{-# LANGUAGE AllowAmbiguousTypes #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DefaultSignatures #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}
{-# OPTIONS_HADDOCK hide #-}
module Data.Array.Accelerate.Sugar.Elt ( Elt(..) )
where
import Data.Array.Accelerate.Representation.Elt
import Data.Array.Accelerate.Representation.Tag
import Data.Array.Accelerate.Representation.Type
import Data.Array.Accelerate.Type
import Control.Applicative ( (<|>) )
import qualified Control.Monad.State.Lazy as LState
import Control.Monad.Fix ( mfix )
import Data.Char
import Data.Kind
import Data.Maybe ( fromMaybe )
import Data.Proxy
import Language.Haskell.TH.Extra hiding ( Type )
import GHC.Generics
class Elt a where
type EltR a :: Type
type EltR a = GEltR () (Rep a)
eltR :: TypeR (EltR a)
tagsR :: [TagR (EltR a)]
fromElt :: a -> EltR a
toElt :: EltR a -> a
default eltR
:: (GElt (Rep a), EltR a ~ GEltR () (Rep a))
=> TypeR (EltR a)
eltR = forall (f :: * -> *) t. GElt f => TypeR t -> TypeR (GEltR t f)
geltR @(Rep a) TypeR ()
forall (s :: * -> *). TupR s ()
TupRunit
default tagsR
:: (Generic a, GElt (Rep a), EltR a ~ GEltR () (Rep a))
=> [TagR (EltR a)]
tagsR = forall (f :: * -> *) t. GElt f => TagR t -> [TagR (GEltR t f)]
gtagsR @(Rep a) TagR ()
TagRunit
default fromElt
:: (Generic a, GElt (Rep a), EltR a ~ GEltR () (Rep a))
=> a
-> EltR a
fromElt = () -> Rep a Any -> GEltR () (Rep a)
forall t a. t -> Rep a a -> GEltR t (Rep a)
forall (f :: * -> *) t a. GElt f => t -> f a -> GEltR t f
gfromElt () (Rep a Any -> EltR a) -> (a -> Rep a Any) -> a -> EltR a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Rep a Any
forall x. a -> Rep a x
forall a x. Generic a => a -> Rep a x
from
default toElt
:: (Generic a, GElt (Rep a), EltR a ~ GEltR () (Rep a))
=> EltR a
-> a
toElt = Rep a Any -> a
forall a x. Generic a => Rep a x -> a
forall x. Rep a x -> a
to (Rep a Any -> a) -> (EltR a -> Rep a Any) -> EltR a -> a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ((), Rep a Any) -> Rep a Any
forall a b. (a, b) -> b
snd (((), Rep a Any) -> Rep a Any)
-> (EltR a -> ((), Rep a Any)) -> EltR a -> Rep a Any
forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) t a. GElt f => GEltR t f -> (t, f a)
gtoElt @(Rep a) @()
class GElt f where
type GEltR t f
geltR :: TypeR t -> TypeR (GEltR t f)
gtagsR :: TagR t -> [TagR (GEltR t f)]
gfromElt :: t -> f a -> GEltR t f
gtoElt :: GEltR t f -> (t, f a)
gundef :: t -> GEltR t f
guntag :: TagR t -> TagR (GEltR t f)
instance GElt U1 where
type GEltR t U1 = t
geltR :: forall t. TypeR t -> TypeR (GEltR t U1)
geltR TypeR t
t = TypeR t
TupR ScalarType (GEltR t U1)
t
gtagsR :: forall t. TagR t -> [TagR (GEltR t U1)]
gtagsR TagR t
t = [TagR t
TagR (GEltR t U1)
t]
gfromElt :: forall t a. t -> U1 a -> GEltR t U1
gfromElt t
t U1 a
U1 = t
GEltR t U1
t
gtoElt :: forall t a. GEltR t U1 -> (t, U1 a)
gtoElt GEltR t U1
t = (t
GEltR t U1
t, U1 a
forall k (p :: k). U1 p
U1)
gundef :: forall t. t -> GEltR t U1
gundef t
t = t
GEltR t U1
t
guntag :: forall t. TagR t -> TagR (GEltR t U1)
guntag TagR t
t = TagR t
TagR (GEltR t U1)
t
instance GElt a => GElt (M1 i c a) where
type GEltR t (M1 i c a) = GEltR t a
geltR :: forall t. TypeR t -> TypeR (GEltR t (M1 i c a))
geltR = forall (f :: * -> *) t. GElt f => TypeR t -> TypeR (GEltR t f)
geltR @a
gtagsR :: forall t. TagR t -> [TagR (GEltR t (M1 i c a))]
gtagsR = forall (f :: * -> *) t. GElt f => TagR t -> [TagR (GEltR t f)]
gtagsR @a
gfromElt :: forall t a. t -> M1 i c a a -> GEltR t (M1 i c a)
gfromElt t
t (M1 a a
x) = t -> a a -> GEltR t a
