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General information

This study manual was designed to help guide your self studies. As such,
it does not include material that is not already present in the mandatory
literature and course slides or discussed in class. Hopefully, it will help you
take a deeper dive into the subjects and enhance your understanding.

This manual enumerates some details on the knowledge and abilities stu-
dents enrolling in this course are expected to learn. In addition, this man-
ual lists for each chapter from the syllabus “Probabilistic Reasoning with
Bayesian networks” a number of questions that can help to guide your self-
study. The answer to each question is in the associated chapter, but trying
to reproduce it by formulating your own answer will reveal what you did
and did not grasp from the material covered in the chapter, and indicates to
what extent you need to go through the chapter again. This type of question
will not be part of the written exam.

Exercises to practice with the material, which are representative of exam
questions (mostly former exam questions), can be found in the syllabus,
along with answers and/or hints (for exercises indicated with a *). Addi-
tional examples of previous exams are available through the course web-site
https://www.cs.uu.nl/docs/vakken/prob/practicum.html.

Examination

The INFOPROB course is a 7.5 ECTS course, which means that an average
student is expected to spend 210 hours of work to complete and pass the
course. In order to pass the course, you are expected to have knowledge of,
insight in and, most importantly, understanding of the subjects presented
in the mandatory literature and (sometimes more detailed) in the course
slides. This also means that you have practised with applying different
procedures and algorithms and can correctly do so in little time. Moreover,
you are expected to be able to use your knowledge and understanding to
solve problems and apply contexts and new concepts that have not been
discussed in the course.

The course is graded based on a number of practical assignments and a writ-
ten exam. A detailed grading scheme is available on https://www.cs.uu.
nl/docs/vakken/prob/beocordeling.html. In general we can say for
both the exam and the assignments that convincingly demonstrat-
ing your understanding is what is most important: explanations
will always be worth far more points than just an outcome or
simple answer.

The practical assignments serve two purposes: 1) to enhance your under-
standing of the treated material, and 2) as an early acquaintance with more
specialized topics treated later on in the course. The probabilistic program-
ming assignment (Assignment C) serves the former purpose and the associ-
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ated learning goals are examined only through the assignment.

The final exam covers the subjects from the syllabus and the associated
course slides. In general, we expect at least the following for the final exam:

e you know all preliminaries by heart, as well as any formula that can
be easily reconstructed from understanding the idea behind it;

e you understand the origin of the components of all compound and
message parameters from Pearl’s algorithm (Syllabus, Chapter 4), but
you need not memorise the exact way they are computed (the lemmas);

e you understand the entropy formula (Syllabus, Chapter 5) and its
effects, but you are not required to reproduce it;

e you know what different symbols and notations mean, how different
concepts are defined, and you are able to apply the different methods
and algorithms discussed; (NB make sure you practice with Pearl’s
algorithm; this will save you at lot of time during the exam!!)

e you have enough understanding of all subjects treated to be able
to identify advantages and drawbacks of different concepts and al-
gorithms, and to use these insights in generating or understanding
variations on what was treated during the course;

More specifically:

e Syllabus, Chapter 2 + course slides: you know all definitions, propo-
sitions and theorems by heart;

e Syllabus, Chapter 3 + course slides: you know all definitions, theo-
rem, corollaries and lemmas by heart, except those from Section 3.2.1
(Undirected graph&ED; you can apply d-separation;

e Syllabus, Chapter 4 + course slides:

— you know by heart: all definitions, corollaries, proposition 4.1.3
(‘chain rule’ for Bayesian networks), lemmas 4.2.1 (basics of data
fusion), 4.2.8 (useful property), all algorithms (test your inference
answers with one of the Bayesian network software packages (see
links on the course website));

— you will be provided during the exam (see example sheet on course
website): lemmas 4.2.5, 4.2.7, 4.2.13, 4.2.14, for computing com-
pound parameters and message parameters in a singly connected
graph (recall that the formulas for trees are just a special case of
these).

!The lectures and the examination focus on directed graphical models. However, the
concept of separation in undirected graphs is easier than the concept of d-separation in
directed graphs, so you may want to study undirected graphs first. Both course syllabus
and slides (with accompanying videos) provide the necessary information and exercises
for that.



