, based upon this informa-
tion, takes strategic decisions as to how to proceed. The probabilistic layer computes and
returns the information it is asked for by the control layer.

The problem-solving architecture explicitly separates probabilistic reasoning from con-
trol over reasoning. Several advantages arise from such an explicit separation. A Bayesian
network can be developed and refined, without being hampered by any algorithmic issues.
Moreover, the representation of the joint probability distribution on the domain at hand
is not obscured by non-probabilistic knowledge. In addition, a Bayesian network can be
re-used in different contexts for different purposes; a similar observation holds for the
methods of control comprised in the control layer of the architecture. The architecture
in addition provides for modelling decision problems. Knowledge about viable decisions
and the preferences over their consequences involved in a decision problem are represented
in the control layer, along with methods for solving the problem; the probabilistic layer
comprises a Bayesian network that is used as a background knowledge base for providing
the probabilities required. The idea of a meta-level problem-solving architecture pervades
many areas of artificial intelligence research.

6.3.1 Example Application: Threshold Decision Making

As an example of the type of problems that can be modelled using the problem-solving
architecture, the threshold model for decision making is considered.

6.3 A Problem-Solving Architecture 116

0 1

P−(d)

P ∗(d)

P+(d)
no treat

no treat

test

treat

treat

Figure 6.10: The threshold model for patient management, indicating three threshold
probabilities and the various decision alternatives at a physician’s disposal.

In the medical domain, Bayesian networks are often used for diagnostic purposes. A
diagnostic Bayesian network typically comprises one or more variables modelling the pres-
ence of absence of disease, various variables modelling findings and results from diagnostic
tests, and a number of intermediate variables modelling unobservable patho-physiological
states. In the example network from Section 6.1 (Figure 6.1), for instance, the variable
B models the disease of interest, being the presence or absence of a brain tumour; the
variable MC models an unobservable state and the remaining variables capture findings
and test results. A medical diagnostic Bayesian network is used for computing a most
likely diagnosis for a patient given his or her presentation findings and test results.

The most likely diagnosis for a patient, along with its uncertainty, is generally taken
by an attending physician to decide upon management of the patient. The physician
may decide, for example, to start treatment right away. For the brain tumour example,
the physician may decide to perform neurosurgery if a brain tumour is indicated. Alter-
natively, the physician may defer the decision whether or not to treat the patient until
additional diagnostic information has become available, for example from a CT scan. Or,
the physician may decide to withhold treatment altogether. To support choosing among
these decision alternatives, the threshold model for patient management can be used. The
threshold model for patient management is a typical example of something that can be
implemented in the control layer of the problem-solving architecture.

The Threshold Model

The threshold model for patient management, or for decision making more in general, builds
upon various threshold probabilities of disease [Pauker & Kassirer, 1980]. The treatment
threshold probability of disease, written P ∗(d) for disease d, is the probability at which an
attending physician is indifferent between giving treatment and withholding treatment.
If, for a specific patient, the probability of disease Pr(d) exceeds the treatment threshold
probability, that is, Pr(d) > P ∗(d), then the physician will decide to treat the patient as
if the disease were known to be present with certainty. Alternatively, if Pr(d) ≤ P ∗(d),
the physician will basically withhold treatment from the patient.

As a consequence of the uncertainty concerning the presence of disease in a patient,
additional information from a diagnostic test may affect an attending physician’s basic
management decision. If the probability of disease exceeds the treatment threshold prob-
ability, then interpreting a negative test result may result in an updated probability of
disease below the threshold probability. Alternatively, if the pretest probability of disease
falls below the treatment threshold probability, a positive test result may raise the prob-
ability of disease to a value above the threshold probability. To reckon with such effects,
the threshold model for patient management includes another two threshold probabilities.
The no treatment-test threshold probability of disease, written P−(d), is the probability at
which the attending physician is indifferent between the decision to withhold treatment
and the decision to obtain additional diagnostic information. The test-treatment threshold
probability of disease, written P+(d), is the probability at which the physician is indifferent
between obtaining additional information and starting treatment right away.

Figure 6.10 summarises the basic idea of the threshold model for patient management.

6.3 A Problem-Solving Architecture 117

0 1
Pr(d)

expected
utility

no treat

treat

0 1
Pr(d)

expected
utility test

Figure 6.11: The basic idea of establishing (a) the treatment threshold probability of
disease, and (b) the no-treatment-test and test-treatment threshold probabilities.

As long as the diagnostic test under consideration has not been performed, a physician has
three decision alternatives at his or her disposal. If the probability of disease Pr(d) for a
patient falls below the no treatment-test threshold probability, that is, if Pr(d) < P−(d),
then the physician will withhold treatment from the patient without gathering additional
diagnostic information. If the probability of disease exceeds the test-treatment threshold
probability, that is, Pr(d) > P+(d), then the physician will start treatment right away.
Otherwise, that is, if P−(d) ≤ Pr(d) ≤ P+(d), the physician will perform the diagnostic
test. After testing, there are only two decision alternatives left. If the updated probability
of disease for the patient exceeds the treatment threshold probability, the physician will
start treatment; otherwise treatment will be withheld from the patient.

Determining Thresholds

The treatment threshold probability of disease P ∗(d) used in the threshold model is typ-
ically established by a physician after carefully weighing the various utilities involved.
Utilities are numbers associated with a utility function and pertain to the presence or ab-
sence of disease on the one hand and giving or withholding treatment on the other hand. A
utility function may be based on probabilistic information only and not involve any other
information about the domain at hand. Yet, it may also incorporate non-probabilistic
issues such as the cost of obtaining. From the expected utilities for giving and withholding
treatment in view of the uncertainty concerning the presence of disease, the probability of
disease at which the physician is indifferent between the two decision alternatives is readily
determined; the basic idea is illustrated in Figure 6.11(a). For the brain tumour example,
the physician will typically take into consideration the life expectancy for a patient, with
and without a brain tumour, and the patient’s attitude towards impaired health states;
the physician can, for example, set the treatment threshold probability of a brain tumour
at 0.15. The two threshold probabilities P−(d) and P+(d) for deciding whether or not to
perform a diagnostic test are established from the test’s characteristics. For the brain tu-
mour example, a possible diagnostic test is the CT scan. Suppose this test is added to the
example network as a direct descendant of the variable B, together with the conditional
probabilities

γCT (ct | b) = 0.95, γCT (ct | ¬b) = 0.10

The physician will typically weigh the discomfort of a CT scan for a patient against the
additional information yielded by the scan; the physician, for example, may set the no
treatment-test threshold probability of a brain tumour at 0.045 and the test-treatment
threshold probability at 0.56. The basic idea of establishing these two threshold probabil-
ities is illustrated in Figure 6.11(b).

6.3 A Problem-Solving Architecture 118

Beyond the Bayesian Network

While the Bayesian network framework offers algorithms for computing the probability
of disease and for processing evidence, it does not provide for computing the threshold
probabilities and for comparing these to computed probabilities of disease: these tasks
involve knowledge that cannot be expressed in the Bayesian network formalism and require
computations beyond probabilistic inference. These tasks therefore are provided for by the
control layer of the problem-solving architecture. The control layer can thus provide the
additional information required to support the decision between treatment, no treatment,
or deferring treatment until additional diagnostic information is available. If it is decided
that additional diagnostic information is to be obtained, the control layer can also be
used for determining what additional information is to be obtained. A simple method for
selective gathering of such information is discussed next.

6.3.2 Example Application: Selective Evidence Gathering

Another example of control over reasoning offered by the control layer is a simple method
for selective gathering of evidence for diagnostic problem solving with a Bayesian network.
This technique is regularly applied in intelligent tutoring systems (ITS), especially those
for computerized adaptive testing (CAT), which aim to provide individual students with
tailored exams based upon an assessment of their skills. 1

In diagnostic problem solving, the objective is to identify a most likely explanation for
a problem under consideration — this explanation then is the diagnosis of the problem.
Establishing a diagnosis is achieved by gathering information about the manifestations
of the problem at hand by applying tests to the problem. In most domains, it is not
necessary to collect evidence on all possible manifestations before an accurate diagnosis
is reached: information from only a few tests generally suffices. Moreover, it often is not
desirable to apply all tests available as testing may be costly or damaging. In diagnostic
problem solving, therefore, tests are not applied as a matter of course but instead are
selected carefully. Selective evidence gathering, or test planning, now amounts to selecting
the most useful tests to apply to a problem under consideration.

Tasks in Selective Evidence Gathering

In essence, selective evidence gathering is concerned with three tasks. The first of these
is to select the test that is expected to yield the most useful information in the context
of the evidence that is already available. When a test has been selected, the user, for
example a physician, is requested to apply the test and to enter the evidence yielded. The
second task of selective evidence gathering is to process this evidence. The third task
is to decide whether enough evidence has been obtained as yet to confirm a diagnosis
to sufficient extent. If still further information is required, the three tasks are executed
recursively. We now take a closer look at these tasks in view of diagnostic problem solv-
ing with a Bayesian network. While the Bayesian network framework offers algorithms
for computing probabilities and for processing evidence, thus providing for the second
task of selective evidence gathering, it does not provide for valuing and selecting tests
nor for deciding when to stop gathering information: these tasks involve knowledge that
cannot be expressed in the Bayesian network formalism and require computations beyond
probabilistic inference. These tasks therefore are provided for by the control layer of our
problem-solving architecture.

1Search for ’computerized adaptive testing’ in Google Scholar to find many papers on this topic.

6.3 A Problem-Solving Architecture 119

Variable Roles In diagnostic problem solving, the variables from the domain at hand
play different roles; for example, some variables represent test outcomes, others represent
unobservable, intermediate process states. For distinguishing between different roles, the
following types of vertex in the digraph of a Bayesian network are discerned [Henrion, 1989]:
a hypothesis vertex represents one or more (mutually exclusive) hypotheses or disorders;
an evidence vertex represents a variable whose value can be obtained by testing; all other
vertices are intermediate vertices. The set of all vertices of the digraph G of a Bayesian
network can thus be partitioned into three mutually disjoint sets of vertices: hypothesis
vertices HG, evidence vertices EG, and intermediate vertices IG. The roles of the various
vertices are modelled in the control layer of the problem-solving architecture and are not
known to the probabilistic layer. In addition to knowledge concerning the roles of the
vertices discerned, the control layer also specifies the additional knowledge required for
assessing for each test the (expected) usefulness of information yielded by testing, and the
extra knowledge involved in deciding when to stop gathering information.

Method and Assumptions for Bayesian Networks

For selective evidence gathering in diagnostic problem solving with a Bayesian network,
generally two simplifying assumptions are made. First, a myopic approach to evidence
gathering is taken, that is, evidence vertices to acquire information on are selected one
by one. It is conceivable that in practical applications a non-myopic approach in which
vertices are selected groupwise outperforms any method based on a myopic approach.
Naively adopting a non-myopic approach, however, poses unsurmountable problems con-
cerning computational complexity. The second simplifying assumption generally made is
that the Bayesian network at hand comprises one hypothesis vertex H only, that is, it is
assumed that all hypotheses discerned in the domain are mutually exclusive. Note that
this assumption prohibits reasoning about multiple interacting disorders. Relaxing this
assumption and straightforwardly applying selective evidence gathering in view of a set
of hypothesis vertices also causes serious computational problems, since then all possible
combinations of values for all hypothesis vertices have to be considered. In the remainder
of this section, we will equally take up the two assumptions mentioned above, although
research results have indicated that the simplifying assumptions may be eased to some
extent [Heckerman et al., 1993, Van der Gaag & Wessels, 1994b, Sent, 2005].

Selective evidence gathering for diagnostic problem solving with a Bayesian network
may be envisioned as outlined below in pseudo-code. The evidence-gathering procedure takes
the digraph G of a Bayesian network and the set E of all yet uninstantiated evidence
vertices for its input and yields as output a diagnosis d, which corresponds with a value
assignment to the hypothesis variable.

procedure evidence-gathering(G,E,d)

enough := false;

while E 6= ∅ and not enough do

dependent-vertices(H ,E,E′);

if E′ 6= ∅ then

select-vertex(E′,Ej);

enter-evidence(Ej);

E := E \ {Ej};
enough := verify-enough()

else enough := true
od;

return diagnosis(d)

end

6.3 A Problem-Solving Architecture 120

In principle, for selecting from a Bayesian network an appropriate vertex to acquire infor-
mation on, each yet uninstantiated evidence vertex has to be examined as to the (expected)
usefulness of information yielded. To this end, several probabilities are computed from
the Bayesian network. These probabilities may reveal that for some of the uninstantiated
evidence vertices, entering information has no influence whatsoever on the probabilities of
the values of the hypothesis vertex and therefore is utterly useless in view of establishing
a diagnosis. This property holds for all vertices that are independent of the hypothesis
vertex given the evidence obtained so far. Now recall that the Bayesian network formal-
ism allows for identifying independences from the digraph of a network without having to
resort to probabilistic computations. In the main evidence-gathering procedure, this prop-
erty is exploited to save on the number of probabilities that has to be computed from
the network. The dependent-vertices procedure is called upon to determine from a set E of
uninstantiated evidence vertices the subset E′ of those vertices that are not d-separated
from the hypothesis vertex H given the evidence entered so far. For selecting an appropri-
ate evidence vertex to acquire information on now only the vertices comprised in this set
E′ are examined. Here, we will not further elaborate on the dependent-vertices procedure;
for the computational issues involved, the reader is referred to [Geiger et al., 1990]. We
would like to note that although the dependent-vertices procedure is called from the control
layer of the problem-solving architecture, it itself is comprised in the probabilistic layer.

Once the set E′ of relevant uninstantiated evidence vertices has been determined, the
select-vertex procedure selects from this set the evidence vertex to best acquire information
on. Recently, the interest for selective evidence gathering — or test selection as it is
most often referred to nowadays — has revived, resulting in a number of new measures
and corresponding algorithms to select those vertices for which to acquire evidence (see
e.g. [Sent, 2005]). Here, we will focus only on one of the earlier approaches where a utility
function is used for discriminating between the various evidence vertices. This utility
function assigns to each value of every evidence vertex a numerical quantity expressing
the desirability, or utility, of obtaining this value. The utility functions in use for selective
evidence gathering differ considerably in the way they value information [Ben-Bassat, 1978,
Glasziou & Hilden, 1989]. For selecting an appropriate evidence vertex, the select-vertex

procedure may employ any such utility function. As an example, we consider here a very
simple utility function tailored to binary variables [Van der Gaag & Wessels, 1994a]: the
linear-value utility function u is defined by

u(Ei) = |Pr(h | c̃E)− Pr(h | c̃E ∧ Ei)|
for each evidence vertex Ei ∈ E′, where H is the hypothesis vertex and c̃E denotes the
partial configuration of all evidence obtained so far. Note that for an uninstantiated
evidence vertex Ei, the difference between Pr(h | c̃E) and Pr(h | c̃E ∧ ei) indicates the
confidence gained in the hypothesis h if the evidence Ei = true is observed; an analogous
observation holds for the evidence Ei = false. The usefulness of acquiring information on
an evidence vertex, however, does not depend on a single value as it is uncertain which
test result will be yielded for the problem at hand. For examining an evidence vertex,
therefore, the utilities of its separate values are weighted with the probabilities that these
values will be found. The result models the expected utility of acquiring information on
the vertex. When employing the linear-value utility function u, the expected utility û for
an evidence vertex Ei ∈ E′ is computed from

û(Ei) =
∑
cEi

Pr(cEi | c̃E) · u(cEi)

To select the evidence vertex to best acquire information on, the select-vertex procedure
computes the expected utilities for all relevant uninstantiated evidence vertices and then
selects the vertex with highest expected utility.