forall t a. t -> a a -> GEltR t a
forall (f :: * -> *) t a. GElt f => t -> f a -> GEltR t f
gfromElt t
t a a
x
gtoElt :: forall t a. GEltR t (M1 i c a) -> (t, M1 i c a a)
gtoElt GEltR t (M1 i c a)
x = let (t
t, a a
x1) = GEltR t a -> (t, a a)
forall t a. GEltR t a -> (t, a a)
forall (f :: * -> *) t a. GElt f => GEltR t f -> (t, f a)
gtoElt GEltR t a
GEltR t (M1 i c a)
x in (t
t, a a -> M1 i c a a
forall k i (c :: Meta) (f :: k -> *) (p :: k). f p -> M1 i c f p
M1 a a
x1)
gundef :: forall t. t -> GEltR t (M1 i c a)
gundef = forall (f :: * -> *) t. GElt f => t -> GEltR t f
gundef @a
guntag :: forall t. TagR t -> TagR (GEltR t (M1 i c a))
guntag = forall (f :: * -> *) t. GElt f => TagR t -> TagR (GEltR t f)
guntag @a
instance Elt a => GElt (K1 i a) where
type GEltR t (K1 i a) = (t, EltR a)
geltR :: forall t. TypeR t -> TypeR (GEltR t (K1 i a))
geltR TypeR t
t = TypeR t -> TupR ScalarType (EltR a) -> TupR ScalarType (t, EltR a)
forall (s :: * -> *) a1 b. TupR s a1 -> TupR s b -> TupR s (a1, b)
TupRpair TypeR t
t (forall a. Elt a => TypeR (EltR a)
eltR @a)
gtagsR :: forall t. TagR t -> [TagR (GEltR t (K1 i a))]
gtagsR TagR t
t = TagR t -> TagR (EltR a) -> TagR (t, EltR a)
forall a1 b. TagR a1 -> TagR b -> TagR (a1, b)
TagRpair TagR t
t (TagR (EltR a) -> TagR (t, EltR a))
-> [TagR (EltR a)] -> [TagR (t, EltR a)]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. Elt a => [TagR (EltR a)]
tagsR @a
gfromElt :: forall t a. t -> K1 i a a -> GEltR t (K1 i a)
gfromElt t
t (K1 a
x) = (t
t, a -> EltR a
forall a. Elt a => a -> EltR a
fromElt a
x)
gtoElt :: forall t a. GEltR t (K1 i a) -> (t, K1 i a a)
gtoElt (t
t, EltR a
x) = (t
t, a -> K1 i a a
forall k i c (p :: k). c -> K1 i c p
K1 (EltR a -> a
forall a. Elt a => EltR a -> a
toElt EltR a
x))
gundef :: forall t. t -> GEltR t (K1 i a)
gundef t
t = (t
t, TupR ScalarType (EltR a) -> EltR a
forall t. TypeR t -> t
undefElt (forall a. Elt a => TypeR (EltR a)
eltR @a))
guntag :: forall t. TagR t -> TagR (GEltR t (K1 i a))
guntag TagR t
t = TagR t -> TagR (EltR a) -> TagR (t, EltR a)
forall a1 b. TagR a1 -> TagR b -> TagR (a1, b)
TagRpair TagR t
t (TupR ScalarType (EltR a) -> TagR (EltR a)
forall t. TypeR t -> TagR t
untag (forall a. Elt a => TypeR (EltR a)
eltR @a))
instance (GElt a, GElt b) => GElt (a :*: b) where
type GEltR t (a :*: b) = GEltR (GEltR t a) b
geltR :: forall t. TypeR t -> TypeR (GEltR t (a :*: b))
geltR = forall (f :: * -> *) t. GElt f => TypeR t -> TypeR (GEltR t f)
geltR @b (TypeR (GEltR t a) -> TypeR (GEltR (GEltR t a) b))
-> (TypeR t -> TypeR (GEltR t a))
-> TypeR t
-> TypeR (GEltR (GEltR t a) b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) t. GElt f => TypeR t -> TypeR (GEltR t f)
geltR @a
gtagsR :: forall t. TagR t -> [TagR (GEltR t (a :*: b))]
gtagsR = (TagR (GEltR t a) -> [TagR (GEltR (GEltR t a) b)])
-> [TagR (GEltR t a)] -> [TagR (GEltR (GEltR t a) b)]
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap (forall (f :: * -> *) t. GElt f => TagR t -> [TagR (GEltR t f)]
gtagsR @b) ([TagR (GEltR t a)] -> [TagR (GEltR (GEltR t a) b)])
-> (TagR t -> [TagR (GEltR t a)])
-> TagR t
-> [TagR (GEltR (GEltR t a) b)]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) t. GElt f => TagR t -> [TagR (GEltR t f)]
gtagsR @a
gfromElt :: forall t a. t -> (:*:) a b a -> GEltR t (a :*: b)
gfromElt t
t (a a
a :*: b a
b) = GEltR t a -> b a -> GEltR (GEltR t a) b
forall t a. t -> b a -> GEltR t b
forall (f :: * -> *) t a. GElt f => t -> f a -> GEltR t f
gfromElt (t -> a a -> GEltR t a
forall t a. t -> a a -> GEltR t a