— you can apply Pearl’s algorithm with and without loop cutset
conditioning, and the Suermondt & Cooper heuristic.

e Syllabus, Chapter 5 + course slides:

— you know by heart: all definitions (except 5.2.2), all lemmas,
corollaries and algorithms, all formulas for the (leaky) noisy-or
gate; you can apply the formulas of the (leaky) noisy-or gate;

— if necessary, you will be given during the exam: definition 5.2.2
(quality measure; from this you should be able to derive definition
5.2.3 for node quality);

— you can compute the MDL measure and apply the B search
heuristic.

e Syllabus, Chapter 6 + course slides: you know all concepts and formu-
las in 6.1 and 6.2 by heart; you have read 6.3 and 6.4 and have global
understanding of the presented ideas; you have read 6.4.

e You can apply the analytic approach to establishing sensitivity func-
tions, can compute the sensitivity value for one-way sensitivity func-
tions, and can determine sensitivity sets;

An important note on applying procedures and algorithms: there is a differ-
ence between solving a problem and applying an algorithm that solves the
problem. If an exercise or exam asks you to solve a problem, you can use
whatever method you think is most suitable to do the job. If, however, you
are required to solve a problem using a certain algorithm, then you are basi-
cally asked to illustrate how the algorithm can be used to solve the problem
and you should execute the steps prescribed by the algorithm yourself, and
write these down in such a way that we are convinced of your understanding.
For example, if you are asked to compute a certain probability from a set of
given probability, you may use whatever rules from probability theory you
can apply. If you are asked to compute a probability using Pearl’s algorithm
(see Chapter 4), then you should perform exactly those computations pre-
scribed by the algorithm, even if the example is such that there are more
efficient ways of solving the problem by hand! Basically, if you are asked
to apply an algorithm, we are testing whether or not you understand how
the algorithm works, not if you are able to solve the problem for which the
algorithm is designed.

Selfstudy Questions

The following sections list various questions for each chapter in the course
syllabus. These questions are meant to guide you selfstudies and allow you
to monitor your progress.



Chapter 1

The first chapter gives some historical background about the use of probabil-
ity theory and other uncertainty formalisms for reasons of decision support.
It briefly motivates the emergence of Bayesian networks and the reason why
Bayesian network applications historically have often concerned the medical
domain.

Questions

e What is mutually exclusive?
e What is collectively exhaustive?

e Which assumption is made in a naive Bayes approach for reasons of time
complexity, what is the reduction achieved and why?

e Which assumption is made in a naive Bayes approach for reasons of space
complexity, what is the reduction achieved and why?

e Why is a naive (or idiot) Bayes approach naive? Is it still used?

o What is the relation between a naive Bayes approach and GLADYS?

Chapter 2

The second chapter refreshes the necessary concepts from graph- and prob-
ability theory that play a central role in the Bayesian network framework.
These concepts have already been discussed in other courses and can be
found in any textbook on graph theory and probability theory. The chapter
also introduces the notation that is used throughout the syllabus and which
may differ from what you encountered previously.

Two important things to note here are the following:

e In this course we often address paths in graphs; unless stated other-
wise, these paths are assumed to be simple paths.

e A lot of formulas in the course material contain a summation of the
following form:
> flev)
cv

for some expression f(cy) depending on cy. Note that this summation
is a summation over the set of configurations cy of a set 'V, not over
the elements of set V itself. If this set V is empty, this therefore
does not mean the summation is undefined! Rather, it means the
summation is over the single element cy = ¢y =T (true). In that case
the summation reduces to the single term f(T).