6.4 Explaining Bayesian Networks 121

Once an appropriate evidence vertex has been selected, the enter-evidence procedure
prompts the user for a value for this vertex. The value obtained from the user is entered
and subsequently processed in the Bayesian network at hand by the basic algorithms for
probabilistic inference offered by the probabilistic layer of the problem-solving architecture.
Note that the while-loop of the evidence-gathering procedure yields a sequence of prompts to
the user concerning various evidence vertices.

Beyond the Bayesian Network

The last task of selective evidence gathering is to investigate whether enough evidence has
been collected to justify a decision to stop further gathering of information. For this task, a
stopping criterion is employed. Such a stopping criterion may be based on several different
principles. The principle of sufficiency of confirmation is to stop evidence gathering as
soon as a diagnosis has been confirmed to sufficient extent by the available information:
the probability of a (tentative) diagnosis is compared with a pre-set threshold value, and if
this probability has surpassed the threshold value and is expected not to drop considerably,
evidence gathering is stopped. Note that such a stopping criterion is based on probabilistic
information only. Another principle a stopping criterion may be based upon is the principle
of sufficiency of information. This principle is to stop evidence gathering if the expected
utilities of all remaining evidence vertices have dropped below a pre-set threshold value;
pursuing evidence gathering then is expected not to further contribute to establishing a
diagnosis. A stopping criterion based on this principle may involve both probabilistic and
non-probabilistic information from the domain at hand. In the evidence-gathering procedure
the two principles are combined. The principle of sufficiency of information is seen in the
condition of the main while-loop of the procedure: evidence gathering is stopped if all
remaining uninstantiated evidence vertices are independent of the hypothesis vertex given
the evidence obtained so far. The verify-enough function completes the stopping criterion
by implementing a test on sufficiency of confirmation.

6.4 Explaining Bayesian Networks

Classifying email into spam or no-spam is a task often performed by Bayesian network-
based classifiers [Jin et al.]. For such an application, the user typically is only concerned
with the accuracy of the model. If the spam-filter classifies most spam as spam and not too
much legitimate email as spam, then the user does not care too much about the workings
of the model or its reasons for labelling email in a certain way. Understanding of the
model and its output is essential, however, for critical applications of decision-support
systems concerning, for example, a patient’s health or the innocence of a criminal suspect.
Such systems can only be brought into practice if we are able to provide the necessary
explanations.

Existing explanation methods for Bayesian networks can broadly be divided in three
categories. First, the elements of the model itself can be explained. See, for instance, the
work of [Lacave et al., 2007] or [Koiter, 2006] in which properties of the nodes and the arcs
in the network are explained. Secondly, the evidence that is instantiated in the Bayesian
network can be explained by calculating, for instance, the so-called most probable expla-
nation (MPE) or the maximum a-posteriori probability (MAP) assignment, which is the
most likely configuration of a (sub)set of non-evidence variables[Pearl, 1988]. Thirdly, the
reasoning chains, or crucial parts of them, that underlie the probabilistic inferences can be
explained [Timmer, 2017, Van Leersum, 2015, Suermondt, 1992, Yap et al., 2008] as well
as local qualitative properties of these inferences such as direction of change in probability
or the strength of the inference [Lacave et al., 2007, Lacave & Dı́ez, 2002, Koiter, 2006,

Exercises 6 122

Madigan et al., 1997, Druzdzel, 1996]. The listed approaches typically provide verbal ex-
planations and/or add visual cues to a Bayesian network graph. More recently, inspired
by approaches to explaining black-box machine learning algorithms that link outputs to
inputs, various types of explanation for Bayesian network that are used as classifiers have
been proposed; see [Koopman & Renooij, 2021] for an overview.

Exercises

* Exercise 6.1

Consider the digraph of a Bayesian network with eight vertices E1, E2, E3, E4, E5, H1,
H2, and H3, and nine arcs (E1, E2), (E1, H1), (E1, H2), (E3, E5), (H1, E2), (H1, E3),
(H2, E3), (H2, E4), and (H3, E4).

a. Establish the sensitivity set for the variable of interest H1; also try to explain in an
informal, intuitive way why certain variables are included in the sensitivity set and
why other variables are not;

b. same question for variable of interest H1 given evidence for variable E1;

c. same for H1 given evidence for E1 and E3;

d. same for H2 given E1, E2, E3, E4 and E5;

Suppose all variables are binary-valued and that an observation cE2 is entered for the
variable E2. We are interested in the posterior of H2 = true, Pr(h2 | cE2). We perform a
sensitivity analysis by computing fPr(h2|cE2

)(x) for various network parameters x ∈ {γ(vi |
cρG(Vi))}; complements γ(¬vi | cρG(Vi)) are co-varied and excluded from explicit analysis.

e. A sensitivity analysis of a mathematical model in general consists of constructing
a sensitivity curve, fitted to a number of individually computed points (p, o(p)) for
different values of an input parameter p and the corresponding output o(p). Suppose
we use this approach to construct such sensitivity curves for the example Bayesian
network. For all network parameters and the output probability described above,
we compute 10 points per curve. Suppose in addition that we do not exploit the
sensitivity set. How many network propagations (calls to a standard propagation
algorithm for probabilistic inference) are required for this analysis?

f. How many network propagations are required for computing fPr(h2|cE2
)(x) if we ex-

ploit both the known functional form of the sensitivity function and restrict the anal-
ysis to all free model parameters associated with the sensitivity set for variable of
interest H2 given evidence E2? (In your answer, take into consideration whether the
calculation of f requires 2 (linear), 3 (hyperbolic, but Pr(cE2) does not vary with x),
or 4 (hyperbolic in general) constants).

* Exercise 6.2

Consider the small Brain-tumour network from Figure 6.1.

a. Suppose that only the variable B has been observed. For which variables Vi can
output probabilities Pr(Vi | B) not be influenced by variation of the model parameters
associated with B?

b. Establish the minimal set of variables V that need be observed to render variable CT
given C insensitive to variation of the model parameters of ISC.

Exercises 6 123

c. To which model parameters does the output probability Pr(c | sh) relate linearly?
Which model parameters may, upon variation, have a non-linear effect on this output
probability?

d. Analytically express the probability Pr(b) as a function of model parameter γ(b | mc).

e. Analytically express the probability Pr(c | b ∧mc) as a function of model parameter
γ(isc | mc).

* Exercise 6.3

Consider a sensitivity function f(x) for some output probability and some model parameter
x = γV (vs) of variable V with n > 2 values; we assume that the original value x0 of
γV (vs) ∈ 〈0, 1〉. Upon varying x, the values of the assessment function γV for the other
n − 1 values of variable V have to be co-varied. To this end, a proportional co-variation
scheme is used in which the proportion of the remaining mass 1 − x that is assigned to
γV (vj), j 6= s, is kept constant.

Different co-variation schemes adhere to different properties. Two useful properties are
the order-preserving property and the impossibility-preserving property. A co-variation
scheme is called impossibility-preserving if any γV (vj) = 0, j 6= s, remains zero upon co-
variation. Suppose the values of V are ordered according to the values of γV as specified
in the network, i.e. γV (v1) ≤ . . . ≤ γV (vs) ≤ . . . ≤ γV (vn); a co-variation scheme is called
order-preserving if this ordering is preserved during co-variation.

Which of these two properties does the proportional co-variation scheme adhere to?
Explain your answer:

I. neither order-preserving, nor impossibility-preserving
II. not order-preserving, yet impossibility-preserving
III. order-preserving, but not impossibility-preserving
IV. both order-preserving and impossibility-preserving

* Exercise 6.4

Consider a noisy-or gate modelling a disjunctive interaction between n causes C1, . . . , Cn

and effect E (all variables are binary-valued). Assume that each cause Ci, i = 1, . . . , n
has a uniform prior distribution. Show that the following formula correctly captures the
sensitivity function fPr(e)(x) for x = Pr(c1):

fPr(e)(x) = 2−(n−1) ·
((∑

cC|=c1

Pr(e | cC) −
∑

c′C|=¬c1

Pr(e | c′C)
)
· x+

∑
c′C|=¬c1

Pr(e | c′C)
)

where cC |= c1 represents any configuration over the set of variables C = {C1, . . . Cn} that
is consistent with C1 = true, and c′C |= ¬c1 is any configuration over C consistent with
C1 = false.

* Exercise 6.5

One in a thousand people is susceptible to a particular heart disease. There is a test to
detect this disease. The test is 100% accurate for people who have the disease and is 95%
accurate for those who do not (this means that 5% of people who do not have the disease
will be wrongly diagnosed as having it).

Exercises 6 124

a. Draw a Bayesian network that reflects the above described relationship between dis-
ease and test-result; give all assessment functions, or conditional probability tables,
as well.

b. Establish the sensitivity function fPr(Heart-disease=yes|Test=yes)(x) for

x = γ(Heart-disease = yes).

c. Determine the sensitivity value and the admissible deviation for x0 = 0.001. Com-
ment on their interpretation in terms of the domain under consideration.

* Exercise 6.6

Consider the Bayesian network B = (G,Γ) that represents joint probability distribution Pr
for some domain of application. Let G be the following digraph:

Consider a one-way sensitivity analysis of B. In general, the one-way sensitivity func-
tion f(x), describing an output probability of interest in terms of a network parameter x,
has the following form:

f(x) =
a · x+ b

c · x+ d
where a, b, c and d are constants with respect to x.

a. Suppose we are interested in the posterior output probability Pr(v3 | v4) and how it
changes upon varying model parameter x = γ(v4 | ¬v3). Show that for this particular
case the sensitivity function takes on the following simplified form:

fPr(v3|v4)(x) =
a

b · x+ a

b. Suppose that also a two-way sensitivity analysis of network B is performed. Consider
the probability of interest Pr(v3) and two model parameters x = γ(v4 | ¬v3) and y =
γ(v2). The following graph displays projected iso-probability lines for fPr(v3)(x, y):

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

y

x

0.15

0.17

0.19

0.21

0.23

0.25

0.27

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

y

x

0.15

0.17

0.19

0.21

0.23

0.25

0.27

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

y

x

0.15

0.17

0.19

0.21

0.23

0.25

0.27

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

y

x

0.15

0.17

0.19

0.21

0.23

0.25

0.27

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

y

x

0.15

0.17

0.19

0.21

0.23

0.25

0.27

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

y

x

0.15

0.17

0.19

0.21

0.23

0.25

0.27

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

y

x

0.15

0.17

0.19

0.21

0.23

0.25

0.27

Clearly explain what this graph tells you about

� the joint effect of varying x and y on Pr(v3), and

Exercises 6 125

� the individual effects of varying x and y on Pr(v3).

c. Give an advantage and a drawback of performing a two-way sensitivity analysis as
opposed to a one-way analysis.

* Exercise 6.7

Argue that the method for establishing a sensitivity set by adding auxiliary parents to the
nodes in the digraph indeed works.

* Exercise 6.8

Consider weather forecaster Piet who makes daily predictions for Rain (Pr(r) and Pr(¬r))
in a country where it rains 70% of the time. Every day Piet considers whether or not it
rained the day before and computes the Brier score for yesterday’s prediction.

a. What is the average Brier score (in the long run) for Piet if he is a uniform forecaster
and predicts Pr(r) = Pr(¬r) = 0.5 for each day?

b. What is the average Brier score for an oesophageal cancer network that predicts
uniform distributions over the 6 possible stages?

c. What is the average Brier score over n predictions if Piet is a base rate predictor,
i.e. predicts Pr(r) = 0.7 every day?

d. What are the Brier scores for a correct and an incorrect prediction if Piet is an op-
portunistic, deterministic predictor and predicts Pr(r) = 1? And what is his average
score over n predictions given that m of these are correct? What is the expected value
of m and the corresponding average score?

Chapter 7

Conclusions

Probabilistic modelling and reasoning through Probabilistic Graphical Models (PGMs) is
an exciting research area. First and foremost, PGMs may be looked upon as mathemati-
cally sound computational frameworks for probabilistic inference. From this point of view,
we have addressed the algorithms offered by the Bayesian network framework. We have
argued that although these algorithms have an exponential worst-case time complexity,
they tend to behave polynomially for most real-life Bayesian networks. However, as ap-
plications of the framework grow larger, the Bayesian networks involved increase in size
accordingly. Networks comprising hundreds or even thousands of vertices are no excep-
tion. For Bayesian networks of this size, the basic algorithms for probabilistic inference
inevitably slow down problem solving despite their polynomial behaviour. Research into
inference algorithms therefore aims at developing more efficient algorithms. Efficiency is
sought after in many different ways: existing algorithms for exact inference are further
optimised, e.g. through knowledge-based pruning and focusing, any-time algorithms are
proposed, and various algorithms for approximate inference, often based on simulation
techniques, have been designed.

The PGM framework may also be looked upon as a framework for building knowledge-
based systems. In fact, experience with developing applications of the framework is pro-
gressing rapidly. From this point of view, we have addressed the issue of building a
Bayesian network for a domain of application. In many respects, building a Bayesian
network resembles engineering a knowledge-based system more in general. Available
knowledge-engineering methodologies are more and more supplemented with methodolo-
gies tailored to Bayesian network building. With the increasing availability of data over the
past decades, the popularity of research into the possibilities for automated construction
has also grown. The current interest in explainable AI will possibly awaken the interest in
explanation methods for Bayesian networks as well. As experience with applying the PGM
framework is building, the need for methods for knowledge-based control over reasoning
is evident. We have briefly addressed this issue and outlined shaping diagnostic problem
solving with a Bayesian network.

In this syllabus we have focussed mostly on the Bayesian network, which is the PGM
family member that works with discrete variables and a directed graph. Other family
members include more traditional statistical models such as Markov networks (undirected
graph; also called Markov random fields), Kalman filters (continuous variables) and Hidden
Markov models. The latter can actually be modelled as a (Dynamic) Bayesian network
of fixed topology, showing that the material presented in this syllabus is applicable to a
wider range of probabilistic models.

126

Chapter 8

Solutions, Answers and Hints

This chapter presents solutions, answers or tips for selected exercises. Often also the
approach you can take to come up with a solution is given. Note that for a lot of exercise
there are multiple ways to solve the problem and we present at most one.

1.2

c. We need to sum out n−m variables; since all variables are binary-valued this amounts
to summing over 2n−m joint probabilities.