forall (f :: * -> *) t a. GElt f => t -> f a -> GEltR t f
gfromElt t
t a a
a) b a
b
gtoElt :: forall t a. GEltR t (a :*: b) -> (t, (:*:) a b a)
gtoElt GEltR t (a :*: b)
t =
let (GEltR t a
t1, b a
b) = GEltR (GEltR t a) b -> (GEltR t a, b a)
forall t a. GEltR t b -> (t, b a)
forall (f :: * -> *) t a. GElt f => GEltR t f -> (t, f a)
gtoElt GEltR t (a :*: b)
GEltR (GEltR t a) b
t
(t
t2, a a
a) = GEltR t a -> (t, a a)
forall t a. GEltR t a -> (t, a a)
forall (f :: * -> *) t a. GElt f => GEltR t f -> (t, f a)
gtoElt GEltR t a
t1
in
(t
t2, a a
a a a -> b a -> (:*:) a b a
forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
:*: b a
b)
gundef :: forall t. t -> GEltR t (a :*: b)
gundef t
t = forall (f :: * -> *) t. GElt f => t -> GEltR t f
gundef @b (forall (f :: * -> *) t. GElt f => t -> GEltR t f
gundef @a t
t)
guntag :: forall t. TagR t -> TagR (GEltR t (a :*: b))
guntag TagR t
t = forall (f :: * -> *) t. GElt f => TagR t -> TagR (GEltR t f)
guntag @b (forall (f :: * -> *) t. GElt f => TagR t -> TagR (GEltR t f)
guntag @a TagR t
t)
instance (GElt a, GElt b, GSumElt (a :+: b)) => GElt (a :+: b) where
type GEltR t (a :+: b) = (TAG, GSumEltR t (a :+: b))
geltR :: forall t. TypeR t -> TypeR (GEltR t (a :+: b))
geltR TypeR t
t = TupR ScalarType TAG
-> TupR ScalarType (GSumEltR (GSumEltR t a) b)
-> TupR ScalarType (TAG, GSumEltR (GSumEltR t a) b)
forall (s :: * -> *) a1 b. TupR s a1 -> TupR s b -> TupR s (a1, b)
TupRpair (ScalarType TAG -> TupR ScalarType TAG
forall (s :: * -> *) a. s a -> TupR s a
TupRsingle ScalarType TAG
forall a. IsScalar a => ScalarType a
scalarType) (forall (f :: * -> *) t.
GSumElt f =>
TypeR t -> TypeR (GSumEltR t f)
gsumEltR @(a :+: b) TypeR t
t)
gtagsR :: forall t. TagR t -> [TagR (GEltR t (a :+: b))]
gtagsR TagR t
t = (TAG
-> TagR (GSumEltR (GSumEltR t a) b)
-> TagR (TAG, GSumEltR (GSumEltR t a) b))
-> (TAG, TagR (GSumEltR (GSumEltR t a) b))
-> TagR (TAG, GSumEltR (GSumEltR t a) b)
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry TAG
-> TagR (GSumEltR (GSumEltR t a) b)
-> TagR (TAG, GSumEltR (GSumEltR t a) b)
forall a1. TAG -> TagR a1 -> TagR (TAG, a1)
TagRtag ((TAG, TagR (GSumEltR (GSumEltR t a) b))
-> TagR (TAG, GSumEltR (GSumEltR t a) b))
-> [(TAG, TagR (GSumEltR (GSumEltR t a) b))]
-> [TagR (TAG, GSumEltR (GSumEltR t a) b)]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> State TAG [(TAG, TagR (GSumEltR (GSumEltR t a) b))]
-> TAG -> [(TAG, TagR (GSumEltR (GSumEltR t a) b))]
forall s a. State s a -> s -> a
LState.evalState (forall (f :: * -> *) t.
GSumElt f =>
TagR t -> State TAG [(TAG, TagR (GSumEltR t f))]
gsumTagsR @(a :+: b) TagR t
t) TAG
0
gfromElt :: forall t a. t -> (:+:) a b a -> GEltR t (a :+: b)
gfromElt t
t (:+:) a b a
x = State TAG (TAG, GSumEltR (GSumEltR t a) b)
-> TAG -> (TAG, GSumEltR (GSumEltR t a) b)
forall s a. State s a -> s -> a
LState.evalState (t -> (:+:) a b a -> State TAG (TAG, GSumEltR t (a :+: b))
forall t a.
t -> (:+:) a b a -> State TAG (TAG, GSumEltR t (a :+: b))
forall (f :: * -> *) t a.
GSumElt f =>
t -> f a -> State TAG (TAG, GSumEltR t f)
gsumFromElt t
t (:+:) a b a
x) TAG
0
gtoElt :: forall t a. GEltR t (a :+: b) -> (t, (:+:) a b a)
gtoElt (TAG
k,GSumEltR (GSumEltR t a) b
x) = let (t
t, Maybe ((:+:) a b a)
x') = State TAG (t, Maybe ((:+:) a b a))
-> TAG -> (t, Maybe ((:+:) a b a))
forall s a. State s a -> s -> a
LState.evalState (TAG -> GSumEltR t (a :+: b) -> State TAG (t, Maybe ((:+:) a b a))
forall t a.
TAG -> GSumEltR t (a :+: b) -> State TAG (t, Maybe ((:+:) a b a))
forall (f :: * -> *) t a.