Questions

e Is there a limit to the number of times a certain vertex may be included
in a path?

e What is the difference between a walk, a path, and a simple path?
e What is the difference between a path and a chain in a directed graph?
e What is the difference between a loop and a cycle in a directed graph?

e What is the difference between a tree, a singly connected digraph and a
multiply connected digraph?

e When can we use the operators N and U?
e When can we use the operators A and V?

e What is the difference between the proposition True and a value true for
a variable?

e What is the difference between a joint probability distribution, a condi-
tional probability distribution, and a marginal probability distribution?

e What is the difference between a value assignment, a configuration and a
configuration template?

e Why is it the case that for two sets of variables X and Y Cxyuy = CxACy
is the only correct way of expressing the configuration template over both
sets X and Y in terms of the separate configuration templates?

e What is the relation between the marginalisation and the conditioning
property?

e What is the difference between independence of propositions and inde-
pendence of variables?

e Suppose a (not necessarily binary) random variable V' can take on the val-
ues vi,...,U,. Why does the definition of probability distribution imply
that > | Pr(v;) = 17

e What is the difference between (in)dependence and conditional (in)dependence?

Chapter 3

This chapter formalises two types of independence relation. The first, Ip;,
is the type of relation that can be captured by a probability distribution.
These independence relations form a proper subset of a more general type of
independence relation I that abstracts away from probability distributions.
The chapter also discusses different representations of independence rela-
tions, most notably (in)directed graphs. We will mostly focus on the use of
directed graphs. However, some concepts are easier for undirected graphs,
so you may want to study these prior to moving on to directed graphs. An
important notion introduced in this chapter is the concept of d-separation.



Independence relations and their representation are still an area of ongoing
research, see for example the work by Milan Studeny from Prague. This
chapter, however, describes the full body of research as far as required for
our discussion of Bayesian networks in the subsequent chapters.

Questions

e Intuitively, what is the difference between independence relations Ip, and
I?

e What is the difference between the properties satisfied by Ip, compared
to those satisfied by I7?

e What are possible encodings of an independence relation?
e Why does an I-map represent independencies and a D-map dependencies?

e Why is it unfortunate that not every independence relation has an (un)directed
P-map?

e Why is an independence relation for which a P-map exists termed graph-
isomorphic?

e Does a graph-isomorphic independence relation have a unique P-map?

e Does the (d-)separation criterion require a graph to be acyclic? Why /why
not?

e Why does the following statement hold for directed (and undirected)
graphs: If a set Z blocks a path, then Z UY blocks the path for any
Y?

e Why does the following statement for directed graphs only hold if Z # ()
and at least one Z; € Z is on the chain under consideration: If a set Z
blocks a chain, then Z UY blocks the chain for any Y7

e If you studied undirected graphs: why does the following statement hold:
If a set Z separates two other sets, then Z UY separates the sets for any

Y?)

e Why does the following statement not hold for directed graphs: If a set
Z d-separates two other sets, then Z UY d-separates the sets for any Y7

e Directed I-maps can be transformed into undirected I-maps. If you studied
both: how can we do this transformation? Is minimality inherited?

Chapter 4

This chapter defines the concept of Bayesian network and reconstructs the
algorithm for exact probabilistic inference as designed by Judea Pearl; for
ease of exposition only binary variables are considered. Other, and often



more efficient, algorithms for exact inference exist such as jointree propaga-
tion (S.L. Lauritzen, D.J. Spiegelhalter, F.V. Jensen, P.P Shenoy, G. Shafer)
and variable elimination (R. Dechter, G.F. Cooper) methods. The reason
for discussing Pearl’s algorithm is that it explicitly exploits the graphical
structure of the network without transforming it, and therefore seems the
one easiest to explain and comprehend.

Current research focuses on finding still more efficient algorithms, both for
exact and approximate inference, and also for dealing with networks that
include continuous variables. Also, now and again, researchers look into
better algorithms for loop cutset conditioning (A. Becker, D. Geiger), the
extension to Pearl’s algorithm that is required to do inference in multiply
connected graphs.

To gain more insight in inference and the effects of loop cutset conditioning
try one of the free software packages available through the course website.

Questions

The network as graphical model:

e Why is a Bayesian network often called a belief network, or causal net-
work?

e What is the independence relation I modelled by a Bayesian network?

e Why have people chosen the graph of a Bayesian network to represent a
(minimal) /-map of the independence relation as opposed to a D-map?

e Why have people chosen a directed graph to capture the independence
relation for a Bayesian network?