2.2

The correct answers follow from the notation definitions (see boxes in Section 2.2 and the
Ch. 2 course slides): a-I, b-VI, c-IV, d-III, e-II, f -V, g-VII

2.3

a. Approach: to introduce conditional probabilities, use Definition 2.2.4. First just sep-
arate Vn from the rest and check out the result. Now apply the definition of conditional
probability repeatedly. Note that this works regardless of the values of Vi and therefore
you can just use the template notation.

b. Approach: again you can use the definition of conditional probability, together with
symmetry (Pr(X ∧ Y) = Pr(Y ∧X)) in template notation; also try with and without Z.

c. We prove the marginalisation property stated in Proposition 2.2.8. Let V be a set of
random variables and let Pr be a joint probability distribution on V . We have to show
that

Pr(X) =
∑
cY

Pr(X ∧ cY)

for all sets X,Y ⊆ V . From the definition of conditional probability, we have that∑
cY

Pr(X ∧ cY) =
∑
cY

Pr(cY |X) · Pr(X) =

= Pr(X) ·
∑
cY

Pr(cY |X) =

= Pr(X) · 1

127

Solutions, Answers and Tips 128

by the definition of Pr, which concludes our proof.
d. Approach: again use the definition of conditional probability on the right-hand side
of the expression. Observe that the rest of the proof follows from the marginalisation
property proven above.

2.4

Prove the property for arbitrary configurations cX and cY rather than using the tem-
plate notation. Approach: (other approaches are possible!) Observe that, due to the
interpretation of the logical OR,

Pr(cX ∨ cY) = Pr(cX ∧ cY) +
∑

c′Y 6=cY

Pr(cX ∧ c′Y) +
∑

c′X 6=cX

Pr(c′X ∧ cY)

Also observe that the first two terms sum to Pr(cX) by marginalisation (Proposition 2.2.8).
Now rewrite the last term.

2.5

Approach: (other approaches are possible!) Start with the expression on the right-hand
side and apply the definition of conditional probability to initially get rid of both condi-
tioning bars. Now try to get rid of cY .

2.6

To prove the property stated in the exercise, we show that

Pr(X | Y ∧Z) = Pr(X | Z)⇔ Pr(X ∧ Y | Z) = Pr(X | Z) · Pr(Y | Z)

under the assumption that both Pr(Y ∧Z) > 0 and Pr(Z) > 0 for all values of Y and Z.
From the definition of conditional probability, we have that

Pr(X | Y ∧Z) = Pr(X | Z) ⇔ Pr(X ∧ Y ∧Z)

Pr(Y ∧Z)
=

Pr(X ∧Z)

Pr(Z)

By division of both the left hand side and the right hand side of the latter expression by
Pr(Z) and subsequent rearrangement of terms, we find that

Pr(X | Y ∧Z) = Pr(X | Z)⇔ Pr(X ∧ Y ∧Z)

Pr(Z)
=

Pr(X ∧Z)

Pr(Z)
· Pr(Y ∧Z)

Pr(Z)
⇔

⇔ Pr(X ∧ Y | Z) = Pr(X | Z) · Pr(Y | Z)

which concludes our proof.

3.1

For IPr you need to use definitions based on Pr.

a. Proof for the symmetry property is given in the Ch. 3 course slides.

b. A sketch of the proof of the decomposition property is in the course slides; figure out
the few missing steps.

Solutions, Answers and Tips 129

c. We show that the independence relation IPr satisfies the weak union property

I Pr(X,Z,Y ∪W)→ I Pr(X,Z ∪W ,Y)

for all sets of variables X,Y ,Z,W ⊆ V , that is, we prove the third property stated in
Theorem 3.1.2.

We assume that I Pr(X,Z,Y ∪W). From this observation, we have

Pr(X | Z ∧ Y ∧W) = Pr(X | Z)

by definition, that is, we have that

Pr(X ∧ Y ∧Z ∧W)

Pr(Y ∧Z ∧W)
=

Pr(X ∧Z)

Pr(Z)

From our assumption I Pr(X,Z,Y ∪W), we further have I Pr(X,Z,W) by the second
property stated in the exercise. By definition, we therefore have that

Pr(X | Z ∧W) = Pr(X | Z)

that is,

Pr(X ∧Z ∧W)

Pr(Z ∧W)
=

Pr(X ∧Z)

Pr(Z)

Now consider the conditional probability Pr(X | Z ∧W ∧Y). By definition, we find that

Pr(X | Z ∧W ∧ Y) =
Pr(X ∧ Y ∧Z ∧W)

Pr(Y ∧Z ∧W)

From the previous observations, we further find that

Pr(X | Z ∧W ∧ Y) =
Pr(X ∧Z)

Pr(Z)
=

Pr(X ∧Z ∧W)

Pr(Z ∧W)
= Pr(X | Z ∧W)

From Pr(X | Z∧W ∧Y) = Pr(X | Z∧W), we have by definition that I Pr(X,Z∪W ,Y).
We conclude that I Pr(X,Z,Y ∪W)→ I Pr(X,Z ∪W ,Y).

d. Approach: Similar to the proof above, use the definition of IPr and that of conditional
probability.

3.2

We begin our proof by observing that, since I is a semi-graphoid independence relation, it
obeys the first four axioms stated in Definition 3.1.3. Now, we assume that I(X,Z,Y ∪W)
and I(Y ,Z,W). We have that

I(X,Z,Y ∪W)→ I(X,Z ∪W ,Y)→ I(Y ,Z ∪W ,X)

by the weak union and symmetry axioms; in conjunction with our assumption I(Y ,Z,W),
we find

I(Y ,Z ∪W ,X) ∧ I(Y ,Z,W)→ I(Y ,Z,W ∪X)→ I(X ∪W ,Z,Y)

by the contraction and symmetry axioms.

Solutions, Answers and Tips 130

3.3

Approach: for I you need to use the four axioms based upon which the relation is defined
(Definition 3.1.3). The proof proceeds similar to that of Exercise 3.2 and the example in
the Ch. 3 course slides. You will need the symmetry, weak union and contraction axioms.

3.5

Note that the only axiom that can be applied to the two statements is symmetry, so the
independence relation consists of four statements in total.

a. Approach: to find D-maps, recall from Lemma 3.2.6 that a graph without edges is
always a D-map. You can now add in edges as long as you do not introduce dependences
that contradict the independence statements. That is, the separation properties that
correspond to the statements from the independence relation should remain valid in the
graph. For the first independence statement this means that V1 and V4 cannot be directly
connected by an edge; moreover, if there does exist a path between V1 and V4, then it
must pass through V2 and/or V3. Similar observations apply to the second statement.

This exercise requires you to draw 16 D-maps, four of which are given in the Ch. 3 course
slides. You should find:

� 1 graph with 0 edges;

� 1 graph which is complete except for the 2 forbidden edges: 0.5·4·3−2 = 4 allowable
edges;

� 4 =
(
4
1

)
graphs with 1 of the allowable edges;

� 6 =
(
4
2

)
graphs with 2 allowable edges;

� 4 =
(
4
3

)
graphs with 3 allowable edges.

b. Approach: to find I-maps, recall from Lemma 3.2.6 that a complete graph is always
an I-map. You can now remove edges as long as you do not introduce independences
that are absent from the independence relation. That is, the separation properties that
are introduced into the graph should have a corresponding statement in the independence
relation.

This exercise requires you to draw the 4 I-maps that are given in the Ch. 3 course slides.

3.6

Approach: first draw yourself a graph to visualize the problem; according to the exercise,
Vj must be distinct from Vi and not among Vi’s neighbours.

Proof: Every chain from Vi to Vj in G will contain at least one neighbour of Vi; this
neighbour will block the chain. Therefore, the set of neighbours of Vi blocks all chains
between Vi and Vj and hence separates Vi and Vj .

3.7

a. The property holds: verify that any simple chain between V1 and V2 is blocked by V2
and/or V3.

Solutions, Answers and Tips 131

b. The property doesn’t hold: two vertices can only be d-separated by the empty set if
there is either no chain connecting the vertices, or all chains include a head-to-head vertex
(vertex with two incoming arcs on the chain).

c. The property 〈{V2} | {V1} | {V3}〉dG holds in the digraph G since all chains in G from
V2 to V3 are blocked by the set of vertices {V1}. For example, the chain V2, V1, V3 from V2
to V3 is blocked by {V1} since V1 ∈ {V1}; the chain V2, V5, V3 from V2 to V3 is blocked by
{V1} since {V5, V6} ∩ {V1} = ∅.

d. Verify yourself that the property holds.

e. The property 〈{V2} |{V3, V4} |{V6}〉dG does not hold in the digraph G since not every
chain in G from V2 to V6 is blocked by the set of vertices {V3, V4}. For example, the chain
V2, V5, V6 from V2 to V6 is not blocked by {V3, V4}.

f. The property doesn’t hold: two directly connected vertices cannot be d-separated
(other than by themselves if you allow non-disjoint sets).

3.8

Tip: Remember to apply the axioms to get the full independence relation! In addition to
symmetry, we can apply both weak-union and decomposition to the second statement. In
total this will give 6 independence statements plus their 6 symmetric versions; write these
down!

a. Approach: to find D-maps, recall from Lemma 3.2.15 that a graph without any arcs
is always a D-map. You can now add in arcs as long as you do not introduce dependences
that contradict the independence statements. That is, the d-separation properties that
correspond to the 12 statements from the relation should remain valid in the graph. For
the first statement this for example means that V1 and V2 cannot be directly connected by
an arc; moreover, if there does exist a chain between V1 and V2 then it must pass through
a head-to-head vertex. Similarly, the other statements tell us that the D-map cannot have
direct arcs between V1 and V4, and between V2 and V4, and indirect chains between these
vertices must pass through V3.

This exercise requires you to draw 15 D-maps, four examples of which are given in the
Ch. 3 course slides. You should find:

� 1 graph with 0 arcs;

� 1 graph which is complete except for the 6 (3 · 2) forbidden arcs: 3 allowable arcs
with only one possible direction;

� 6 = 4 · 3− 6 graphs with 1 allowable arc;

� 7 =
(
6
2

)
− 5 − 3 graphs with 2 allowable arcs (−5 to get head-to-heads in correct

place, −3 to prevent 2 arcs between 2 variables).

Solutions, Answers and Tips 132

b. Apporach: to find I-maps, recall from Lemma 3.2.15 that a complete oriented graph is
always an I-map. You can now remove arcs as long as you do not introduce independences
that are absent from the independence relation. That is, the d-separation properties that
are introduced into the graph should have a corresponding statement in the independence
relation. From the independence relation we have for example that in the I-map there
has to be a chain (without head-to-head vertex) from both V1 and V2 to V4. Moreover,
whenever there is no arc between V1 and V2, all chains between V1 and V2 should include
a head-to-head vertex.

This exercise now requires you to draw (some of the) 63(!) possible I-maps, four examples
of which are given in the Ch. 3 course slides. You should find:

� 24 complete oriented graphs with 0.5 · 4 · 3 = 6 arcs (not 26 graphs, because they are
not all acyclic!);

� 28 graphs with 5 arcs;

� 10 graphs with 4 arcs;

� 1 graph with 3 arcs.

3.9

A sketch of the proof is given in the Chapter 3 (see Lemma 3.2.15). The remaining
arguments are similar to those in the proof of Lemma 3.2.6 for undirected graphs; also see
the Ch. 3 course slides.

3.10

Approach: try to find as simple examples as possible. In this case an independence relation
over only three variables should suffice. You have multiple P-maps if there are arcs that
you can reverse without violating the P-map property. Essentially this means that you do
not introduce or remove head-to-head nodes.

3.11

One example, out of 20 possible minimal I-maps, is given in the Ch. 3 course slides.
Approach: note that if an arc between V1 and V4 is absent, then the graph should include
at least one chain between V1 and V4 without a head-to-head vertex. A similar observation
applies to the combination V2 and V3.

3.12

Approach: first draw yourself a graph to visualize the problem; according to the exercise,
Vj must be distinct from Vi and not among Vi’s direct ancestors (parents) or descendants.

The proof now proceeds similarly to that of Exercise 3.6. Think about why the property
is not stated in terms of neighbours for directed graphs.

3.13

Not necessarily; again use a simple independence relation on three variables to construct
a counter example. Think about what the real difference between the languages of undi-
rected and directed graphs for encoding independences is: the interpretation of the head-
to-head connection.

Solutions, Answers and Tips 133

3.14

Approach: try independence relations over as few variables as possible. For example, use
three variables for a) and c), and four variables for b) and d). Let yourself be inspired by
the example relations you have already encountered above and in the Ch. 3 course slides,
and think about the true difference in expressiveness between directed and undirected
graphs (head-to-head connections).

4.2

Chapter 4.1 and the Ch. 4 course slides on the probabilistic interpretation, give examples of
how to perform such computations. For this example network, your computations should
give Pr(v1 ∧ v2 ∧ v3) = 0.09375; Pr(v2 ∧ v3) = 0.24375; Pr(v1 | v2 ∧ v3) = 0.38462 (first use
definition of conditional probability); Pr(v1 ∨ v2 ∨ ¬v3 ∨ v4) = 0.985 (first transform the
logical disjunction into a logical conjunction with De Morgan’s Law).

4.3

a. Note that you are asked to prove that the Identity property from Lemma 4.2.8 also holds
for singly connected subgraphs in which no evidence resides. For the proof: be inspired
by the proof of Lemma 4.2.8 or directly use the definition of λVi(Vi) (Definition 4.2.11).

Also note that if there is no evidence at all in the network, then the Identity property
holds in the singly connected graph as a whole. Moreover, the property also holds in
directed trees for any vertex that forms the root of a sub-tree without evidence.

b. and c. the result similarly follows from the definitions of the parameters from Chap-
ter 4.2.2.

4.4

Tip: Chapter 4.2.2 and the Ch. 4 course slides on Pearl in singly connected graphs give ex-
amples of how to perform computations using Pearl’s belief propagation algorithm. Make
sure you can follow these before attempting to solve this and the following exercises.

Approach: Now try doing this exercise yourself before looking at the worked out example
below: this is something you need to practice and experience! A general tip: always start
with the data fusion lemma for the requested probabilities and apply the computation
rules only for computing those compound and message parameters required to establish
the requested probabilities.Also practice for the exam: make clear which compound and
message parameters are computed, how they are computed and which additional assump-
tions (such as special cases or the Identity property) you make, if any. A way to do this
is given below.

a. Vertex V4 applies the data fusion lemma to compute the probabilities Pr(v4) and
Pr(¬v4):

Pr(v4) = α · πV4(v4) · λV4(v4)
Pr(¬v4) = α · πV4(¬v4) · λV4(¬v4)

Since no evidence has been entered in the network, we have from the identity property
that λV4(v4) = λV4(¬v4) = 1. As a consequence, no normalisation is required upon data
fusion. For the compound causal parameter πV4(v4), vertex V4 now computes

πV4(v4) = γV4(v4 | v3) · πV3
V4

(v3) + γV4(v4 | ¬v3) · πV3
V4

(¬v3)

Solutions, Answers and Tips 134

Due to the absence of evidence, the causal parameter equivalence holds. As a result,
πV3
V4

(V3) = πV3(V3), which results in:

πV3
V4

(v3) = γV3(v3 | v1 ∧ v2) · πV1
V3

(v1) · πV2
V3

(v2)+

+γV3(v3 | ¬v1 ∧ v2) · πV1
V3

(¬v1) · πV2
V3

(v2)+

+γV3(v3 | v1 ∧ ¬v2) · πV1
V3

(v1) · πV2
V3

(¬v2)+
+γV3(v3 | ¬v1 ∧ ¬v2) · πV1

V3
(¬v1) · πV2

V3
(¬v2)

Again using causal parameter equivalence and the fact that V1 and V2 are roots, we find:

πV3
V4

(v3) = γV3(v3 | v1 ∧ v2) · γV1(v1) · γV2(v2)+

+γV3(v3 | ¬v1 ∧ v2) · γV1(¬v1) · γV2(v2)+
+γV3(v3 | v1 ∧ ¬v2) · γV1(v1) · γV2(¬v2)+
+γV3(v3 | ¬v1 ∧ ¬v2) · γV1(¬v1) · γV2(¬v2) =

= 0.9 · 0.5 · 0.4 + 0.6 · 0.5 · 0.4 + 0.2 · 0.5 · 0.6 + 0.8 · 0.5 · 0.6 = 0.6

and, likewise, πV3
V4

(¬v3) = 0.4. So, πV4(v4) = 0.5 · 0.6 + 0.65 · 0.4 = 0.56.
Analogously, vertex V4 computes πV4(¬v4) = 0.44.
As a result we find

Pr(v4) = 0.56 and Pr(¬v4) = 0.44

b. Tip: Re-use results from part a) where possible. Copy (part of) the graph and add
the dummy vertex that enables processing the instantiation for vertex V6 explicitly, so you
cannot forget about its messages.