GSumElt f =>
TAG -> GSumEltR t f -> State TAG (t, Maybe (f a))
gsumToElt TAG
k GSumEltR t (a :+: b)
GSumEltR (GSumEltR t a) b
x) TAG
0
in (t
t, (:+:) a b a -> Maybe ((:+:) a b a) -> (:+:) a b a
forall a. a -> Maybe a -> a
fromMaybe ([Char] -> (:+:) a b a
forall a. HasCallStack => [Char] -> a
error [Char]
err) Maybe ((:+:) a b a)
x')
where err :: [Char]
err = [Char]
"Elt: no sum type tag matched (k=" [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ TAG -> [Char]
forall a. Show a => a -> [Char]
show TAG
k [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ [Char]
")"
gundef :: forall t. t -> GEltR t (a :+: b)
gundef t
t = (TAG
0xff, forall (f :: * -> *) t. GSumElt f => t -> GSumEltR t f
gsumUndef @(a :+: b) t
t)
guntag :: forall t. TagR t -> TagR (GEltR t (a :+: b))
guntag TagR t
t = TagR TAG
-> TagR (GSumEltR (GSumEltR t a) b)
-> TagR (TAG, GSumEltR (GSumEltR t a) b)
forall a1 b. TagR a1 -> TagR b -> TagR (a1, b)
TagRpair (ScalarType TAG -> TagR TAG
forall a. ScalarType a -> TagR a
TagRundef ScalarType TAG
forall a. IsScalar a => ScalarType a
scalarType) (forall (f :: * -> *) t. GSumElt f => TagR t -> TagR (GSumEltR t f)
gsumUntag @(a :+: b) TagR t
t)
class GSumElt f where
type GSumEltR t f
gsumEltR :: TypeR t -> TypeR (GSumEltR t f)
gsumTagsR :: TagR t -> LState.State TAG [(TAG, TagR (GSumEltR t f))]
gsumFromElt :: t -> f a -> LState.State TAG (TAG, GSumEltR t f)
gsumCountTags :: Proxy f -> LState.State TAG ()
gsumToElt :: TAG -> GSumEltR t f -> LState.State TAG (t, Maybe (f a))
gsumUndef :: t -> GSumEltR t f
gsumUntag :: TagR t -> TagR (GSumEltR t f)
genTag :: LState.State TAG TAG
genTag :: State TAG TAG
genTag = (TAG -> (TAG, TAG)) -> State TAG TAG
forall a. (TAG -> (a, TAG)) -> StateT TAG Identity a
forall s (m :: * -> *) a. MonadState s m => (s -> (a, s)) -> m a
LState.state (\TAG
s -> (TAG
s, TAG
s TAG -> TAG -> TAG
forall a. Num a => a -> a -> a
+ TAG
1))
instance GSumElt U1 where
type GSumEltR t U1 = t
gsumEltR :: forall t. TypeR t -> TypeR (GSumEltR t U1)
gsumEltR TypeR t
t = TypeR t
TupR ScalarType (GSumEltR t U1)
t
gsumTagsR :: forall t. TagR t -> State TAG [(TAG, TagR (GSumEltR t U1))]
gsumTagsR TagR t
t = do TAG
n <- State TAG TAG
genTag; [(TAG, TagR t)] -> StateT TAG Identity [(TAG, TagR t)]
forall a. a -> StateT TAG Identity a
forall (f :: * -> *) a. Applicative f => a -> f a
pure [(TAG
n, TagR t
t)]
gsumFromElt :: forall t a. t -> U1 a -> State TAG (TAG, GSumEltR t U1)
gsumFromElt t
t U1 a
U1 = do TAG
n <- State TAG TAG
genTag; (TAG, t) -> StateT TAG Identity (TAG, t)
forall a. a -> StateT TAG Identity a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (TAG
n, t
t)
gsumCountTags :: Proxy U1 -> State TAG ()
gsumCountTags Proxy U1
_ = () () -> State TAG TAG -> State TAG ()
forall a b. a -> StateT TAG Identity b -> StateT TAG Identity a
forall (f :: * -> *) a b. Functor f => a -> f b -> f a
<$ State TAG TAG
genTag
gsumToElt :: forall t a. TAG -> GSumEltR t U1 -> State TAG (t, Maybe (U1 a))
gsumToElt TAG
k GSumEltR t U1
t = do TAG
n <- State TAG TAG
genTag
(t, Maybe (U1 a)) -> State TAG (t, Maybe (U1 a))
forall a. a -> StateT TAG Identity a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (t
GSumEltR t U1
t, if TAG
n TAG -> TAG -> Bool
forall a. Eq a => a -> a -> Bool
== TAG
k then U1 a -> Maybe (U1 a)
forall a. a -> Maybe a
Just U1 a
forall k (p :: k). U1 p
U1 else Maybe (U1 a)
forall a. Maybe a
Nothing)
gsumUndef :: forall t. t -> GSumEltR t U1
gsumUndef t
t = t
GSumEltR t U1
t
gsumUntag :: forall t. TagR t -> TagR (GSumEltR t U1)
gsumUntag TagR t
t = TagR t
TagR (GSumEltR t U1)
t
instance GSumElt a => GSumElt (M1 i c a) where
type GSumEltR t (M1 i c a) = GSumEltR t a
gsumEltR :: forall t. TypeR t -> TypeR (GSumEltR t (M1 i c a))
gsumEltR = forall (f :: * -> *) t.
GSumElt f =>
TypeR t -> TypeR (GSumEltR t f)
gsumEltR @a
gsumTagsR :: forall t. TagR t -> State TAG [(TAG, TagR (GSumEltR t (M1 i c a)))]
gsumTagsR = forall (f :: * -> *) t.
GSumElt f =>
TagR t -> State TAG [(TAG, TagR (GSumEltR t f))]
gsumTagsR @a
gsumFromElt :: forall t a.
t -> M1 i c a a -> State TAG (TAG, GSumEltR t (M1 i c a))
gsumFromElt t
t (M1 a a
x) = t -> a a -> State TAG (TAG, GSumEltR t a)
forall t a. t -> a a -> State TAG (TAG, GSumEltR t a)
forall (f :: * -> *) t a.
