{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilies #-}
{-# OPTIONS_GHC -fno-warn-orphans #-}
module Data.Array.Accelerate.Classes.Floating (
Floating,
P.pi,
P.sin, P.cos, P.tan,
P.asin, P.acos, P.atan,
P.sinh, P.cosh, P.tanh,
P.asinh, P.acosh, P.atanh,
P.exp,
P.sqrt,
P.log,
(P.**),
P.logBase,
) where
import Data.Array.Accelerate.Smart
import Data.Array.Accelerate.Type
import Data.Array.Accelerate.Classes.Fractional
import qualified Prelude as P
type Floating a = (Fractional a, P.Floating (Exp a))
instance P.Floating (Exp Half) where
pi :: Exp Half
pi = Exp Half
forall r. (Elt r, IsFloating (EltR r)) => Exp r
mkPi
sin :: Exp Half -> Exp Half
sin = Exp Half -> Exp Half
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkSin
cos :: Exp Half -> Exp Half
cos = Exp Half -> Exp Half
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkCos
tan :: Exp Half -> Exp Half
tan = Exp Half -> Exp Half
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkTan
asin :: Exp Half -> Exp Half
asin = Exp Half -> Exp Half
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkAsin
acos :: Exp Half -> Exp Half
acos = Exp Half -> Exp Half
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkAcos
atan :: Exp Half -> Exp Half
atan = Exp Half -> Exp Half
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkAtan
sinh :: Exp Half -> Exp Half
sinh = Exp Half -> Exp Half
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkSinh
cosh :: Exp Half -> Exp Half
cosh = Exp Half -> Exp Half
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkCosh
tanh :: Exp Half -> Exp Half
tanh = Exp Half -> Exp Half
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkTanh
asinh :: Exp Half -> Exp Half
asinh = Exp Half -> Exp Half
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkAsinh
acosh :: Exp Half -> Exp Half
acosh = Exp Half -> Exp Half
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkAcosh
atanh :: Exp Half -> Exp Half
atanh = Exp Half -> Exp Half
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkAtanh
exp :: Exp Half -> Exp Half
exp = Exp Half -> Exp Half
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkExpFloating
sqrt :: Exp Half -> Exp Half
sqrt = Exp Half -> Exp Half
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkSqrt
log :: Exp Half -> Exp Half
log = Exp Half -> Exp Half
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkLog
** :: Exp Half -> Exp Half -> Exp Half
(**) = Exp Half -> Exp Half -> Exp Half
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t -> Exp t
mkFPow
logBase :: Exp Half -> Exp Half -> Exp Half
logBase = Exp Half -> Exp Half -> Exp Half
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t -> Exp t
mkLogBase
instance P.Floating (Exp Float) where
pi :: Exp Float
pi = Exp Float
forall r. (Elt r, IsFloating (EltR r)) => Exp r
mkPi
sin :: Exp Float -> Exp Float
sin = Exp Float -> Exp Float
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkSin
cos :: Exp Float -> Exp Float
cos = Exp Float -> Exp Float
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkCos
tan :: Exp Float -> Exp Float
tan = Exp Float -> Exp Float
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkTan
asin :: Exp Float -> Exp Float
asin = Exp Float -> Exp Float
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkAsin
acos :: Exp Float -> Exp Float
acos = Exp Float -> Exp Float
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkAcos
atan :: Exp Float -> Exp Float
atan = Exp Float -> Exp Float
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkAtan
sinh :: Exp Float -> Exp Float
sinh = Exp Float -> Exp Float
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkSinh
cosh :: Exp Float -> Exp Float