The probability distribution:

e Why is the digraph of a Bayesian network assumed to be acyclic?

e What is the difference between an assessment function for a vertex and a
probability distribution for that vertex?

e Which piece(s) of information is/are necessary to determine the number
of assessments functions required for specifying a Bayesian network?

e Which pieces of information are necessary to determine the number of
(conditional) probabilities required for specifying all assessments func-
tions?

e How does the joint probability distribution Pr defined by a Bayesian net-
work exploit the fact that the digraph of the network is an I-map of the
independence relation of Pr?



e How do constraints for space requirements for Bayesian networks compare
to the naive Bayes approach?

Probabilistic Inference — general:

e How do constraints for time requirements for Bayesian networks compare
to the naive Bayes approach?

e What is the difference between a prior and a posterior probability?
e Is there actually a difference between Pr(v; | v;) and Pr% (v;)?
e What is the difference between Pr(v;) and Pr(v;)?

e How can a set of instantiated or observed vertices be related to the blocking
set introduced in Chapter 37

e What is the relation between configuration, instantiation, and partial con-
figuration?

e What is the computational time complexity of probabilistic inference?
Pearl’s algorithm — definitions:

e Why does the definition of V™ differ across different types of graph?

e How do the messages of Pearl’s algorithm exploit the fact that the digraph
is an I-map of the independence relation of Pr?

e Why do the formulas for computing messages differ across different types
of graph?

e Which lemma represents the first step of Pearl’s algorithm?

e In Pearl’s algorithm: what is the difference between a compound param-
eter and a message parameter?

e What is the difference between a compound causal parameter and a com-
pound diagnostic parameter?

e What is the difference between a causal message parameter and a diag-
nostic message parameter?

e What are the differences and similarities between causal/diagnostic pa-
rameters and probabilities?

e Why do the compound causal parameters for a vertex sum to 17 Why do
the causal parameters sent by a vertex sum to 17

e Why do the compound diagnostic parameters for a vertex in general not
sum to 17 Why do the diagnostic parameters sent by a vertex in general
not sum to 17



e Why is it the case that if the compound diagnostic parameter of a vertex
equals 1, that all diagnostic message parameters sent by that vertex are
equivalent (in a directed tree: equal to 1)?

e When is a vertex ready to send a causal message parameter?
e When is a vertex ready to send a diagnostic message parameter?
e When is a vertex ready to calculate its (posterior) probability?

e To calculate prior probabilities, do you require causal (compound /message)
parameters, diagnostic (compound/message) parameters, or both?

e To calculate posterior probabilities, do you require causal (compound /message)
parameters, diagnostic (compound/message) parameters, or both?

e Why do the formulas in Lemmas 4.2.5 and 4.2.7 and similar formulas for
singly connected digraphs assume V; to be an uninstantiated vertex?

e Why do observations have to be entered by means of dummy nodes?

e Why does the dummy node approach enable us to use lemmas 4.2.5, 4.2.7
etc. for instantiated vertices as well?

o Why can Pearl’s algorithm lead to incorrect results when applied to mul-
tiply connected graphs?

Pearl’s algorithm — normalisation:

e What is the use of a normalisation constant a?
e Why does the normalisation constant « differ across messages?

e Is normalisation always used for message parameters that sum to 1, or
could they sum to a different constant? (Compare « in the formula for
diagnostic message parameters in singly connected graphs to the other
a’s).

e Why can normalisation be postponed to the final step of Pearl’s algo-
rithm?

e When does it come in handy to not postpone normalisation?

e Why is normalisation not actually required when computing prior proba-
bilities? (Can be used as correctness check)

Loop Cutsets:

o Why doesn’t Pearl’s algorithm as presented in 4.2.1 and 4.2.2 work in
multiply connected graphs?

e What is the idea behind the method of loop cutset conditioning?
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e Which of the following statements is correct (the difference is rather sub-
tle):

I Loop cutset conditioning is a method for probabilistic inference in multi-
ply connected networks that uses Pearl’s algorithm for computing some
of the probabilities is requires.

IT Loop cutset conditioning is a method that is used in combination with
Pearl’s algorithm in order to enable its correct application to multiply
connected networks.