GSumElt f =>
t -> f a -> State TAG (TAG, GSumEltR t f)
gsumFromElt t
t a a
x
gsumCountTags :: Proxy (M1 i c a) -> State TAG ()
gsumCountTags Proxy (M1 i c a)
_ = Proxy a -> State TAG ()
forall (f :: * -> *). GSumElt f => Proxy f -> State TAG ()
gsumCountTags (forall {k} (t :: k). Proxy t
forall (t :: * -> *). Proxy t
Proxy @a)
gsumToElt :: forall t a.
TAG -> GSumEltR t (M1 i c a) -> State TAG (t, Maybe (M1 i c a a))
gsumToElt TAG
k GSumEltR t (M1 i c a)
x = (\(t
t, Maybe (a a)
x') -> (t
t, (a a -> M1 i c a a) -> Maybe (a a) -> Maybe (M1 i c a a)
forall a b. (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a a -> M1 i c a a
forall k i (c :: Meta) (f :: k -> *) (p :: k). f p -> M1 i c f p
M1 Maybe (a a)
x')) ((t, Maybe (a a)) -> (t, Maybe (M1 i c a a)))
-> StateT TAG Identity (t, Maybe (a a))
-> StateT TAG Identity (t, Maybe (M1 i c a a))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> TAG -> GSumEltR t a -> StateT TAG Identity (t, Maybe (a a))
forall t a. TAG -> GSumEltR t a -> State TAG (t, Maybe (a a))
forall (f :: * -> *) t a.
GSumElt f =>
TAG -> GSumEltR t f -> State TAG (t, Maybe (f a))
gsumToElt TAG
k GSumEltR t a
GSumEltR t (M1 i c a)
x
gsumUndef :: forall t. t -> GSumEltR t (M1 i c a)
gsumUndef = forall (f :: * -> *) t. GSumElt f => t -> GSumEltR t f
gsumUndef @a
gsumUntag :: forall t. TagR t -> TagR (GSumEltR t (M1 i c a))
gsumUntag = forall (f :: * -> *) t. GSumElt f => TagR t -> TagR (GSumEltR t f)
gsumUntag @a
instance Elt a => GSumElt (K1 i a) where
type GSumEltR t (K1 i a) = (t, EltR a)
gsumEltR :: forall t. TypeR t -> TypeR (GSumEltR t (K1 i a))
gsumEltR TypeR t
t = TypeR t -> TupR ScalarType (EltR a) -> TupR ScalarType (t, EltR a)
forall (s :: * -> *) a1 b. TupR s a1 -> TupR s b -> TupR s (a1, b)
TupRpair TypeR t
t (forall a. Elt a => TypeR (EltR a)
eltR @a)
gsumTagsR :: forall t. TagR t -> State TAG [(TAG, TagR (GSumEltR t (K1 i a)))]
gsumTagsR TagR t
t = do TAG
n <- State TAG TAG
genTag; [(TAG, TagR (t, EltR a))]
-> StateT TAG Identity [(TAG, TagR (t, EltR a))]
forall a. a -> StateT TAG Identity a
forall (f :: * -> *) a. Applicative f => a -> f a
pure ((TAG
n,) (TagR (t, EltR a) -> (TAG, TagR (t, EltR a)))
-> (TagR (EltR a) -> TagR (t, EltR a))
-> TagR (EltR a)
-> (TAG, TagR (t, EltR a))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TagR t -> TagR (EltR a) -> TagR (t, EltR a)
forall a1 b. TagR a1 -> TagR b -> TagR (a1, b)
TagRpair TagR t
t (TagR (EltR a) -> (TAG, TagR (t, EltR a)))
-> [TagR (EltR a)] -> [(TAG, TagR (t, EltR a))]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. Elt a => [TagR (EltR a)]
tagsR @a)
gsumFromElt :: forall t a. t -> K1 i a a -> State TAG (TAG, GSumEltR t (K1 i a))
gsumFromElt t
t (K1 a
x) = do TAG
n <- State TAG TAG
genTag; (TAG, (t, EltR a)) -> StateT TAG Identity (TAG, (t, EltR a))
forall a. a -> StateT TAG Identity a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (TAG
n, (t
t, a -> EltR a
forall a. Elt a => a -> EltR a
fromElt a
x))
gsumCountTags :: Proxy (K1 i a) -> State TAG ()
gsumCountTags Proxy (K1 i a)
_ = () () -> State TAG TAG -> State TAG ()
forall a b. a -> StateT TAG Identity b -> StateT TAG Identity a
forall (f :: * -> *) a b. Functor f => a -> f b -> f a
<$ State TAG TAG
genTag
gsumToElt :: forall t a.