cosh = Exp Float -> Exp Float
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkCosh
tanh :: Exp Float -> Exp Float
tanh = Exp Float -> Exp Float
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkTanh
asinh :: Exp Float -> Exp Float
asinh = Exp Float -> Exp Float
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkAsinh
acosh :: Exp Float -> Exp Float
acosh = Exp Float -> Exp Float
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkAcosh
atanh :: Exp Float -> Exp Float
atanh = Exp Float -> Exp Float
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkAtanh
exp :: Exp Float -> Exp Float
exp = Exp Float -> Exp Float
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkExpFloating
sqrt :: Exp Float -> Exp Float
sqrt = Exp Float -> Exp Float
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkSqrt
log :: Exp Float -> Exp Float
log = Exp Float -> Exp Float
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkLog
** :: Exp Float -> Exp Float -> Exp Float
(**) = Exp Float -> Exp Float -> Exp Float
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t -> Exp t
mkFPow
logBase :: Exp Float -> Exp Float -> Exp Float
logBase = Exp Float -> Exp Float -> Exp Float
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t -> Exp t
mkLogBase
instance P.Floating (Exp Double) where
pi :: Exp Double
pi = Exp Double
forall r. (Elt r, IsFloating (EltR r)) => Exp r
mkPi
sin :: Exp Double -> Exp Double
sin = Exp Double -> Exp Double
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkSin
cos :: Exp Double -> Exp Double
cos = Exp Double -> Exp Double
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkCos
tan :: Exp Double -> Exp Double
tan = Exp Double -> Exp Double
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkTan
asin :: Exp Double -> Exp Double
asin = Exp Double -> Exp Double
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkAsin
acos :: Exp Double -> Exp Double
acos = Exp Double -> Exp Double
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkAcos
atan :: Exp Double -> Exp Double
atan = Exp Double -> Exp Double
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkAtan
sinh :: Exp Double -> Exp Double
sinh = Exp Double -> Exp Double
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkSinh
cosh :: Exp Double -> Exp Double
cosh = Exp Double -> Exp Double
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkCosh
tanh :: Exp Double -> Exp Double
tanh = Exp Double -> Exp Double
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkTanh
asinh :: Exp Double -> Exp Double
asinh = Exp Double -> Exp Double
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkAsinh
acosh :: Exp Double -> Exp Double
acosh = Exp Double -> Exp Double
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkAcosh
atanh :: Exp Double -> Exp Double
atanh = Exp Double -> Exp Double
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkAtanh
exp :: Exp Double -> Exp Double
exp = Exp Double -> Exp Double
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkExpFloating
sqrt :: Exp Double -> Exp Double
sqrt = Exp Double -> Exp Double
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkSqrt
log :: Exp Double -> Exp Double
log = Exp Double -> Exp Double
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkLog
** :: Exp Double -> Exp Double -> Exp Double
(**) = Exp Double -> Exp Double -> Exp Double
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t -> Exp t
mkFPow
logBase :: Exp Double -> Exp Double -> Exp Double
logBase = Exp Double -> Exp Double -> Exp Double
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t -> Exp t
mkLogBase
instance P.Floating (Exp CFloat) where
pi :: Exp CFloat
pi = Exp Float -> Exp CFloat
forall b a.