Vertex V4 applies the data fusion lemma to compute the probabilities Prv6(v4) and Prv6(¬v4):

Prv6(v4) = α · πV4(v4) · λV4(v4)
Prv6(¬v4) = α · πV4(¬v4) · λV4(¬v4)

Since no evidence has been entered for vertices in V+
4 , we still have (part a.) that

πV4(v4) = 0.56 and πV4(¬v4) = 0.44

For the compound diagnostic parameter λV4(v4) vertex V4 computes the following:

λV4(v4) = λV4
V5

(v4) · λV4
V6

(v4)

Since vertex V5 is not instantiated, we have from the identity property that λV4
V5

(v4) = 1. For

diagnostic parameter λV4
V6

(v4) we observe that its components λV6(v6) = 1 and λV6(¬v6) = 0
follow from the instantiation of vertex V6 through a dummy vertex. As a result,

λV4
V6

(v4) = λV6(v6) · γV6(v6 | v4) + +λV6(¬v6) · γV6(¬v6 | v4) =

= γV6(v6 | v4) = 0.6

(Note that we left out the normalisation constant and postpone normalisation to the final
data fusion step)

We thus find that λV4(v4) = 1 · 0.6 = 0.6. Analogously, we find

λV4(¬v4) = λV4
V5

(¬v4) · λV4
V6

(¬v4) = γV6(v6 | ¬v4) = 0.1

Solutions, Answers and Tips 135

Filling in all the computed parameters in the data fusion lemma, we therefore find:

Prv6(v4) = α · 0.56 · 0.6 = α · 0.336
Prv6(¬v4) = α · 0.44 · 0.1 = α · 0.044

With α = 1
0.38 vertex V4 finally returns

Prv6(v4) ≈ 0.88
Prv6(¬v4) ≈ 0.12

c. Entering the evidence V2 = false cannot influence the probabilities of the values of the
vertex V6 since this vertex is already instantiated. The evidence, however, may influence
the probabilities of the values of each of the other vertices: neither of V1, V3, V4, and V5
is d-separated from V2 by the set {V6}, the set of vertices for which evidence has been
entered.

4.5

a. For computing the probabilities Pr(v5) and Pr(¬v5) of its values vertex V5 applies the
data fusion lemma:

Pr(v5) = α · πV5(v5) · λV5(v5)
Pr(¬v5) = α · πV5(¬v5) · λV5(¬v5)

Since no evidence has been entered in the network as yet, we have from the identity prop-
erty for the compound diagnostic parameter λV5 of V5 that λV5(v5) = 1 and λV5(¬v5) = 1.
As a consequence, no normalisation upon data fusion is required.

For the value πV5(v5) of its compound causal parameter, vertex V5 computes

πV5(v5) = γV5(v5 | v3) · πV3
V5

(v3) + γV5(v5 | ¬v3) · πV3
V5

(¬v3)
where

πV3
V5

(v3) = γV3(v3 | v1 ∧ v2) · πV1
V3

(v1) · πV2
V3

(v2)+

+γV3(v3 | ¬v1 ∧ v2) · πV1
V3

(¬v1) · πV2
V3

(v2)+

+γV3(v3 | v1 ∧ ¬v2) · πV1
V3

(v1) · πV2
V3

(¬v2)+
+γV3(v3 | ¬v1 ∧ ¬v2) · πV1

V3
(¬v1) · πV2

V3
(¬v2) =

{πV1
V3

(V1) = π(V1) = γV1(V1) since V1 is a root vertex ; it has no

other successors, so causal parameter equivalence holds;

same for πV2
V3

(V2)}

= γV3(v3 | v1 ∧ v2) · γV1(v1) · γV2(v2)+
+γV3(v3 | ¬v1 ∧ v2) · γV1(¬v1) · γV2(v2)+
+γV3(v3 | v1 ∧ ¬v2) · γV1(v1) · γV2(¬v2)+
+γV3(v3 | ¬v1 ∧ ¬v2) · γV1(¬v1) · γV2(¬v2) =

= 0.2 · 0.8 · 0.5 + 0.6 · 0.2 · 0.5 + 0.5 · 0.8 · 0.5 + 0.1 · 0.2 · 0.5 = 0.35

and, likewise,

πV3
V5

(¬v3) = γV3(¬v3 | v1 ∧ v2) · γV1(v1) · γV2(v2)+

+γV3(¬v3 | ¬v1 ∧ v2) · γV1(¬v1) · γV2(v2)+
+γV3(¬v3 | v1 ∧ ¬v2) · γV1(v1) · γV2(¬v2)+
+γV3(¬v3 | ¬v1 ∧ ¬v2) · γV1(¬v1) · γV2(¬v2) =

= 0.8 · 0.8 · 0.5 + 0.4 · 0.2 · 0.5 + 0.5 · 0.8 · 0.5 + 0.9 · 0.2 · 0.5 = 0.65

Solutions, Answers and Tips 136

So, πV5(v5) = 0.6 · 0.35 + 0.4 · 0.65 = 0.47.
Analogously, vertex V5 computes πV5(¬v5) = 0.53.

By substituting the values λV5(v5), λV5(¬v5), πV5(v5), and πV5(¬v5) in the data fusion
lemma and eliminating the normalisation constant α we find

Pr(v5) = 0.47 and Pr(¬v5) = 0.53

b. Approach: Chapter 4.2.2, the Ch. 4 course slides on Pearl in SCGs and the worked out
example of Exercise 4.4b give examples of how to perform such computations. Also check
out the tip in the answers for 4.4b! Your computations should result in Pr(v5 | v3) = 0.6,
Pr(¬v5 | v3) = 0.4.

c. Entering the evidence V3 = true cannot influence the probabilities of the values of the
vertex V4. By exploiting the d-separation criterion it is easily seen that the vertex V4 is
independent of the vertex V3 given the empty set ∅, that is, the set of vertices for which
evidence has been entered: the only chain in the digraph G between the vertices V3 and
V4 is blocked by ∅. Since no other vertex in G is d-separated from vertex V3 by the empty
set, the evidence for V3 may influence the probabilities of the values of all other vertices
in the network.

4.6

Approach: See tips and answers for Exercises 4.4 and 4.5a

a. Pr(v1 | v7) = 0.6, Pr(¬v1 | v7) = 0.4.

b. Tip: implement the example network in your BN software package and see what hap-
pens and whether you can explain this.

Since ¬〈{V4} | {V7} | {V1}〉dG, the probability Prv7,v4(v1) can possibly differ from Prv7(v1).
Whether the two probabilities actually differ cannot be established from graphical consid-
erations alone and will depend on the assessment functions involved.

c. The probability of a conjunction cannot be directly computed using Pearl’s algorithm,
since it computes marginal or conditional distributions over a single variable only. Let’s
consider Pearl’s algorithm as a black box1 and explain how we can extract the necessary
information for computing the probability of this conjunction. From the chain rule, we
have that

Prv7,v4(v1 ∧ ¬v2) = Prv7,v4(v1 | ¬v2) · Prv7,v4(¬v2)
Both factors on the right-hand side are queries of the form Pr(Vi | e) that can be directly
computed using a single run of Pearl’s algorithm each.

However, given the independences implied by the digraph, we can do these computations
more efficiently if we apply the chain rule to the vertices in a different order:

Prv7,v4(v1 ∧ ¬v2) = Prv7,v4(¬v2 | v1) · Prv7,v4(v1)
= Pr(¬v2 | v1) · Prv7,v4(v1)
= γV2(¬v2 | v1) · Prv7,v4(v1)

1A black box is a system which can be viewed in terms of its inputs and outputs, without any knowledge
of its internal workings.

Solutions, Answers and Tips 137

In this case one of the factors can be read directly from the network’s assessment function
without applying Pearl.

4.7

a. Approach: See tips and answers for Exercises 4.4 and 4.5a.
Pr(v3 | v1 ∧ ¬v6) = 0.6, Pr(¬v3 | v1 ∧ ¬v6) = 0.4.

b. Approach: This probability of a conjunction cannot be directly computed using Pearl’s
algorithm. See answer to Exercise 4.6c. and see if you can exploit independences to
increase efficiency with respect of the number of times Pearl needs to be applied and the
amount of evidence to process.

c. For the same reasons as above, the probability of a disjunction cannot be directly
computed from the network with Pearl’s algorithm.

Approach: Use De Morgan’s law to turn the disjunction into a conjunction:

v2 ∨ v4 ≡ ¬¬(v2 ∨ v4) ≡ ¬(¬v2 ∧ ¬v4)

and handle the conjuction as in Exercise 4.6c.

4.8

First note that for all vertices Vi with 1 ≤ i < k there is no change in assessment function
and therefore the property trivially holds, since

|Pr′(Vi)− Pr(Vi)| = 0 ≤ ε

Approach: For i ≥ k we can prove the property for example by mathematical induction.
First show that the property holds for vertex Vk; this is the base case. Then in the
induction step you assume that the property holds for some vertex Vm−1, k < m ≤ n, and
show that it then also holds for vertex Vm.

4.9

Note: the Suermondt & Cooper heuristic is illustrated in Section 4.2.3 in Example 4.2.21.
For another example of its application, see the Ch. 4 course slides.

a. You should find either {V2} or {V3}.

b. Approach: Use Pearl extended with loop cutset conditioning, illustrations of which
can also be found in Example 4.2.18 and the Ch 4 course slides.

Tip: Draw the singly connected graph that you effectively create through instantiating
the loop cutset. This means that a loop cutset vertex with k neighbours is duplicated
k − 1 times such that each of its original neighbours is linked to one of the k copies. Also
don’t forget to include dummy vertices for each of these copies. Finally, look carefully
at this new graph and only compute the parameters that you need for determining your
probabilities of interest.

Below we take {V2} as a loop cutset. Try using {V3} yourself instead: in contrast to the
computations below, you will also need to compute the diagnostic message parameters

Solutions, Answers and Tips 138

λV2
V3

(V2) for V3 to send to V2. Ultimately both choices should result in Pr(v5) = 0.34 and
Pr(¬v5) = 0.66.

To compute the probabilities Pr(v5) and Pr(¬v5) we use loop cutset conditioning:

Pr(V5) = Pr(V5 | v2) · Pr(v2) + Pr(V5 | ¬v2) · Pr(¬v2)

First we compute the probabilities for the loop cutset, directly from the network specifica-
tion:

Pr(v2) = Pr(v2 | v1) · Pr(v1) + Pr(v2 | ¬v1) · Pr(¬v1)
= γV2(v2 | v1) · γV1(v1) + γV2(v2 | ¬v1) · γV1(¬v1)
= 0.9 · 0.5 + 0.7 · 0.5 = 0.8;

Pr(¬v2) = 0.2

Note: In the remainder of this exercise we will drop the subscripts for the compound pa-
rameters and the assessment functions.

I We now compute Pr(V5 | v2) using Pearl’s algorithm (data fusion):

Prv2(v5) = α · π(v5) · λ(v5)

Prv2(¬v5) = α · π(¬v5) · λ(¬v5)

As there is no evidence in V−5 , V−4 and V−6 we have that their compound diagnostic
parameters, as well as the diagnostic message parameters sent by these nodes, are all 1
(identity property).

For its compound causal parameter vertex V5 computes:

π(v5) = γ(v5 | v2 ∧ v3) · πV2
V5

(v2) · πV3
V5

(v3) + γ(v5 | ¬v2 ∧ v3) · πV2
V5

(¬v2) · πV3
V5

(v3)

+ γ(v5 | v2 ∧ ¬v3) · πV2
V5

(v2) · πV3
V5

(¬v3) + γ(v5 | ¬v2 ∧ ¬v3) · πV2
V5

(¬v2) · πV3
V5

(¬v3)

The causal messages sent by V2 include the 0-1 messages that it receives from its dummy
descendant to reflect the instantion of V2, so πV2

V5
(v2) = 1 and πV2

V5
(v2) = 0. The causal

messages sent by V3 reflect the probabilities of V3 given the observations ’above V5 in the
subgraph connected to V3’; that is Pr(V3 | v2). Following the computation rule (do this!),
we then find that πV3

V5
(v3) = γ(v3 | v2) and πV3

V5
(¬v3) = γ(¬v3 | v2) and conclude:

π(v5) = 0.3 · 1 · 0.5 + 0.7 · 0 · 0.5 + 0.2 · 1 · 0.5 + 0.7 · 0 · 0.5 = 0.25;

π(¬v5) = 0.75

We conclude by data fusion that

Prv2(v5) = α · 0.25 · 1 = 0.25;

Prv2(¬v5) = α · 0.75 · 1 = 0.75.

II We now compute Pr(V5 | ¬v2) using Pearl’s algorithm (data fusion):

Pr¬v2(v5) = α · π(v5) · λ(v5)

Pr¬v2(¬v5) = α · π(¬v5) · λ(¬v5)

Replacing in the above computations for case I each occurrence of v2 by ¬v2, we find that
the causal messages sent by V2 are πV2

V5
(v2) = 0 and πV2

V5
(v2) = 1. The causal messages sent

Solutions, Answers and Tips 139

by V3 are Pr(V3 | ¬v2), that is, πV3
V5

(v3) = γ(v3 | ¬v2) and πV3
V5

(¬v3) = γ(¬v3 | ¬v2). We
conclude that

π(v5) = 0.3 · 0 · 0.8 + 0.7 · 1 · 0.8 + 0.2 · 0 · 0.2 + 0.7 · 1 · 0.2 = 0.70;

π(¬v5) = 0.30

We conclude by data fusion that

Pr¬v2(v5) = α · 0.70 · 1 = 0.70;

Pr¬v2(¬v5) = α · 0.30 · 1 = 0.30.

Finally, we have all ingredients to compute our original probabilities of interest:

Pr(v5) = 0.25 · 0.8 + 0.70 · 0.2 = 0.34;

Pr(¬v5) = 0.75 · 0.8 + 0.30 · 0.2 = 0.66.