TAG -> GSumEltR t (K1 i a) -> State TAG (t, Maybe (K1 i a a))
gsumToElt TAG
k ~(t
t, EltR a
x) = do TAG
n <- State TAG TAG
genTag
(t, Maybe (K1 i a a)) -> State TAG (t, Maybe (K1 i a a))
forall a. a -> StateT TAG Identity a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (t
t, if TAG
n TAG -> TAG -> Bool
forall a. Eq a => a -> a -> Bool
== TAG
k then K1 i a a -> Maybe (K1 i a a)
forall a. a -> Maybe a
Just (a -> K1 i a a
forall k i c (p :: k). c -> K1 i c p
K1 (EltR a -> a
forall a. Elt a => EltR a -> a
toElt EltR a
x)) else Maybe (K1 i a a)
forall a. Maybe a
Nothing)
gsumUndef :: forall t. t -> GSumEltR t (K1 i a)
gsumUndef t
t = (t
t, TupR ScalarType (EltR a) -> EltR a
forall t. TypeR t -> t
undefElt (forall a. Elt a => TypeR (EltR a)
eltR @a))
gsumUntag :: forall t. TagR t -> TagR (GSumEltR t (K1 i a))
gsumUntag TagR t
t = TagR t -> TagR (EltR a) -> TagR (t, EltR a)
forall a1 b. TagR a1 -> TagR b -> TagR (a1, b)
TagRpair TagR t
t (TupR ScalarType (EltR a) -> TagR (EltR a)
forall t. TypeR t -> TagR t
untag (forall a. Elt a => TypeR (EltR a)
eltR @a))
instance (GElt a, GElt b) => GSumElt (a :*: b) where
type GSumEltR t (a :*: b) = GEltR t (a :*: b)
gsumEltR :: forall t. TypeR t -> TypeR (GSumEltR t (a :*: b))
gsumEltR = forall (f :: * -> *) t. GElt f => TypeR t -> TypeR (GEltR t f)
geltR @(a :*: b)
gsumTagsR :: forall t. TagR t -> State TAG [(TAG, TagR (GSumEltR t (a :*: b)))]
gsumTagsR TagR t
t = do TAG
n <- State TAG TAG
genTag; [(TAG, TagR (GEltR (GEltR t a) b))]
-> StateT TAG Identity [(TAG, TagR (GEltR (GEltR t a) b))]
forall a. a -> StateT TAG Identity a
forall (f :: * -> *) a. Applicative f => a -> f a
pure ((TAG
n,) (TagR (GEltR (GEltR t a) b) -> (TAG, TagR (GEltR (GEltR t a) b)))
-> [TagR (GEltR (GEltR t a) b)]
-> [(TAG, TagR (GEltR (GEltR t a) b))]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (f :: * -> *) t. GElt f => TagR t -> [TagR (GEltR t f)]
gtagsR @(a :*: b) TagR t
t)
gsumFromElt :: forall t a.
t -> (:*:) a b a -> State TAG (TAG, GSumEltR t (a :*: b))
gsumFromElt t
t (a a
a :*: b a
b) = do TAG
n <- State TAG TAG
genTag; (TAG, GEltR (GEltR t a) b)
-> StateT TAG Identity (TAG, GEltR (GEltR t a) b)
forall a. a -> StateT TAG Identity a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (TAG
n, t -> (:*:) a b a -> GEltR t (a :*: b)
forall t a. t -> (:*:) a b a -> GEltR t (a :*: b)
forall (f :: * -> *) t a. GElt f => t -> f a -> GEltR t f
gfromElt t
t (a a
a a a -> b a -> (:*:) a b a
forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
:*: b a
b))
gsumCountTags :: Proxy (a :*: b) -> State TAG ()
gsumCountTags Proxy (a :*: b)
_ = () () -> State TAG TAG -> State TAG ()
forall a b. a -> StateT TAG Identity b -> StateT TAG Identity a
forall (f :: * -> *) a b. Functor f => a -> f b -> f a
<$ State TAG TAG
genTag
gsumToElt :: forall t a.
TAG -> GSumEltR t (a :*: b) -> State TAG (t, Maybe ((:*:) a b a))
gsumToElt TAG
k GSumEltR t (a :*: b)
t0 = do TAG
n <- State TAG TAG
genTag
let (t
t, (:*:) a b a
x) = GEltR t (a :*: b) -> (t, (:*:) a b a)
forall t a. GEltR t (a :*: b) -> (t, (:*:) a b a)
forall (f :: * -> *) t a. GElt f => GEltR t f -> (t, f a)
gtoElt GSumEltR t (a :*: b)
GEltR t (a :*: b)
t0
(t, Maybe ((:*:) a b a)) -> State TAG (t, Maybe ((:*:) a b a))
forall a. a -> StateT TAG Identity a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (t
t, if TAG
n TAG -> TAG -> Bool
forall a. Eq a => a -> a -> Bool
== TAG
k then (:*:) a b a -> Maybe ((:*:) a b a)
forall a. a -> Maybe a
Just (:*:) a b a
x else Maybe ((:*:) a b a)
forall a. Maybe a
Nothing)
gsumUndef :: forall t. t -> GSumEltR t (a :*: b)
gsumUndef = forall (f :: * -> *) t. GElt f => t -> GEltR t f
gundef @(a :*: b)
gsumUntag :: forall t. TagR t -> TagR (GSumEltR t (a :*: b))
gsumUntag = forall (f :: * -> *) t. GElt f => TagR t -> TagR (GEltR t f)
guntag @(a :*: b)
instance (GSumElt a, GSumElt b) => GSumElt (a :+: b) where
type GSumEltR t (a :+: b) = GSumEltR (GSumEltR t a) b
gsumEltR :: forall t. TypeR t -> TypeR (GSumEltR t (a :+: b))
gsumEltR = forall (f :: * -> *) t.
GSumElt f =>
TypeR t -> TypeR (GSumEltR t f)
gsumEltR @b (TypeR (GSumEltR t a) -> TypeR (GSumEltR (GSumEltR t a) b))
-> (TypeR t -> TypeR (GSumEltR t a))
-> TypeR t
-> TypeR (GSumEltR (GSumEltR t a) b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) t.