(Elt a, Elt b, IsScalar (EltR a), IsScalar (EltR b),
BitSizeEq (EltR a) (EltR b)) =>
Exp a -> Exp b
mkBitcast (forall r. (Elt r, IsFloating (EltR r)) => Exp r
mkPi @Float)
sin :: Exp CFloat -> Exp CFloat
sin = Exp CFloat -> Exp CFloat
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkSin
cos :: Exp CFloat -> Exp CFloat
cos = Exp CFloat -> Exp CFloat
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkCos
tan :: Exp CFloat -> Exp CFloat
tan = Exp CFloat -> Exp CFloat
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkTan
asin :: Exp CFloat -> Exp CFloat
asin = Exp CFloat -> Exp CFloat
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkAsin
acos :: Exp CFloat -> Exp CFloat
acos = Exp CFloat -> Exp CFloat
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkAcos
atan :: Exp CFloat -> Exp CFloat
atan = Exp CFloat -> Exp CFloat
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkAtan
sinh :: Exp CFloat -> Exp CFloat
sinh = Exp CFloat -> Exp CFloat
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkSinh
cosh :: Exp CFloat -> Exp CFloat
cosh = Exp CFloat -> Exp CFloat
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkCosh
tanh :: Exp CFloat -> Exp CFloat
tanh = Exp CFloat -> Exp CFloat
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkTanh
asinh :: Exp CFloat -> Exp CFloat
asinh = Exp CFloat -> Exp CFloat
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkAsinh
acosh :: Exp CFloat -> Exp CFloat
acosh = Exp CFloat -> Exp CFloat
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkAcosh
atanh :: Exp CFloat -> Exp CFloat
atanh = Exp CFloat -> Exp CFloat
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkAtanh
exp :: Exp CFloat -> Exp CFloat
exp = Exp CFloat -> Exp CFloat
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkExpFloating
sqrt :: Exp CFloat -> Exp CFloat
sqrt = Exp CFloat -> Exp CFloat
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkSqrt
log :: Exp CFloat -> Exp CFloat
log = Exp CFloat -> Exp CFloat
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkLog
** :: Exp CFloat -> Exp CFloat -> Exp CFloat
(**) = Exp CFloat -> Exp CFloat -> Exp CFloat
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t -> Exp t
mkFPow
logBase :: Exp CFloat -> Exp CFloat -> Exp CFloat
logBase = Exp CFloat -> Exp CFloat -> Exp CFloat
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t -> Exp t
mkLogBase
instance P.Floating (Exp CDouble) where
pi :: Exp CDouble
pi = Exp Double -> Exp CDouble
forall b a.
(Elt a, Elt b, IsScalar (EltR a), IsScalar (EltR b),
BitSizeEq (EltR a) (EltR b)) =>
Exp a -> Exp b
mkBitcast (forall r. (Elt r, IsFloating (EltR r)) => Exp r
mkPi @Double)
sin :: Exp CDouble -> Exp CDouble
sin = Exp CDouble -> Exp CDouble
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkSin
cos :: Exp CDouble -> Exp CDouble
cos = Exp CDouble -> Exp CDouble
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkCos
tan :: Exp CDouble -> Exp CDouble
tan = Exp CDouble -> Exp CDouble
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkTan
asin :: Exp CDouble -> Exp CDouble
asin = Exp CDouble -> Exp CDouble
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkAsin
acos :: Exp CDouble -> Exp CDouble
acos = Exp CDouble -> Exp CDouble
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkAcos
atan :: Exp CDouble -> Exp CDouble
atan = Exp CDouble -> Exp CDouble
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkAtan
sinh :: Exp CDouble -> Exp CDouble
sinh = Exp CDouble -> Exp CDouble
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkSinh
cosh :: Exp CDouble -> Exp CDouble
cosh = Exp CDouble -> Exp CDouble
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkCosh
tanh :: Exp CDouble -> Exp CDouble
tanh = Exp CDouble -> Exp CDouble
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkTanh
asinh :: Exp CDouble -> Exp CDouble
asinh = Exp CDouble -> Exp CDouble
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkAsinh
acosh :: Exp CDouble -> Exp CDouble
acosh = Exp CDouble -> Exp CDouble
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkAcosh
atanh :: Exp CDouble -> Exp CDouble
atanh = Exp CDouble -> Exp CDouble
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkAtanh
exp :: Exp CDouble -> Exp CDouble
exp = Exp CDouble -> Exp CDouble
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkExpFloating
sqrt :: Exp CDouble -> Exp CDouble
sqrt = Exp CDouble -> Exp CDouble
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkSqrt
log :: Exp CDouble -> Exp CDouble
log = Exp CDouble -> Exp CDouble
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t
mkLog
** :: Exp CDouble -> Exp CDouble -> Exp CDouble
(**) = Exp CDouble -> Exp CDouble -> Exp CDouble
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t -> Exp t
mkFPow
logBase :: Exp CDouble -> Exp CDouble -> Exp CDouble
logBase = Exp CDouble -> Exp CDouble -> Exp CDouble
forall t. (Elt t, IsFloating (EltR t)) => Exp t -> Exp t -> Exp t
mkLogBase