4.10

Note: the Suermondt & Cooper heuristic is illustrated in Section 4.2.3 in Example 4.2.21.
For another example of its application, see the Ch. 4 course slides.

a. {V2}.

b. See the elaborate answer to Exercise 4.9b, especially the tip and general approach.
You should find Pr(v3) = 0.3, Pr(¬v3) = 0.7 using the loop cutset {V2} from part a.

c. Note: the exercise does not ask you to actually compute the probabilities Prv5(V3);
it asks you to describe in detail the approach you would take, where you can use Pearl’s
basic belief propagation algorithm as a black-box.

The requested probabilities are computed using loop cutset conditioning:

Prv5(v3) = Prv2,v5(v3) · Prv5(v2) + Pr¬v2,v5(v3) · Prv5(¬v2)
Prv5(¬v3) = Prv2,v5(¬v3) · Prv5(v2) + Pr¬v2,v5(¬v3) · Prv5(¬v2)

The probabilities Prv2,v5(v3), Pr¬v2,v5(v3), Prv2,v5(¬v3) and Pr¬v2,v5(¬v3) are conditioned
on the loop cutset and can therefore be directly computed from the network using Pearl’s
algorithm. The loop cutset probabilities Prv5(v2) and Prv5(¬v2), however, are updated
recursively (see page 60) using Bayes’ rule:

Prv5(v2) = α · Prv2(v5) · Pr(v2)
Prv5(¬v2) = α · Pr¬v2(v5) · Pr(v2)

where α is a normalisation constant. The prior probabilities Pr(V2) are computed directly
from the network’s assessment functions (already done for part b.). To update the loop
cutset probabilities the necessary probabilities Prv2(v5) and Pr¬v2(v5) can be computed
using Pearl’s basic algorithm, since these are conditioned on the loop cutset.

4.11

Note: the Suermondt & Cooper heuristic is illustrated in Section 4.2.3 in Example 4.2.21.
For another example of its application, see the Ch. 4 course slides.

a. You should find {V1, V2} or {V2, V3}.

Solutions, Answers and Tips 140

b. Approach: two concepts are important to be able to answer this question:

� optimality of loop cutsets: think about how this is defined;

� the use of loop cutsets: think about why the number of values would matter in the
first place. When using Pearl’s algorithm enhanced with loop cutset conditioning
we have to apply Pearl’s basic algorithm for each loop cutset configuration. This
means not only loop cutset size, but also loop cutset cardinality plays a role.

c. Approach: in general the heuristic tries to select vertices that are possibly part of as
many loops as possible. In choosing candidates, or among candidates, think about where
the cardinality can be taken into account and how.

For example, if there is more than one candidate with the same degree, then choose the
one with the smallest number of values. Maybe it would be even better to choose a vertex
with a lower degree if the number of values is much smaller. In any case, for the sake of
optimality take into account the cardinality of the loop cutset instead of the size.

4.12

Note: the Suermondt & Cooper heuristic is illustrated in Section 4.2.3 in Example 4.2.21.
For another example of its application, see the Ch. 4 course slides.

a. Several loop cutsets can be found, depending on how ties in degree are broken. E.g.
possible loop cutsets found by the heuristic are {V2, V3, V7, V8} and {V3, V7, V10}.

A loop cutset that you won’t find with the heuristic is {V3, V10}. Think about why
this one is not found. Hint: V10 should then be a possible candidate in the first or second
round of candidates.

b. Approach:

� first assume that some C is a loop cutset of some graph G. Think about what kind
of properties a vertex in a loop cutset has: what kind of neighbours can it have on
a cyclic chain it breaks? What happens to this cyclic chain if the outgoing arcs of
this vertex, if any, are removed? Use your answers to build a concise argument for
concluding that graph G′ is singly connected.

� now you need to prove the opposite: if G′ is singly connected then C is a loop cutset
for G. Assume that G′ is singly connected. Think about what happens if you start
adding outgoing arcs to the vertices in C. Can this result in loops? If so, what do
these loops look like? What is the role of a vertex from C in such a loop? Use your
answers to build a concise argument for concluding that C must be a loop cutset
for graph G.

Practical use of this property: note that the Suermondt & Cooper heuristic quite efficiently
returns an empty loop cutset in case it is applied to a singly connected graph. As such
it can be used to verify if a graph is singly connected. The above property can then be
exploited to test if a given set is a loop cutset.

c. Approach: think about what it means for a loop cutset to be non-minimal. Also
consider how you could exploit the property you had to prove in part b. to solve this
issue.

Solutions, Answers and Tips 141

4.13

a. Approach: recall that independences are read from the digraph by means of d-
separation. You therefore have to show that given Vi the two graphs encode exactly the
same d-separation statements, that is: 〈X |Y ∪ {Vi} |Z〉dG if and only if 〈X | Y ∪ {Vi} |
Z〉dG′ , for all sets of variables X,Y ,Z ⊆ VG.
Tip: draw some example graphs to get an idea of what is happening!

(⇒) Consider X,Y ,Z ⊆ VG such that 〈X | Y ∪ {Vi} | Z〉dG. Then, by definition, each
chain between a vertex from X and a vertex from Z is blocked by a vertex from Y ∪{Vi}.
Let X′ ⊆ X and Z′ ⊆ Z be such that vertex Vi blocks the chains between each pair of
vertices from X′ and Y ′. Then Vi must have at least one outgoing arcs on each of those
chains. By removing all outgoing arcs from Vi, each chain in G between X′ and Z′ is
broken, so they stay d-separated in G′. Therefore 〈X | Y ∪ {Vi} | Z〉dG′ .

(⇐) Suppose 〈X | Y ∪ {Vi} | Z〉dG′ , then adding outgoing arcs to Vi cannot introduce
active chains because Vi will block all newly created chains, so 〈X |Y ∪ {Vi} |Z〉dG. This
concludes the proof. �

b. Approach: you have shown in part a. that G and G′ encode the same independences
given Vi. Therefore you should try to construct a small(!) example graph where some
d-separation statement holds in G and not in G′ or vice-versa, if you don’t condition on
Vi. Since G′ has less connections and therefore vertices are more easily d-separated, it is
probably easiest to construct an example such that 〈X | Y | Z〉dG′ but not 〈X | Y | Z〉dG.
The smallest possible Y is the emptyset, so try if you can use that.
Tip: Always make drawings of the graphs you consider!

Consider the following digraph G = (VG,AG): V1 → V2 → V3 and let G′ = (VG′ ,AG′)
with VG′ = VG and AG′ = AG − (V2, V3), i.e. V1 → V2 V3. In this example we find

¬〈{V1} | ∅ | {V3}〉dG, yet 〈{V1} | ∅ | {V3}〉dG′

c. Approach: think about how removing arcs can affect the complexity of probabilistic
inference. What property of graphs makes inference NP-hard, for example?

Possible answers include the following:

� parents of vertices disappear, so the number of computations per vertex will be
reduced

� the graph may become disconnected; as a result evidence may have to be propagated
to less vertices

4.14

a. Approach: this question does not ask you to illustrate the use of Pearl’s algorithm.
This means that you can just straightforwardly compute the probabilities you need from
the joint distribution defined by the network, using the standard rules of probability the-
ory. For these small example networks that are used for exercises and exams performing
straightforward computations is less elaborate.

You should find MPE(cE)= ¬v2 ∧ ¬v3 ∧ ¬v4 and MAP({V3, V4}, cE)= ¬v3 ∧ ¬v4.

Solutions, Answers and Tips 142

b. A) is the correct answer. For an explanation think about what it is that makes
probabilistic inference (which underlies these computations) hard. Hint:

arg max
cX

Pr(cX ∧ cE) = arg max
cY

∑
cY \X

Pr(cY \X ∧ cX ∧ cE)

The two problems are actually in different complexity classes: MPE is NP-complete
and MAP is NPPP-complete. (Note that the property suggesting that MAP is a sub-
configuration of MPE as described in answer C happens to true for this example, but it
does not hold in general! The question was phrased as a general question and not one
particular to the example.)

5.1

Approach: A dense graph, with many arcs, will have vertices with many direct ancestors
(parents). Think about which tasks, both in construction and use of a network, become
increasingly difficult when networks have vertices with large parent sets.

Possible underlying reasons include (need further explanation!):

� computational aspects

� the number of probability assessments required

� the reliability of assessments, especially when learned from data

5.2

Note: Options can be found in the Ch. 5 course slides on fine-tuning the digraph. Possible
approaches include (need explanation!):

� removing arc(s)

� reversing arc(s)

� adding vertices

� clustering several vertices into one

� if it is clearly a process in time: choose a dynamic network model

5.3

Note: Examples are discussed in the lectures and can be found in Chapter 5.1 and the
Ch. 5 course slides on modelling variables. The answers below are possible answers, not
necessarily the only ’correct’ ones. On an exam, these would require more explanation!

a. Combinations of domain values that can occur together should be combined into a
single value for the network variable.

b. Add an arc between the two vertices; part of their relation is deterministic, which
should be captured in the assessment function. The parent will have a value indicating its
child. Both variables will probably share some neighbours.

Solutions, Answers and Tips 143

c. Possible solutions include:

� splitting variables: this can substantially reduce the number of probabilities if each
of the variables requires a much smaller set of parents and especially children;

� reduce the number of values of a variable when the variable is involved in a large
number of relations;

� reduce the number of variables (make sure this doesn’t result in variables with a
large number of values or large neighbour sets);

� reduce the number of arcs (very weak relations may not be important enough to
include);

5.4

a. Approach: Possible observations that you can use to construct an example include
(but should be further detailed!):

� not all relations are causal (e.g. abstractions, classifications)

� causal relations, especially in time, can result in cycles

� what exactly is a causal relation?

b. Possible reasons include (but should be further explained!):

� different population with different properties;

� different definition of variables;

c. Approach: think about what the assumptions underlying a disjunctive interaction
are. Can you think of questions to ask a domain expert to (directly or indirectly) verify
that these assumptions (almost) hold? You should assume your domain expert is a layman
when it comes to BNs and probabilistic reasoning. Again: there is no single correct answer
to this question. Be creative and, most importantly, motivate your answers.

d. The available information suffices for specifying a complete probability assessment
function for the variable HeartAttack. Since the property of exception independence is
satisfied and sufficient probabilities have been assessed, the model of the leaky noisy or-
gate can be exploited. The complete assessment function is defined by

γH(h | s ∧ b ∧ c) = 1− 0.95 · 0.4
0.95 ·

0.2
0.95 ·

0.1
0.95 = 0.991

γH(h | ¬s ∧ b ∧ c) = 1− 0.95 · 0.2
0.95 ·

0.1
0.95 = 0.980

γH(h | s ∧ ¬b ∧ c) = 1− 0.95 · 0.4
0.95 ·

0.1
0.95 = 0.958

γH(h | s ∧ b ∧ ¬c) = 1− 0.95 · 0.4
0.95 ·

0.2
0.95 = 0.916

γH(h | ¬s ∧ ¬b ∧ c) = 0.9
γH(h | ¬s ∧ b ∧ ¬c) = 0.8
γH(h | s ∧ ¬b ∧ ¬c) = 0.6
γH(h | ¬s ∧ ¬b ∧ ¬c) = 0.05

and the complementary function values.

Solutions, Answers and Tips 144

5.5

Full assessment functions for all variables, except for variable V4 can be established. Note
that as a result of the incoherence in the information, different approaches to computing
the requested probabilities can result in different numbers! In this case, it seems easiest to
start from the distribution Pr(V2 ∧ V3) and the probabilities that can be computed from
it.

5.6

Note: possible strengths and weaknesses are listed below (but would need explanation!),
but by no means are intended to be exhaustive. Try to imagine yourself as knowledge
engineer or as domain expert and use what you have learned in this course about proba-
bility elicitation to come up with your own answers. Be creative and, most importantly,
motivate your answers.

Possible strengths include:

� domain expert can use own familiar words, relevant to domain

� rank order is natural, because expert’s own

Possible weaknesses include:

� interpretation of words is known to be strongly context-dependent

� words may not cover the entire probability range

5.7

a. Approach: See the Ch. 5 course slides for some example computations of MDL quality.

The result of your computation, using 10 log, should be approximately −0.546. If you find
a difference of around 0.12 you probably made the following common mistake: dividing
by N(V2) rather than N(V1). Given your result: will the arc be added or not?

b. Approach: Note that the two measures differ in the penalty term alone. Think about
situations in which the penalty term is the dominant term in the expression. Think about
the conditions under which the two penalty terms are equivalent or not.

Note that N plays a role and that for larger N MDL will penalizes more than Akaike
(exact value of N depends on which base of the logarithm you use). What will happen as
a result?

5.8

a. There are various alternatives. Some actually fill in the missing values: EM (Expecta-
tion Maximisation); using a default value like ’99’; using different defaults to distinguish
between ’unknown’ and ’irrelevant’. Some just use the available data: either only entire
cases without missing values, or only configurations required for the entropy computations.

b. Approach: think about what happens to the ingredients of the MDL score for the
above-mentioned alternatives (number of cases considered, occurrences of various val-
ues. . .).

Solutions, Answers and Tips 145

c. Yes it makes sense. If you think about the reason for incorporating the penalty term
(prevent adding too many parents to a vertex) and the reasons for which we prefer sparse
graphs, you can motivate this. To adapt the term: think about what it’s role is and why
the number of values for vertices matter.

5.9

Approach: Start with assuming that only two of the m causes are present: vi and vj .
When will the effect FAIL to occur in this situation?: if vi and Vj are both inhibited, or
if neither are inhibited. This happens with probability. . . ? If you have established this:
generalize to any number of present causes.

5.10

a. the assumption underlying the use of these methods is that assessment that are indi-
rectly derived from a decision are more reliable than directly elicited probability estimates.

b. they are highly time consuming

c. with lotteries you always win a prize; with bets you either win or lose. The latter
results e.g. in different behaviour, depending on a person’s attitude towards risk.

d. it was designed to elicit large numbers of rough estimates in little time, aided by
verbal cues. This enables to quickly complete the network specification. From a com-
plete specification we can compute probabilities and hence perform sensitivity analyses to
investigate if some assessments need further refinement.

5.11

a. Approach: the CPT for Y should represent a logical OR. The variables Xi are binary-
valued, so any configuration with cX1 ∨ cX2 ∨ cX3 ≡ T should give a Y = true with
probability 1.

b. Approach: since Y should model a logical disjunction of the Xi, it should still do so
after parent divorcing. To accomplish this, both vertices H and Y should represent logical
disjunctions of their parents in their assessment functions. This is accomplished in the
same way as in part a.

Tip: Verify that when you marginalize out H you end up with the probabilities from part
a. Parent divorcing should not change the distribution defined over Y and Xi.

c. Parent divorcing is intended to reduce the number of parents (direct ancestors) of a
vertex, thereby decreasing the size of the assessment function. This has benefits both from
the perspective of construction as from a computational perspective (which ones?). Note:
this becomes more effective if parent sets are larger. A possible drawback is in including
additional variables that may not have a clear interpretation in the domain.

6.1

Approach: For a.–d.: use the method with auxiliary parents and d-separation; this is easier
than directly using the definition of sensitivity set!

Solutions, Answers and Tips 146

a. {E1, H1}

b. {H1}

c. {E3, H1, H2}

d. {E2, E3, E4, H1, H2, H3}

e. There are 40 model parameters, 20 of which are free, so 200 network propagations are
required if we assume 10-step variation per function (i.e. each function is evaluated in 10
different points).

f. The sensitivity set for H2 now consists of {E1, E2, H1, H2}. For model parameters
associated with H2, the functions are linear; for the other variables the functions are
hyperbolic and require no more than 3 network propagations each (verify that Pr(cE2),
represented in the denominator of the sensitivity function, indeeds varies with the pa-
rameter, which means we need one less constant). Then a total of 25 propagations are
required.