GSumElt f =>
TypeR t -> TypeR (GSumEltR t f)
gsumEltR @a
gsumTagsR :: forall t. TagR t -> State TAG [(TAG, TagR (GSumEltR t (a :+: b)))]
gsumTagsR TagR t
t = do
[(TAG, TagR (GSumEltR t a))]
a <- forall (f :: * -> *) t.
GSumElt f =>
TagR t -> State TAG [(TAG, TagR (GSumEltR t f))]
gsumTagsR @a TagR t
t
let a' :: [(TAG, TagR (GSumEltR (GSumEltR t a) b))]
a' = ((TAG, TagR (GSumEltR t a))
-> (TAG, TagR (GSumEltR (GSumEltR t a) b)))
-> [(TAG, TagR (GSumEltR t a))]
-> [(TAG, TagR (GSumEltR (GSumEltR t a) b))]
forall a b. (a -> b) -> [a] -> [b]
map (\(TAG
tag, TagR (GSumEltR t a)
tagrA) -> (TAG
tag, forall (f :: * -> *) t. GSumElt f => TagR t -> TagR (GSumEltR t f)
gsumUntag @b TagR (GSumEltR t a)
tagrA)) [(TAG, TagR (GSumEltR t a))]
a
[(TAG, TagR (GSumEltR (GSumEltR t a) b))]
b <- forall (f :: * -> *) t.
GSumElt f =>
TagR t -> State TAG [(TAG, TagR (GSumEltR t f))]
gsumTagsR @b (forall (f :: * -> *) t. GSumElt f => TagR t -> TagR (GSumEltR t f)
gsumUntag @a TagR t
t)
[(TAG, TagR (GSumEltR (GSumEltR t a) b))]
-> StateT TAG Identity [(TAG, TagR (GSumEltR (GSumEltR t a) b))]
forall a. a -> StateT TAG Identity a
forall (f :: * -> *) a. Applicative f => a -> f a
pure ([(TAG, TagR (GSumEltR (GSumEltR t a) b))]
a' [(TAG, TagR (GSumEltR (GSumEltR t a) b))]
-> [(TAG, TagR (GSumEltR (GSumEltR t a) b))]
-> [(TAG, TagR (GSumEltR (GSumEltR t a) b))]
forall a. [a] -> [a] -> [a]
++ [(TAG, TagR (GSumEltR (GSumEltR t a) b))]
b)
gsumFromElt :: forall t a.
t -> (:+:) a b a -> State TAG (TAG, GSumEltR t (a :+: b))
gsumFromElt t
t (L1 a a
a) = do
(TAG
n, GSumEltR t a
reprA) <- t -> a a -> StateT TAG Identity (TAG, GSumEltR t a)
forall t a. t -> a a -> State TAG (TAG, GSumEltR t a)
forall (f :: * -> *) t a.
GSumElt f =>
t -> f a -> State TAG (TAG, GSumEltR t f)
gsumFromElt t
t a a
a
(TAG, GSumEltR (GSumEltR t a) b)
-> StateT TAG Identity (TAG, GSumEltR (GSumEltR t a) b)
forall a. a -> StateT TAG Identity a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (TAG
n, forall (f :: * -> *) t. GSumElt f => t -> GSumEltR t f
gsumUndef @b GSumEltR t a
reprA)
gsumFromElt t
t (R1 b a
b) = do
Proxy a -> State TAG ()
forall (f :: * -> *). GSumElt f => Proxy f -> State TAG ()
gsumCountTags (forall {k} (t :: k). Proxy t
forall (t :: * -> *). Proxy t
Proxy @a)
GSumEltR t a
-> b a -> StateT TAG Identity (TAG, GSumEltR (GSumEltR t a) b)
forall t a. t -> b a -> State TAG (TAG, GSumEltR t b)
forall (f :: * -> *) t a.
GSumElt f =>
t -> f a -> State TAG (TAG, GSumEltR t f)
gsumFromElt (forall (f :: * -> *) t. GSumElt f => t -> GSumEltR t f
gsumUndef @a t
t) b a
b
gsumCountTags :: Proxy (a :+: b) -> State TAG ()
gsumCountTags Proxy (a :+: b)
_ = Proxy a -> State TAG ()
forall (f :: * -> *). GSumElt f => Proxy f -> State TAG ()
gsumCountTags (forall {k} (t :: k). Proxy t
forall (t :: * -> *). Proxy t
Proxy @a) State TAG () -> State TAG () -> State TAG ()
forall a b.
StateT TAG Identity a
-> StateT TAG Identity b -> StateT TAG Identity b
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> Proxy b -> State TAG ()
forall (f :: * -> *). GSumElt f => Proxy f -> State TAG ()
gsumCountTags (forall {k} (t :: k). Proxy t
forall (t :: * -> *). Proxy t
Proxy @b)
gsumToElt :: forall t a.