IIT Loop cutset conditioning is a method that is used inside Pearl’s algo-
rithm in order to enable its correct application to multiply connected
networks.

e Consider a Bayesian network with loops in its digraph G; can the loop
cutset for G be the empty set (7

e Given the definition of a loop cutset, can a vertex with two incoming arcs
in G be included in a loop cutset for G?

e For a graph G, will the Suermondt & Cooper algorithm return a loop
cutset that includes a vertex with two or more incoming arcs in G?

e Why does every loop in a Bayesian network’s digraph have at least one
vertex with at most one incoming arc?

e Is a loop cutset a property of a graph or a property of a Bayesian network?
e Does a loop cutset change after entering evidence in a Bayesian network?

e Does the probability distribution over configurations of the loop cutset
change after entering evidence into a Bayesian network?

e Why can the prior probability distribution over configurations of the loop
cutset not be computed using Pearl’s algorithm, but has to be computed
by marginalisation from the joint distribution instead?

e In loop cutset conditioning, in general, which probabilities can and which
probabilities cannot be computed using Pearl’s algorithm (as a “black
box”)?

e What is the use of a global supervisor?

e What is the first step in performing loop cutset conditioning (not: in
finding a loop cutset!)?

e Why is loop cutset conditioning computationally expensive?
e Is finding a loop cutset computationally expensive?

e Is a minimal loop cutset always optimal? Is an optimal loop cutset always
minimal?

e Why should vertices with a degree of one or less not be included in a loop
cutset?
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e Why are vertices with an indegree of at most one selected as candidates
for the loop cutset by the heuristic Suermondt & Cooper algorithm? What
are possible effects of this choice?

e Why does the heuristic Suermondt & Cooper algorithm for finding a loop
cutset choose to add a candidate with highest degree to the loop cutset?
What if there are several candidates with the highest degree?

e What are properties of the graph and the loop cutset before and after
performing the algorithm for finding a loop cutset?

Chapter 5

This chapter and the next one differ from previous chapters in the sense
that the latter describe more or less finished research, whereas the following
chapters discuss topics that are subject of ongoing research. As a result, the
chapters tell a number of short stories with lots of open endings. We provide
the basics of various algorithms and methodologies that still underlie, and
are necessary for understanding, state of the art results. The assumption
that we consider binary variables only is now lifted, although employed in
some specific situations.

This chapter discusses the construction of a Bayesian network: how do we
get the graphical structure (by hand, or automatically?) and where do the
probabilities come from (experts, data, ...7). Try and construct a (small)
Bayesian network yourself using one of the numerous software packages or
online tools developed for constructing and reasoning with Bayesian net-
works (see the course website)

Remark: in this chapter you will find formulas including a term of the form
a - logb, where a and/or b can be zero. A standard convention is that
0log0 = 0.

Questions

Construction in general

e What are typical trade-offs made when constructing a Bayesian network
for a real application domain?

e What is the difference between domain-variables and Bayesian network
variables?

e What is the difference between single-valued variable, multi-valued vari-
ables and random variables?

e Given the definition of a Bayesian network in Chapter 4, why is it, in
general, not possible to allow continuous random variables?
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e What are advantages and disadvantages of the different ways of modelling
a multi-valued domain variable in a Bayesian network?

Construction by hand

e What is the problem with using the notion of causality for constructing
the digraph?

e Why is it important to distinguish between direct and indirect relations?

e Why do digraphs which are constructed by hand often contain cycles at
some stage of the construction?

e Why does the assumption of a disjunctive interaction simplify probability
assessment? Is the assumption realistic?

e Why is a noisy-or gate called noisy? Why is its leaky version called leaky?

e This chapter formulates the noisy-or gate for binary variables. Is it easy
to generalise to non-binary variables?

e Why does the inhibitor probability in the leaky noisy-or gate differ se-
mantically from the inhibitor probability in the noisy-or gate?

e Why is it difficult to assess probabilities from literature?
e Why is it difficult to use domain experts for assessing probabilities?
e What is a typical trade-off when eliciting probabilities from experts?

e What is the use of sensitivity analysis?