6.2

a. B blocks the influence of varying its parameters to variables CT and SH and therefore
variation has no effect on the output probabilities Pr(ct | B), Pr(sh | B), and their
complements.

b. Note: The question basically is: for which set of observations, in addition to C, will
variable ISC no longer be contained in the sensitivity set of CT . This is the case, for
example, when B is observed in addition to C.

c. Linear: model parameters of ISC and C; non-linear: model parameters of MC, B
and SH. Variation of model parameters of CT has no effect.

d. Approach: In general, you need to follow the approach from Example 6.1.2 in Chap-
ter 6.1.2. For this specific question, however, you can save yourself a lot of work by
observing that Pr(b) = Pr(b∧mc) + Pr(b∧¬mc) and then using the chain rule. (See also
the example sensitivity function in the Ch. 6 course slides)

Pr(b) = Pr(b | mc) · Pr(mc) + Pr(b | ¬mc) · Pr(¬mc)
= γ(mc) · p(b | mc) + γ(b | ¬mc) · γ(¬mc)
= 0.2 · p(b | mc) + 0.04

e. Approach: In general, you need to follow the approach from Example 6.1.2 in Chap-
ter 6.1.2. That is, start with Pr(c | b∧mc) = Pr(c∧b∧mc)

Pr(b∧mc) , then use marginalisation and the
chain rule. As in d. consider carefully if you really need all the variables from the entire

Solutions, Answers and Tips 147

joint distribution.

Pr(c | b ∧mc) = Pr(c | b ∧mc ∧ isc) · Pr(isc | b ∧mc) +

+ Pr(c | b ∧mc ∧ ¬isc) · Pr(¬isc | b ∧mc)
= Pr(c | b ∧ isc) · Pr(isc | mc) + Pr(c | b ∧ ¬isc) · Pr(¬isc | mc)
= γ(c | b ∧ isc) · p(isc | mc) + γ(c | b ∧ ¬isc) · (1− p(isc | mc))
= (γ(c | b ∧ isc)− γ(c | b ∧ ¬isc)) · p(isc | mc) + γ(c | b ∧ ¬isc)
= (0.80− 0.80) · p(isc | mc) + 0.80 = 0.80

6.3

The correct choice is II; give a counter-example to show it’s not order-preserving and prove
that it is impossibility-preserving.

6.4

Approach: if you don’t know where to start, first write Pr(e) in terms of assessment
functions for small n, e.g. n = 2.

6.5

Note: below the variable Heart-disease will be represented by vertex D, where d is short-
hand for Heart-disease = yes and ¬d for Heart-disease = no. Likewise the variable Test
is represented by vertex T with its configurations denoted t and ¬t, respectively.

a. Draw vertex D as direct ancestor of vertex T . Then γD(d) = 1
1000 , γT (t | d) = 1 and

γT (¬t | ¬d) = 0.95. The complements follow.

b. First we write out the requested probability in terms of values of the assessment
functions, replacing Pr(d) by x:

Pr(d | t) =
Pr(t | d) · Pr(d)

Pr(t | d) · Pr(d) + Pr(t | ¬d) · Pr(¬d)

=
1 · x

1 · x+ (1− 0.95) · (1− x)
=

x

0.95 · x+ 0.05

c. To determine the sensitivity value, first compute the first derivative of the sensitivity
function:

d

dx
x · (0.95 · x+ 0.05)−1 =

0.05− 0

(0.95 · x+ 0.05)2

The absolute value in x0 = 0.001 equals 19.26, which is quite large. We could therefore
say that the output is sensitive to variations in this parameter.

Verify that for x0 = 0.001 D = no is the most likely outcome given a positive test result.
D = yes is most likely when Pr(d | t) > 0.5. Determine for which values of x this is the
case to obtain the admissible deviation.

6.6

a. Approach: derive analytic expressions for a and b, using the approach from Exercise
6.2d,e, and argue why they can be considered constants.

Solutions, Answers and Tips 148

b. Possible observations include

� the iso-probability lines are equi-distant which means that there are no synergistic
or interaction effects

� the lines are horizontal which means that varying x does nothing; only variation in
y results in changes in Pr(v3)

c. possbile benefit: 2-way analyses can provide insights into synergistic effects that you
cannot get from 1-way analyses
possible drawbacks: computationally more expensive and more difficult to interpret the
results of the analyses.

6.7

Hint: Let VG be the set of vertices in digraph G, let V0 ∈ VG be the output variable of
interest and let E ⊆ VG be the set of instantiated vertices. Let G∗ be the digraph that
results by adding an auxiliary parent Xi to every Vi ∈ VG then argue:

each vertex Vi for which 〈{Xi} | E | {V0}〉dG∗ obeys one of the following prop-
erties:

a. Vi 6∈ ρ∗G(V0) and σ∗G(Vi) ∩E = ∅
b. Vi ∈ ρ∗G(V0) and 〈{Vi} ∪ ρG(Vi) | E | {V0}〉dG
c. Vi 6∈ ρ∗G(V0) and 〈{Vi} ∪ ρG(Vi) | E | {V0}〉dG and σ∗G(Vi) ∩E 6= ∅

6.8

a. 0.5;
b. 1− 1/6;
c. Brier score is 0.18 if it rains and 0.98 if it doesn’t so on average you’ll find (in the long
run) a score of 0.42;
d. scores are 0 and 2 for a single (correct vs incorrect) prediction. The average over n
scores of which m are correct is 2− 2 · mn ; we expect Piet to get an average score of 0.6.

Bibliography

[Andreassen et al., 1987] S. Andreassen, M. Woldbye, B. Falck, S.K. Andersen. MUNIN -
A causal probabilistic network for interpretation of electromyographic findings. Pro-
ceedings of the Tenth International Joint Conference on Artificial Intelligence, 1987,
pp. 366 – 372.

[Andreassen et al., 1991] S. Andreassen, R. Hovorka, J. Benn, K.G. Olesen, E.R. Carson.
A model-based approach to insulin adjustment. In: M. Stefanelli, A. Hasman, M.
Fieschi, J. Talmon. Proceedings of the Third Conference on Artificial Intelligence in
Medicine. Lecture Notes in Medical Informatics 44, Springer Verlag, Berlin, 1991, pp.
239 – 248.

[Baioletti et al., 2011] M. Baioletti, G. Busanello, B. Vantaggi. Acyclic directed graphs
representing independence models. International Journal of Approximate Reasoning,
52(1), 2011, pp. 2–18.

[Bellazzi et al., 1991] R. Bellazzi, C. Berzuini, S. Quaglini, D.J. Spiegelhalter, M. Leaning.
Cytotoxic chemotherapy monitoring using stochastic simulation on graphical models.
In: M. Stefanelli, A. Hasman, M. Fieschi, J. Talmon. Proceedings of the Third Con-
ference on Artificial Intelligence in Medicine. Lecture Notes in Medical Informatics
44, Springer Verlag, Berlin, 1991, pp. 227 – 238.

[Berzan, 2012] C Berzan. An Exploration of Structure Learning in Bayesian Networks.
Honors Thesis, Department of Computer Science, Tufts University, 2012.

[Ben-Bassat, 1978] M. Ben-Bassat. Myopic policies in sequential classification. IEEE
Transactions on Computers, vol. C-27, 1978, pp. 170 – 174.

[Blanco et al., 2005] R. Blanco, I. Inza, M. Merino, J. Quiroga, P. Larranñaga. Feature se-
lection in Bayesian classifiers for the prognosis of survival of cirrhotic patients treated
with TIPS. Journal of Biomedical Informatics, vol. 38, 2005, pp. 376 – 388.

[Bolt & Renooij, 2014] J.H. Bolt, S. Renooij. Local sensitivity of Bayesian networks to
multiple simultaneous parameter shifts. Proceedings of the Seventh European Work-
shop on Probabilistic Graphical Models. Lecture Notes in Artificial Intelligence, vol.
8754, Springer Verlag, 2014, pp. 65 – 80.

[Bolt & Van der Gaag, 2019] J.H. Bolt, L.C. van der Gaag. On minimum elementary-
triplet bases for independence relations. In ISIPTA 2019: Proceedings of Machine
Learning Research, vol. 103, 2019, pp. 32 – 37.

[Boneh et al., 2006] T. Boneh, A. Nicholson, L. Sonenberg. Matilda: a visual tool for
modelling with Bayesian networks. International Journal of Intelligent Systems, vol.
21, 2006, pp. 1127 – 1150.

149

Bibliography 150

[Boose & Gaines, 1988] J. Boose, B. Gaines. Knowledge Acquisition Tools for Expert Sys-
tems, Academic Press, London, 1988.

[Bouckaert, 1995] R.R. Bouckaert. Bayesian Belief Networks: from Construction to Infer-
ence, Ph.D. thesis, Utrecht University, 1995.

[Bruza & Van der Gaag, 1994] P.D. Bruza, L.C. van der Gaag. Index expression belief
networks for information disclosure. International Journal of Expert Systems: Re-
search and Applications, vol. 7, 1994, pp. 107 – 138.

[Buchanan & Shortliffe, 1984] B.G. Buchanan, E.H. Shortliffe. Rule-based Expert Systems.
The MYCIN Experiments of the Stanford Heuristic Programming Project. Addison-
Wesley, Reading, Massachusetts, 1984.

[Cheeseman, 1988] P. Cheeseman. An inquiry into computer understanding. Computa-
tional Intelligence, vol. 4, 1988, pp. 58 – 66.

[Chen & Pollino, 2012] S. Chen, C. Pollino. Good practice in Bayesian network modelling.
Environmental Modelling and Software, vol. 37, 2012, pp. 134 – 145.

[Comtet, 1974] L. Comtet. Advanced Combinatorics: The Art of Finite and Infinite Ex-
pansions, Netherlands: Reidel, pp. 176-177, 1974.

[Cooper, 1990] G.F. Cooper. The computational complexity of probabilistic inference us-
ing Bayesian belief networks. Artificial Intelligence, vol. 42, 1990, pp. 393 – 405.

[Coupé & Van der Gaag, 1998] V.M.H. Coupé and L.C. van der Gaag. Practicable sen-
sitivity analysis of Bayesian belief networks. Proceedings of the Joint Session of the
6th Prague Symposium of Asymptotic Statistics and the 13th Prague Conference on
Information Theory, Statistical Decision Functions and Random Processes, Union of
Czech Mathematicians and Physicists, 1998, pp. 81 – 86.

[Coupé & Van der Gaag, 2002] V.M.H. Coupé and L.C. van der Gaag. Properties of sen-
sitivity analysis of Bayesian belief networks. Annals of Mathematics and Artificial
Intelligence, vol. 36, 2002, pp. 323 – 356.

[Cousins et al., 1993] S.B. Cousins, W. Chen, M.E. Frisse. A tutorial to stochastic simu-
lation algorithms for inference in belief networks. Artificial Intelligence in Medicine,
vol. 5, 1993, pp. 315 – 340.

[Cox, 1979] R.T. Cox. Of inference and inquiry — an essay in inductive logic. The Maxi-
mum Entropy Formalism, MIT Press, Cambridge, Massachusetts, 1970.

[Dagum & Luby, 1993] P. Dagum, M. Luby. Approximating probabilistic inference in
Bayesian belief networks is NP-hard. Artificial Intelligence, vol. 60, 1993, pp. 141
– 153.

[Dal et al., 2018] G.H. Dal, A.W. Laarman, P.J.F. Lucas. Parallel probabilistic inference
by weighted model counting. In Proceedings of Machine Learning Research, vol. 72,
2018, pp. 97 – 108.

[Darwiche, 2000] A. Darwiche. A differential approach to inference in Bayesian networks.
Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence, Mor-
gan Kaufmann, San Francisco, 2000, pp. 123 – 132.

[Dawid, 1985] A.P. Dawid. Calibration-based empirical probability. Annals of Statistics,
vol. 13, 1985, pp. 1251 – 1274.

Bibliography 151

[De Dombal et al., 1972] F.T. de Dombal, D.J. Leaper, J.R. Staniland, A.P. McCann,
J.C. Horrocks. Computer-aided diagnosis of acute abdominal pain. British Medical
Journal, vol. 2, 1972, pp. 9 – 13.

[De Dombal et al., 1974] F.T. de Dombal, D.J. Leaper, J.C. Horrocks, J.R. Staniland,
A.P. McCann. Human and computer-aided diagnosis of abdominal pain: further re-
port with emphasis on the performance of clinicians. British Medical Journal, vol. 4,
1974, pp. 376 – 380.

[DeGroot & Fienberg, 1983] M.H. DeGroot and S.E. Fienberg. The comparison and eval-
uation of forecasters. The Statistician, vol. 32, 1983, pp. 12 – 22.

[Dempster et al., 1977] A.P. Dempster, N.M. Laird, D.B. Rubin. Maximum Likelihood
from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society,
Series B 39(1): 1 – 38, 1977.

[Druzdzel, 1996] M.J. Druzdzel. Qualitative verbal explanations in Bayesian belief net-
works. Artificial Intelligence and Simulation of Behaviour Quarterly, 94:43–54, 1996.

[Druzdzel & Van der Gaag, 1995] M.J. Druzdzel, L.C. van der Gaag. Elicitation of proba-
bilities for belief networks: combining qualitative and quantitative information. Pro-
ceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, Morgan
Kaufmann, 1995, pp. 141 – 148.

[Druzdzel & Van der Gaag, 2000] M.J. Druzdzel, L.C. van der Gaag. Building probabilis-
tic networks: ‘Where do the numbers come from?’ Guest editors’ introduction. IEEE
Transactions on Knowledge and Data Engineering, 12(4):481-486, 2000.

[Finetti, 1970] B. de Finetti. Theory of Probability, Wiley, New York, 1970.

[Fletcher et al., 1996] R.H. Fletcher, S.W. Fletcher, and E.H. Wagner. Clinical Epidemi-
ology. The Essentials, 3rd ed, Williams & Wilkins, Baltimore, 1996.

[Friedman et al., 1997] N. Friedman, D. Geiger, M. Goldszmidt, G. Provan, P. Langley,
P. Smyth. Bayesian Network Classifiers, Machine Learning, 1997, pp. 131–163.

[Gasse & Aussem, 2016] M. Gasse, A. Aussem. Identifying the irreducible disjoint factors
of a multivariate probability distribution. In: Proceedings of the International Confer-
ence on Probabilistic Graphical Models, JMLR: Workshop and Conference Proceed-
ings, vol. 52, 2016, pp. 183–194.

[Geiger & Pearl, 1988] D. Geiger, J. Pearl. On the logic of causal models, Proceedings of
the Fourth Workshop on Uncertainty in Artificial Intelligence, 1988, pp. 136 – 147.

[Geiger et al., 1990] D.E. Geiger, T. Verma, J. Pearl. d-separation: from theorems to
algorithms. In: M. Henrion, R.D. Shachter, L.N. Kanal, J.F. Lemmer. Uncertainty in
Artificial Intelligence 5, Elsevier Science, Amsterdam, 1990, pp. 139 – 148.