TAG -> GSumEltR t (a :+: b) -> State TAG (t, Maybe ((:+:) a b a))
gsumToElt TAG
k GSumEltR t (a :+: b)
t0 = do
(GSumEltR t a
_t1, t
t2, Maybe (b a)
mres1, Maybe (a a)
mres2) <- ((GSumEltR t a, t, Maybe (b a), Maybe (a a))
-> StateT TAG Identity (GSumEltR t a, t, Maybe (b a), Maybe (a a)))
-> StateT TAG Identity (GSumEltR t a, t, Maybe (b a), Maybe (a a))
forall a. (a -> StateT TAG Identity a) -> StateT TAG Identity a
forall (m :: * -> *) a. MonadFix m => (a -> m a) -> m a
mfix (((GSumEltR t a, t, Maybe (b a), Maybe (a a))
-> StateT TAG Identity (GSumEltR t a, t, Maybe (b a), Maybe (a a)))
-> StateT TAG Identity (GSumEltR t a, t, Maybe (b a), Maybe (a a)))
-> ((GSumEltR t a, t, Maybe (b a), Maybe (a a))
-> StateT TAG Identity (GSumEltR t a, t, Maybe (b a), Maybe (a a)))
-> StateT TAG Identity (GSumEltR t a, t, Maybe (b a), Maybe (a a))
forall a b. (a -> b) -> a -> b
$ \ ~(GSumEltR t a
t1, t
_t2, Maybe (b a)
_mres1, Maybe (a a)
_mres2) ->do
(t
t2', Maybe (a a)
mres2) <- forall (f :: * -> *) t a.
GSumElt f =>
TAG -> GSumEltR t f -> State TAG (t, Maybe (f a))
gsumToElt @a TAG
k GSumEltR t a
t1
(GSumEltR t a
t1', Maybe (b a)
mres1) <- forall (f :: * -> *) t a.
GSumElt f =>
TAG -> GSumEltR t f -> State TAG (t, Maybe (f a))
gsumToElt @b TAG
k GSumEltR t (a :+: b)
GSumEltR (GSumEltR t a) b
t0
(GSumEltR t a, t, Maybe (b a), Maybe (a a))
-> StateT TAG Identity (GSumEltR t a, t, Maybe (b a), Maybe (a a))
forall a. a -> StateT TAG Identity a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (GSumEltR t a
t1', t
t2', Maybe (b a)
mres1, Maybe (a a)
mres2)
(t, Maybe ((:+:) a b a)) -> State TAG (t, Maybe ((:+:) a b a))
forall a. a -> StateT TAG Identity a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (t
t2, (b a -> (:+:) a b a
forall k (f :: k -> *) (g :: k -> *) (p :: k). g p -> (:+:) f g p
R1 (b a -> (:+:) a b a) -> Maybe (b a) -> Maybe ((:+:) a b a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Maybe (b a)
mres1) Maybe ((:+:) a b a) -> Maybe ((:+:) a b a) -> Maybe ((:+:) a b a)
forall a. Maybe a -> Maybe a -> Maybe a
forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> (a a -> (:+:) a b a
forall k (f :: k -> *) (g :: k -> *) (p :: k). f p -> (:+:) f g p
L1 (a a -> (:+:) a b a) -> Maybe (a a) -> Maybe ((:+:) a b a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Maybe (a a)
mres2))
gsumUndef :: forall t. t -> GSumEltR t (a :+: b)
gsumUndef t
t = forall (f :: * -> *) t. GSumElt f => t -> GSumEltR t f
gsumUndef @b (forall (f :: * -> *) t. GSumElt f => t -> GSumEltR t f
gsumUndef @a t
t)
gsumUntag :: forall t. TagR t -> TagR (GSumEltR t (a :+: b))
gsumUntag TagR t
t = forall (f :: * -> *) t. GSumElt f => TagR t -> TagR (GSumEltR t f)
gsumUntag @b (forall (f :: * -> *) t. GSumElt f => TagR t -> TagR (GSumEltR t f)
gsumUntag @a TagR t
t)
untag :: TypeR t -> TagR t
untag :: forall t. TypeR t -> TagR t
untag TupR ScalarType t
TupRunit = TagR t
TagR ()
TagRunit
untag (TupRsingle ScalarType t
t) = ScalarType t -> TagR t
forall a. ScalarType a -> TagR a
TagRundef ScalarType t
t
untag (TupRpair TupR ScalarType a1
ta TupR ScalarType b
tb) = TagR a1 -> TagR b -> TagR (a1, b)
forall a1 b. TagR a1 -> TagR b -> TagR (a1, b)
TagRpair (TupR ScalarType a1 -> TagR a1
forall t. TypeR t -> TagR t
untag TupR ScalarType a1
ta) (TupR ScalarType b -> TagR b
forall t. TypeR t -> TagR t
untag TupR ScalarType b
tb)
instance Elt ()
instance Elt Bool
instance Elt Ordering
instance Elt a => Elt (Maybe a)
instance (Elt a, Elt b) => Elt (Either a b)
instance Elt Char where
type EltR Char = Word32
eltR :: TypeR (EltR Char)
eltR = ScalarType Word32 -> TupR ScalarType Word32
forall (s :: * -> *) a. s a -> TupR s a
TupRsingle ScalarType Word32
forall a. IsScalar a => ScalarType a
scalarType
tagsR :: [TagR (EltR Char)]
tagsR = [ScalarType Word32 -> TagR Word32
forall a. ScalarType a -> TagR a
TagRsingle ScalarType Word32
forall a. IsScalar a => ScalarType a
scalarType]
toElt :: EltR Char -> Char
toElt = Int -> Char
chr (Int -> Char) -> (Word32 -> Int) -> Word32 -> Char
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word32 -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral
fromElt :: Char -> EltR Char
fromElt = Int -> Word32
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Int -> Word32) -> (Char -> Int) -> Char -> Word32
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Char -> Int
ord