Automated construction

e Are the assumptions required of a database in order to use it for learning
a network realistic?

e What are possible solutions to and the effects of handling missing values
in a database?

e N(cx) gives the number of cases in a database for which variable X has
the given configuration. Why can we correctly assume that N(cy) = N?

e Is frequency counting an efficient way of probability estimation?

e What is the difference between a conditional independence learning algo-
rithm and a metric learning algorithm?

e Does the order of variables used for conditional independence learning
affect the resulting graph?

e Why are a quality measure and a search heuristic necessary ingredients
for a metric learning algorithm?
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What is the function of the different ingredients of the MDL quality mea-
sure?

Why does the MDL measure as stated assume variables to be binary?
Can this restriction be lifted?

What are the ranges of the different terms in the MDL measure?

Why is the log P term a constant if you assume a uniform prior distribu-
tion over possible digraphs?

You could say “Entropy = Chaos = Uncertainty”. Why does lower en-
tropy go hand in hand with denser digraphs?

Why do denser digraphs go hand in hand with less reliable probability
estimates? What solution to this problem is present in the MDL measure?

What are the benefits and drawbacks of using a search heuristic?

When employing the search heuristic as described in Chapter 5 it is suf-
ficient to consider only gain in quality. Why?

For the search heuristic described: why does a difference in vertexr quality
for a single vertex correspond to a difference in graph quality?

When the search heuristic adds an arc (V;,V}), why does the quality of
V; change and not the quality of V;?

If adding a certain arc decreases the quality of the graph, will that arc
ever be added?

If adding a certain arc increases the quality of the graph, will that arc
always be added?

Does the choice of an arc to add affect the set of arcs that may be subse-
quently added?

Does the procedure of adding arcs that give the largest increase in quality
result in a graph with maximum quality?

Is the MDL measure a suitable measure?
When should you learn networks of restricted topology?

What are possible effects of learning a network from a database that does
not obey the required assumptions?

Chapter 6

This chapter tries to bridge the gap between construction and actual use
of a Bayesian network application. It first discusses possible methods for
analysing and evaluating the behaviour of your network; then some example
applications where a Bayesian network is used as a component in a decision
support process are discussed, followed by a brief note on explanation.
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Questions

Sensitivity analysis:

What is the use of sensitivity analysis?
Compare the following terms: ’sensitivity’, 'robustness’, and ’correctness’.
Is it computationally feasible to perform a sensitivity analysis?

Why can’t a CPT-parameter have a non-linear influence on a prior prob-
ability of interest?

Is the sensitivity set a property of a Bayesian network’s digraph?

Why can variables in the sensitivity set be excluded from a sensitivity
analysis?

What do sensitivity functions look like in general?

Why are sensitivity functions for a prior joint probability linear?
What is the amount of data you get from a sensitivity analysis?
How can you select CPT-parameters of interest?

What are advantages and disadvantages of performing a two-way sensi-
tivity analysis as opposed to a one-way analysis?

Evaluation:

In evaluating a Bayesian network against a standard of validity, why would
you ideally use a gold standard? Why is this not always possible?

What information does and doesn’t a percentage correct convey?
What is an acceptable percentage correct?
What information does and doesn’t the Brier score convey?

What is an acceptable Brier score?

Application:

What is the use of a two-layer architecture?

In the threshold model for patient management, are the utilities patient-
specific? What about the threshold probabilities?

Can the threshold model for patient management be applied to a series
of tests?

Why are utilities in the threshold model said to subjective and in diag-
nostic problem solving objective?

15



e In diagnostic problem solving utilities are defined for values of binary
variables only. Can this be generalised to non-binary variables?

e In diagnostic problem solving utilities represent the shift in probability
of an hypothesis as a result of evidence. Why are large shifts in either
direction awarded large utilities?

e In diagnostic problem solving, is the utility of a variable’s value a fixed
number? What about the expected utility of a node?

e In selective evidence gathering, what is the use of a stopping criterion?

e In selective evidence gathering, what are the effects of the single-disorder
and myopic assumptions?

Explanation:

e What can or should be explained in Bayesian networks?

e What should be explained to whom?
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