[Glasziou & Hilden, 1989] P. Glasziou, J. Hilden. Test selection measures. Medical Deci-
sion Making, vol. 9, 1989, pp. 133 – 141.

[Gorry & Barnett, 1968] G.A. Gorry, G.O. Barnett. Experience with a model of sequential
diagnosis. Computers and Biomedical Research, vol. 1, 1968, pp. 490 – 507.

[Guida & Tasso, 1989] G. Guida, C. Tasso. Topics in Expert System Design, North-
Holland, Amsterdam, 1989.

Bibliography 152

[Heckerman et al., 1992] D.E. Heckerman, E.J. Horvitz, B.N. Nathwani. Toward norma-
tive expert systems. Part 1: The Pathfinder project. Methods of Information in
Medicine, vol. 31, 1992, pp. 90 – 105.

[Heckerman et al., 1993] D.E. Heckerman, E.J. Horvitz, B. Middleton. An approximate
nonmyopic computation for value of information. IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 15, 1993, pp. 292 – 298.

[Helsper & Van der Gaag, 2002] E.M. Helsper, L.C. van der Gaag. Building Bayesian net-
works through ontologies. In: F. van Harmelen (ed.). Proceedings of the 15th European
Conference on Artificial Intelligence. IOS Press, Amsterdam, 2002, pp. 680 – 684.

[Henrion, 1989] M. Henrion. Some practical issues in constructing belief networks. In:
L.N. Kanal, T.S. Levitt, J.F. Lemmer (eds). Uncertainty in Artificial Intelligence 3,
Elsevier Science, North-Holland, 1989.

[Ilkou & Koutraki, 2020] E. Ilkou, M. Koutraki. Symbolic vs sub-symbolic AI methods:
friends or enemies? In: Proceedings of the CIKM Workshop, CEUR Workshop Pro-
ceedings, vol. 2699, 2020.

[Jackson, 1990] P. Jackson. Introduction to Expert Systems. Addison-Wesley, Wokingham,
1990.

[Jensen, 1995] A.L. Jensen. Quantification experience of a DSS for mildew management
in winter wheat. In: M.J. Druzdzel, L.C. van der Gaag, M. Henrion, F.V. Jensen
(eds). IJCAI-95 Workshop on Building Probabilistic Networks: Where Do the Num-
bers Come From ?, 1995, pp. 23 – 31.

[Jensen, 1996] F.V. Jensen. An Introduction to Bayesian Networks. UCL Press, London,
1996.

[Jensen & Nielsen, 2007] F.V. Jensen & T.D. Nielsen. Bayesian Networks and Decision
Graphs, 2nd edition. Springer Verlag, 2007.

[Jensen et al., 1990] F.V. Jensen, J. Nielsen, H.I. Christensen. Use of Causal Probabilis-
tic Networks as High Level Models in Computer Vision. Technical Report R-90-39,
University of Aalborg, Denmark, 1990.

[Ji et al., 2015] Ji Z., Xia Q., Meng G. A review of parameter learning methods in Bayesian
network. In: Huang DS., Han K. (eds) Advanced Intelligent Computing Theories and
Applications. ICIC 2015. Lecture Notes in Computer Science, vol 9227. Springer,
Cham, 2015.

[Jin et al.] X. Jin, A. Xu, R. Bie, X. Shen, M. Yin. Spam email filtering with Bayesian
belief network: using relevant words. IEEE International Conference on Granular
Computing, GrC 2006, 2006, pp. 238–243.

[Kadane & Schum, 1996] J.B. Kadane, D.A. Schum. A Probabilistic Analysis of the Sacco
and Vanzetti Evidence. John Wiley & Sons Inc., 1996.

[Karp et al., 1989] R. Karp, M. Luby, N. Madras. Monte-Carlo approximation algorithms
for enumeration problems. Journal of Algorithms, vol. 10, 1989, pp. 429 – 448.

[Kjærulff & Van der Gaag, 2000] U. Kjærulff and L.C. van der Gaag. Making sensitivity
analysis computationally efficient. Proceedings of the Sixteenth Conference on Uncer-
tainty in Artificial Intelligence, Morgan Kaufmann, San Francisco, 2000, pp. 317 –
325.

Bibliography 153

[Koiter, 2006] J. R. Koiter. Visualizing inference in Bayesian networks. Master’s thesis,
Delft University of Technology, 2006.

[Koopman & Renooij, 2021] T. Koopmand and S. Renooij. Persuasive contrastive expla-
nations for Bayesian networks. Proceedings of the 16th European Conference on Sym-
bolic and Quantitative Approaches to Reasoning with Uncertainty, Springer, 2021.

[Korb & Nicholson, 2010] K.B. Korb and A.E. Nicholson. Bayesian Artificial Intelligence,
CRC Computer Science& Data Analysis (2nd ed.). Chapman & Hall (CRC Press).

[Korver & Lucas, 1993] M. Korver, P.J.F. Lucas. Converting a rule-based expert system
into a belief network. Medical Informatics, vol. 18, 1993, pp. 219 – 241.

[Krak & Van der Gaag, 2014] T.E. Krak, L.C. van der Gaag. Knowledge-based bias cor-
rection: A case study in veterinary decision support. In Proceedings of the European
Conference on AI (ECAI 2014), IOS Press, 2014.

[Lacave & Dı́ez, 2002] C. Lacave, F.J. Dı́ez. A review of explanation methods for Bayesian
networks. Knowledge Engineering Review, 17(2):107–127, 2002.

[Lacave et al., 2007] C. Lacave, M. Luque, F.J. Dı́ez. Explanation of Bayesian networks
and influence diagrams in Elvira. Systems, Man, and Cybernetics, Part B, 37(4):952–
965, 2007.

[Laskey & Mahoney, 2000] K.B. Laskey, S. Mahoney. Network engineering for agile belief
network models. IEEE Transactions on Knowledge and Data Engineering, vol. 12(4),
2000, pp. 487 – 498.

[Lauritzen & Spiegelhalter, 1988] S.L. Lauritzen, D.J. Spiegelhalter. Local computations
with probabilities on graphical structures and their application to expert systems.
Journal of the Royal Statistical Society, Series B, vol. 50, 1988, pp. 157 – 224.

[Lucas, 2005] P.J.F. Lucas. Bayesian network modelling through qualitative patterns. Ar-
tificial Intelligence, vol 163, 2005, pp. 233 – 263.

[Lucas & Van der Gaag, 1991] P.J.F. Lucas, L.C. van der Gaag. Principles of Expert Sys-
tems. Addison-Wesley, Wokingham, 1991.

[Madigan et al., 1997] D. Madigan, K. Mosurski, and R. G. Almond. Graphical expla-
nation in belief networks. In Journal of Computational and Graphical Statistics,
6(2):160?181, 1997.

[Meekes et al., 2015] M. Meekes, S. Renooij, L.C. van der Gaag. Relevance of Evidence in
Bayesian Networks In: S. Destercke, T. Denoeux (editors), Proceedings of the Thir-
teenth European Conference on Symbolic and Quantitative Approaches to Reasoning
with Uncertainty (ECSQARU), Lecture Notes in Artificial Intelligence 9161, Springer,
2015, pp. 366 - 375.

[Morgan & Henrion, 1990] M.G. Morgan and M. Henrion. Uncertainty, a Guide to Dealing
with Uncertainty in Quantitative Risk and Policy Analysis. Cambridge University
Press, Cambridge, 1990.

[Murphy, 2022] K.P. Murphy. Probabilistic Machine Learning: An introduction. MIT
Press, 2022.

[Neapolitan, 2003] R.E. Neapolitan. Learning Bayesian Networks, Prentice Hall, 2003.

Bibliography 154

[Panofsky & Brier, 1968] H.A. Panofsky and G.W. Brier. Some Applications of Statistics
to Meteorology. The Pennsylvania State University, University Park, Pennsylvania,
1968.

[Pauker & Kassirer, 1980] S.G. Pauker and J.P. Kassirer. The threshold approach to clin-
ical decision making. New England Journal of Medicine, vol. 302, 1980, pp. 1109 –
1117.

[Pearl, 1988] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Networks of Plausi-
ble Inference. Morgan Kaufmann, Palo Alto, 1988.

[Pearl, 2009] J. Pearl Causality: Models, Reasoning and Inference. Cambridge University
Press, 2nd edition, 2009.

[Pearl et al., 1990] J. Pearl, D. Geiger, and T. Verma. The logic of influence diagrams,
in: R.M. Oliver and J.Q. Smith (eds). Influence Diagrams, Belief Nets and Decision
Analysis, John Wiley & Sons, 1990, pp. 67 – 86.

[Pearl & Paz, 1985] J. Pearl, A. Paz. GRAPHOIDS: a graph-based logic for reasoning
about relevance relations. In: B. Du Boulay, D. Hogg, L. Steels (eds). Advances in
Artificial Intelligence 2, 1985, North-Holland.

[Pearl & Verma, 1987] J. Pearl, T.S. Verma. The logic of representing dependencies by
directed acyclic graphs, Proceedings of the Sixth National Conference on Artificial
Intelligence, 1987, pp. 374 – 379.

[Peek & Ottenkamp, 1997] N.B. Peek, J. Ottenkamp. Developing a decision-theoretic net-
work for a congenital heart disease, in: E. Keravnou, C. Garbay, R. Baud J. Wyatt
(eds). Proceedings of the 6th Conference on Artificial Intelligence in Medicine Europe.
Springer-Verlag, Berlin, 1997, pp. 157 – 168.

[Pitchforth & Mengersen, 2013] J. Pitchforth, K. Mengersen. A proposed validation
framework for expert elicited Bayesian networks. Expert Systems with Applications,
vol. 40, 2013, pp. 162 – 167.

[Pourret, Naim & Marcot, 2008] O. Pourret, P. Naim, B. Marcot (editors). Bayesian Net-
works. A Practical Guide to Applications.Wiley, England, 2008.

[Renooij, 2001] S. Renooij. Qualitative Approaches to Quantifying Probabilistic Networks.
Ph.D. Thesis, Institute of Information and Computing Sciences, Utrecht University,
The Netherlands, 2001.

[Renooij, 2001b] S. Renooij. Probability elicitation for belief networks: Issues to consider.
Knowledge Engineering Review, vol. 16, 2001, pp. 255–269.

[Renooij, 2014] S. Renooij. Co-variation for sensitivity analysis in Bayesian networks:
properties, consequences and alternatives. International Journal of Approximate Rea-
soning, vol. 55(4), 2014, pp. 1022–1042.

[Renooij & Van der Gaag, 2002] S. Renooij, L.C. van der Gaag. From qualitative to quan-
titative probabilistic networks. In: A. Darwiche, N. Friedman (eds), Proceedings of
the Eighteenth Conference on Uncertainty in Artificial Intelligence (UAI), Morgan
Kaufmann Publishers, San Francisco, 2002, pp. 422 – 429.

[Salmerón et al., 2018] A. Salmeróm, R. Rumı́, H. Langseth, Th.D. Nielsen, A.L. Madsen.
A review of inference algorithms for hybrid Bayesian networks. Journal of Artificial
Intelligence Research, vol. 62, 2018, pp. 799 – 828.

Bibliography 155

[Sent, 2005] D. Sent. Test-selection Strategies for Probabilistic Networks. Ph.D. Thesis,
Department of Information and Computing Sciences, Utrecht University, The Nether-
lands, 2005.

[Shachter, 1998] R.D. Shachter. Bayes-Ball: The rational pastime (for determining irrele-
vance and requisite information in belief networks and influence diagrams). In: G. F.
Cooper, S. Moral (eds). Uncertainty in Artificial Intelligence. Proceedings of the 14th
Conference, Morgan Kaufmann, San Francisco 1998, pp. 480– 487.

[Shafer, 1976] G. Shafer. A Mathematical Theory of Evidence, Princeton University Press,
Princeton, 1976.

[Shafer & Pearl, 1990] G. Shafer, J. Pearl. Readings in Uncertain Reasoning. Morgan
Kaufmann, Palo Alto, 1990.

[Shortliffe & Buchanan, 1984] E.H. Shortliffe, B.G. Buchanan. A model of inexact rea-
soning in medicine. In: B.G. Buchanan, E.H. Shortliffe. Rule-based Expert Systems.
The MYCIN Experiments of the Stanford Heuristic Programming Project. Addison-
Wesley, Reading, Massachusetts, 1984, pp. 233 – 262.

[Shwe et al., 1991] M.A. Shwe, B. Middleton, D.E. Heckerman, M. Henrion, E.J. Horvitz,
H.P. Lehmann, G.F. Cooper. Probabilistic diagnosis using a reformulation of the
INTERNIST-1/QMR knowledge base I: the probabilistic model and inference algo-
rithms. Methods of Information in Medicine, vol. 30, 1991, pp. 241 – 255.

[Sommerville, 1992] I. Sommerville. Software Engineering, Addison-Welsy, Wokingham,
1992.

[Stahlschmidt et al., 2013] S. Stahlschmidt, H. Tausendteufel, W.K. Härdle. Bayesian net-
works for sex-related homicides: structure learning and prediction. Journal of Applied
Statistics 40(6), 2013, pp. 1155–1171.

[Studený, 1989] M. Studený. Multiinformation and the problem of characterization of
conditional-independence relations. Problems Control Information Theory, vol. 18,
1989, pp. 3 – 16.

[Studený, 1992] M. Studený. Conditional independence relations have no finite complete
characterization, in: S. Kubik, J.A. Visek (eds). Information Theory, Statistical De-
cision Functions and Random Processes, Kluwer, Dordrecht, 1992, pp. 377 – 396.

[Studený, 1998] M. Studený. Bayesian networks from the point of view of chain graphs,
in: G. F. Cooper, S. Moral (eds). Uncertainty in Artificial Intelligence. Proceedings
of the 14th Conference, Morgan Kaufmann, San Francisco 1998, pp. 496– 503.

[Suermondt & Cooper, 1990] H.J. Suermondt, G.F. Cooper. Probabilistic inference in
multiply connected belief networks using loop cutsets. International Journal of Ap-
proximate Reasoning, vol. 4, 1990, pp. 283 – 306.

[Suermondt & Cooper, 1991a] H.J. Suermondt, G.F. Cooper. Initialization for the method
of conditioning in Bayesian belief networks. Artificial Intelligence, vol. 50, 1991, pp.
83 – 94.

[Suermondt & Cooper, 1991b] H.J. Suermondt, G.F. Cooper. A combination of exact al-
gorithms for inference on Bayesian belief networks. International Journal of Approx-
imate Reasoning, vol. 5, 1991, pp. 521 – 542.

Bibliography 156

[Suermondt, 1992] H.J. Suermondt. Explanation in Bayesian Belief Networks. PhD thesis,
Department of Computer Science and Medicine, Stanford University, Stanford, 1992.

[Taroni et al., 2006] F. Taroni, C. Aitken, P. Garbolino, A. Biedermann. Bayesian Net-
works and Probabilistic Inference in Forensic Science, Wiley & Sons, Chichester,
2006.

[Timmer, 2017] S.T. Timmer. Designing and Understanding Forensic Bayesian Networks
using Argumentation. PhD thesis, Department of Information and Computing Sci-
ences, Utrecht University, The Netherlands, 2017.

[Tversky et al., 1982] D. Kahneman, P. Slovic, and A. Tversky. Judgment under Uncer-
tainty: Heuristics and Biases, Cambridge University Press, Cambridge, 1982.

[Van der Gaag, 1994] L.C. van der Gaag. A pragmatic view of the certainty factor model.
The International Journal of Expert Systems: Research and Applications, vol. 7, 1994,
pp. 289 – 300.

[Van der Gaag et al., 2018] L.C. van der Gaag, M. Baioletti, J.H. Bolt. A lattice represen-
tation of independence relations. In: PGM 2018: Proceedings of Machine Learning
Research, vol. 72, 2018, pp. 487 – 498.

[Van der Gaag & Helsper, 2002] L.C. van der Gaag, E.M. Helsper. Experiences with mod-
elling issues in building probabilistic networks. In: A. Go’mez-Pe’rez and V.R. Ben-
jamins (eds.). Knowledge Engineering and Knowledge Management: Ontologies and
the Semantic Web. Proceedings of EKAW 2002. LNAI vol. 2473, Springer-Verlag,
2002, pp. 21 – 26.

[Van der Gaag & Helsper, 2004] L.C. van der Gaag, E.M. Helsper. Defining classes of in-
fluences for the acquisition of probability constraints for Bayesian networks. In: R.
Lo’pez de Ma’ntaras and L. Saitta (eds.). Proceedings of the 16th European Confer-
ence on Artificial Intelligence (ECAI 2004). IOS Press, Amsterdam, 2004, pp. 1101
- 1102.

[Van der Gaag & Meyer, 1996] L.C. van der Gaag, J.-J.Ch. Meyer. Characterising normal
forms for informational independence. Proceedings of IPMU’96: Information Process-
ing and Management of Uncertainty in Knowledge-Based Systems, 1996, pp. 973 –
978.

[Van der Gaag & Meyer, 1998] L.C. van der Gaag, J.-J.Ch. Meyer. Informational inde-
pendence: models and normal forms. International Journal of Intelligent Systems,
13, 1998, pp. 83 – 109.

[Van der Gaag & Renooij, 2001] L.C. van der Gaag, S. Renooij. Analysing sensitivity data
from probabilistic networks. Proceedings of the Seventeenth Conference on Uncer-
tainty in Artificial Intelligence, Morgan Kaufmann, 2001, pp. 530 – 537.

[Van der Gaag & et al., 2012] L.C. van der Gaag, S. Renooij, H.J.M. Schijf, A.R. Elbers,
W.L. Loeffen. Experiences with Eliciting Probabilities from Multiple Experts. In:
S.Greco, B. Bouchon-Meunier, G. Coletti, M. Fedrizzi, B. Matarazzo, R.R. Yager
(eds), Proceedings of the Fourteenth International Conference on Information Pro-
cessing and Management of Uncertainty in Knowledge-Based Systems (IPMU), Com-
munications in Computer and Information Sciences, vol. 299, Springer, Heidelberg,
2012, pp. 151 – 160.

[Van der Gaag et al., 1999] L.C. van der Gaag, S. Renooij, C.L.M. Witteman, B. Aleman,
B.G. Taal. How to elicit many probabilities. Proceedings of the Fifteenth Conference
on Uncertainty in Artificial Intelligence, Morgan Kaufmann, 1999, pp. 647 – 654.

[Van der Gaag et al., 2002] L.C. van der Gaag, S. Renooij, C.L.M. Witteman, B.M.P.
Aleman, and B.G. Taal. Probabilities for a probabilistic network: A case-study in
oesophageal cancer. Artificial Intelligence in Medicine, vol. 25, 2002, pp. 123 – 148.

[Van der Gaag & Wessels, 1994a] L.C. van der Gaag, M.L. Wessels. Selective evidence
gathering for diagnostic belief networks. AISB Quarterly, vol. 86, 1994, pp. 23 – 34.

[Van der Gaag & Wessels, 1994b] L.C. van der Gaag, M.L. Wessels. Multiple-disorder di-
agnosis with belief networks. Proceedings of the Fifth Workshop on Principles of
Diagnosis — DX’94, 1994, pp. 343 – 351.

[Van Leersum, 2015] J. van Leersum. Explaining the reasoning of Bayesian networks. Mas-
ter thesis, Department of Information and Computing Sciences, Utrecht University,
The Netherlands, 2015.

[Vlek et al., 2014] C.S. Vlek, H. Prakken, S. Renooij, B. Verheij. Building Bayesian net-
works for legal evidence with narratives: a case study evaluation. Artificial Intelligence
and Law, 22(4), 2014, pp. 375 – 421.

[Waal & Van der Gaag, 2005] P.R. de Waal, L.C. van der Gaag. Stable Independence in
Perfect Maps. Proceedings of the Twenty-First Conference on Uncertainty in Artificial
Intelligence, AUAI Press, 2005.

[Warner et al., 1961] H.R. Warner, A.F. Toronto, L.G. Veasy, R. Stephenson. A mathe-
matical approach to medical diagnosis: application to congenital heart disease. Jour-
nal of the American Medical Association, vol. 177, 1961, pp. 177 – 183.

[Wellman, 1990] M.P. Wellman. Fundamental concepts of qualitative probabilistic net-
works. Artificial Intelligence, vol. 44, 1990, pp. 257 – 303.

[Wieten et al., 2019] R. Wieten, F. Bex, H. Prakken, S. Renooij. Constructing Bayesian
network graphs from labeled arguments. Proceedings of the Fifteenth European Con-
ference on Symbolic and Quantitative Approaches to Rea- soning with Uncertainty
(ECSQARU), Springer Lecture Notes in Arti

cial Intelligence vol. 11726. Springer Verlag, 2019.

[Von Winterfeldt & Edwards, 1986] D. von Winterfeldt, W. Edwards. Decision Analysis
and Behavioral Research. Cambridge University Press, New York, 1986.

[Yap et al., 2008] G.-E. Yap, A.-H. Tan, H.-H. Pang. Explaining inferences in Bayesian
networks. Applied Intelligence, 29(3):263–278, 2008.

Index

H(G,D), 82
K (penalty), 82
Q(G,D), 80
Γ, 34
Ω, 12
Pry, 14
α (normalisation), 38
ρ∗G(V), 10
∩, 12
σG(V), 10
c̃V (partial config), 38
∪, 12
σ∗G(V), 10
V , 10
v, 12
cV , 12
cV , 12, 14
γ, 35
I(X,Z,Y), 21
I Pr(X,Z,Y), 20
λ message (comp scg), 54
λ messages (comp tree), 43
λ(V) (def scg), 51
λ(V) (def tree), 40

λ
Vj

Vi
(def scg), 52

λ
Vj

Vi
(def tree), 41

∧, 13
LG, 59
∨, 13
¬v, 12
¬, 13
ρG(V), 10
π message (comp scg), 55
π messages (comp tree), 44
π(V) (def scg), 51
π(V) (def tree), 40
πVi
Vk

(def scg), 52

πVi
Vk

(def tree), 41
〈X |Z |Y 〉G, 24
νG(V), 11
θ, 35

V, 13
False, 13
True, 13

〈X |Z |Y 〉dG, 27

absolute effect (1-way), 106
absolute effect (2-way), 109
accountability, 87
accuracy, 111
acyclic, 11
acyclic digraph, 11
admissible deviation, 107
analytical approach (sensitivity function), 104
ancestor, 10
arc, 10
argumentation, 79
assessment function, 34

B search heuristic, 84
Bayes’ rule, 15
Bayes’ Theorem, 15
Bayes-Ball, 28, 102
Bayesian inference, 86
Bayesian network, 8
Bayesian network (def), 34
belief propagation, 37
bias, 86, 90
binary variable, 12
binary-valued variable, 12
black box, 136
blocking, 26
Boolean algebra, 13
Brier score, 113
Brier score, overall, 114

calibration, 86, 90, 113
causal message parameter (def scg), 52
causal message parameter (def tree), 41
causal parameter (def scg), 52
causal parameter (def tree), 41
causal parameter equivalence, 68
causality, 78

158

certainty factor, 7
chain, 11
chain graphs, 30
chain rule, 15
child, 10
chordal graph, 66
cliques, 66
co-variation, 100
complete graph, 25
complete oriented graph, 29
complexity Pearl (msg), 62
complexity Pearl (scg), 57
composition of IPr, 20
compound λ(V) (comp scg), 53
compound λ(V) (comp tree), 42
compound π(V) (comp scg), 52
compound π(V) (comp tree), 41
compound causal par. (def scg), 51
compound causal par. (def tree), 40
compound diagnostic par. (def scg), 51
compound diagnostic par. (def tree), 40
conditional probability, 14
conditional probability distribution, 14
conditional probability table, CPT, 35
conditionally dependent propositions, 14
conditionally dependent variables, 16
conditionally independent propositions, 14
conditionally independent variables, 16
conditioning property, 15
configuration, 12, 14
configuration (partial), 38
configuration template, 14
connected graph, 11
contour distance, 109
contour plot, 109
contraction axiom, 21
contraction of IPr, 20
control layer, 115
counting (frequencies), 80
CPT, 35
cycle, 11
cycles, dealing with, 79

D-map (directed), 27
D-map (undirected), 24
d-separation, 27
DAG, 11
data set, 79
data-fusion, 38, 40, 52
decomposable network, 66
decomposition axiom, 21

decomposition of IPr, 20
degree, 11
Dempster-Shafer, 7
dependent propositions, 14
dependent variables, 16
descendant, 10
diagnosis, 5
diagnostic (message) parameter (def scg), 52
diagnostic message parameter (def tree), 41
diagnostic parameter (def scg), 52
diagnostic parameter (def tree), 41
diagnostic problem, 5
differential approach, 103
digraph, 10
directed graph, 10
directed tree, 11
disjunctive interaction, 86
domain variable, 76
dummy node, 43

edge, 10
elicitation procedure, 91
EM, 80
entropy, 82
exception independence, 87

free parameter, 9
frequency method, 89
fuzzy sets, 7

global supervisor, 60
graph-isomorphic (directed), 29
graph-isomorphic (undirected), 26
graphoid independence relation, 22
greedy search, 83

handcrafting, 78
hyperbola, 102

I-map (directed), 27
I-map (minimal), 30
I-map (undirected), 24
Identity property, 45, 133
Identity property (diagnostic message), 68
Idiot’s Bayes, 5
in-degree, 11
incident arcs, 11
independence relation IPr, 20
independence statement, 20
independent propositions, 14
independent variables, 16
induced dependence, 26
induction, 46

inference, probabilistic, 34, 37
informational independence, 21
inhibitor, 87
instantiation, 38
intersection axiom, 22
intersection of IPr, 20

joint probability distribution, 13

leaf, 40
leak probability, 89
leaky noisy-or, 88
learning, 79
loop, 11
loop cutset (def), 59
loop cutset (heuristic), 63
loop cutset conditioning (alg), 60
lottery, 89
lower graph, 50

marginal probability distribution, 15
marginalisation, 15
Markov equivalence, 31
Markov network, 30
Markov property, local, 33
MDL measure, 80
message-passing, 38
minimal loop cutset, 63
missing values, 80
model parameter, 9
model-parameter sensitivity analysis, 100
multiply connected graph, 11
MYCIN, 6
myopic, 119

neighbourset, 11
network propagation, 38
node, 10
noisy-or, 85
noisy-or (explanation), 87
noisy-or (implementation), 87
noisy-or (leaky), 88
normalisation constant, 38
notation, 10, 12, 14, 35, 38

one-way sensitivity analysis, 91, 102
ontology, 76, 79
optimal loop cutset, 63
or-gate (logical), 87
or-gate (noisy), 87
out-degree, 11

P-map (directed), 27

P-map (undirected), 24
parameter, 35
parameter learning, 85
parameter sensitivity analysis, 100
parameter tuning, 100
parameter, free, 9
parameter, model, 9, 35
parameter, network, 35
parent, 10
path (undirected), 11
path length, 11
Pearl (algorithm scg), 55
Pearl (algorithm tree), 45
penalty, 82
percentage correct, 111
plausible effect (1-way), 106
plausible effect (2-way), 109
plausible interval, 92
predecessor, 10
prior probability, 14
probabilistic graphical model, 8
probabilistic layer, 115
probabilistic network, 7
Probabilistic programming, 86
probability scale, 89
production rules, 6
propagation, 38
propagation (network), 122
proportional scaling, 100

qualitative probability constraints, 85
quality Q (MDL), 80
quality q (node), 83
quasi-probabilistic, 7

random variable, 12
robustness, 100
root, 40
rule-based system, 6

self-loop, 11
semi-graphoid independence relation, 21
sensitivity (for elicitation), 91
sensitivity analysis, 100
sensitivity analysis: one-way, 91
sensitivity analysis: two-way, 91
sensitivity function (1-way), 102
sensitivity function (2-way), 108
sensitivity set, 101
sensitivity value (1-way), 106
sensitivity value (2-way), 109
separation (undirected), 24

simple path, 11
singly connected graph, 11
statistical variable, 12
stochastic variable, 12
stopping criterion, 121
stories, 79
strictly positive distribution, 13
structure learning, 85
subgraph, 12
successor, 10
sufficiency of confirmation, 121
sufficiency of information, 121
symmetry axiom, 21
symmetry of IPr, 20

template, 14
test selection, 120
threshold model, 116
threshold probability, 116
two-way sensitivity analysis, 91

underlying graph, 11
undirected graph, 10
uninstantiated, 38
unsupervised structure learning, 85
upper graph, 50
utility (threshold model), 117
utility function, 120

validity, 100
value-assignment, 12
verbal-numerical scale, 90
vertex, 10
vertex proximity, 107

weak union axiom, 21
weak union of IPr, 20
Wigmore charts, 79

	Introduction
	Preliminaries
	Graph Theory
	Probability Theory
	Set-Theoretic View
	Algebraic View

	I PGMs: definition and inference
	Independences and Graphical Representations
	The Concept of Independence Revisited
	Pearl's Axiomatic System for Independence
	Properties of Independence Relations

	Graphical Representations of Independence
	Undirected Graphs
	Directed Graphs
	Choosing a Graphical Representation

	The Bayesian Network Framework
	The Bayesian Network Formalism
	Exact Probabilistic Inference
	Directed Trees
	Singly Connected Digraphs
	Multiply Connected Digraphs
	Other Algorithms for Probabilistic Inference

	II Towards BN applications
	Building a Bayesian Network
	Identifying Variables and Values
	Constructing the Digraph
	Constructing the Digraph by Hand
	Learning the Digraph from Data

	Assessing Probabilities
	Sources of Probabilistic Information
	Simplifying Probability Assessment
	Eliciting Probabilities from Experts
	A Procedure for Probability Refinement

	Bringing Bayesian Networks into Practice
	Sensitivity Analysis
	What to Analyse?
	One-way Sensitivity Analysis
	Two-way Sensitivity Analysis

	Evaluating Bayesian Networks
	The Percentage Correct and its Shortcomings
	An Evaluation Score

	A Problem-Solving Architecture
	Example Application: Threshold Decision Making
	Example Application: Selective Evidence Gathering

	Explaining Bayesian Networks

	Conclusions
	Solutions, Answers and Hints
	Bibliography
	Index

