{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE ViewPatterns #-}
{-# OPTIONS_GHC -fno-warn-orphans #-}
module Data.Array.Accelerate.Classes.Eq (
Bool(..), pattern True_, pattern False_,
Eq(..),
(&&), (&&!),
(||), (||!),
not,
) where
import Data.Array.Accelerate.AST.Idx
import Data.Array.Accelerate.Pattern
import Data.Array.Accelerate.Pattern.Bool
import Data.Array.Accelerate.Representation.Tag
import Data.Array.Accelerate.Smart
import Data.Array.Accelerate.Sugar.Elt
import Data.Array.Accelerate.Sugar.Shape
import Data.Array.Accelerate.Type
import Data.Bool ( Bool(..) )
import Data.Char ( Char )
import Text.Printf
import Prelude ( ($), String, Num(..), Ordering(..), show, error, return, concat, map, zipWith, foldr1, mapM )
import Language.Haskell.TH.Extra hiding ( Exp )
import qualified Prelude as P
infix 4 ==
infix 4 /=
infixr 3 &&
(&&) :: Exp Bool -> Exp Bool -> Exp Bool
&& :: Exp Bool -> Exp Bool -> Exp Bool
(&&) (Exp SmartExp (EltR Bool)
x) (Exp SmartExp (EltR Bool)
y) =
PreSmartExp SmartAcc SmartExp (EltR Bool) -> Exp Bool
forall t. PreSmartExp SmartAcc SmartExp (EltR t) -> Exp t
mkExp (PreSmartExp SmartAcc SmartExp (EltR Bool) -> Exp Bool)
-> PreSmartExp SmartAcc SmartExp (EltR Bool) -> Exp Bool
forall a b. (a -> b) -> a -> b
$ PreSmartExp SmartAcc SmartExp Word8 -> SmartExp Word8
forall t. PreSmartExp SmartAcc SmartExp t -> SmartExp t
SmartExp (SmartExp Word8
-> SmartExp Word8
-> SmartExp Word8
-> PreSmartExp SmartAcc SmartExp Word8
forall (exp :: * -> *) t (acc :: * -> *).
exp Word8 -> exp t -> exp t -> PreSmartExp acc exp t
Cond (PreSmartExp SmartAcc SmartExp Word8 -> SmartExp Word8
forall t. PreSmartExp SmartAcc SmartExp t -> SmartExp t
SmartExp (PreSmartExp SmartAcc SmartExp Word8 -> SmartExp Word8)
-> PreSmartExp SmartAcc SmartExp Word8 -> SmartExp Word8
forall a b. (a -> b) -> a -> b
$ PairIdx (Word8, ()) Word8
-> SmartExp (Word8, ()) -> PreSmartExp SmartAcc SmartExp Word8
forall t1 t2 t (exp :: * -> *) (acc :: * -> *).
PairIdx (t1, t2) t -> exp (t1, t2) -> PreSmartExp acc exp t
Prj PairIdx (Word8, ()) Word8
forall a b. PairIdx (a, b) a
PairIdxLeft SmartExp (Word8, ())
SmartExp (EltR Bool)
x)
(PreSmartExp SmartAcc SmartExp Word8 -> SmartExp Word8
forall t. PreSmartExp SmartAcc SmartExp t -> SmartExp t
SmartExp (PreSmartExp SmartAcc SmartExp Word8 -> SmartExp Word8)
-> PreSmartExp SmartAcc SmartExp Word8 -> SmartExp Word8
forall a b. (a -> b) -> a -> b
$ PairIdx (Word8, ()) Word8
-> SmartExp (Word8, ()) -> PreSmartExp SmartAcc SmartExp Word8
forall t1 t2 t (exp :: * -> *) (acc :: * -> *).
PairIdx (t1, t2) t -> exp (t1, t2) -> PreSmartExp acc exp t
Prj PairIdx (Word8, ()) Word8
forall a b. PairIdx (a, b) a
PairIdxLeft SmartExp (Word8, ())
SmartExp (EltR Bool)
y)
(PreSmartExp SmartAcc SmartExp Word8 -> SmartExp Word8
forall t. PreSmartExp SmartAcc SmartExp t -> SmartExp t
SmartExp (PreSmartExp SmartAcc SmartExp Word8 -> SmartExp Word8)
-> PreSmartExp SmartAcc SmartExp Word8 -> SmartExp Word8
forall a b. (a -> b) -> a -> b
$ ScalarType Word8 -> Word8 -> PreSmartExp SmartAcc SmartExp Word8
forall t (acc :: * -> *) (exp :: * -> *).
ScalarType t -> t -> PreSmartExp acc exp t
Const ScalarType Word8
scalarTypeWord8 Word8
0))
SmartExp Word8
-> SmartExp () -> PreSmartExp SmartAcc SmartExp (Word8, ())
forall (exp :: * -> *) t1 t2 (acc :: * -> *).
exp t1 -> exp t2 -> PreSmartExp acc exp (t1, t2)
`Pair` PreSmartExp SmartAcc SmartExp () -> SmartExp ()
forall t. PreSmartExp SmartAcc SmartExp t -> SmartExp t
SmartExp PreSmartExp SmartAcc SmartExp ()
forall (acc :: * -> *) (exp :: * -> *). PreSmartExp acc exp ()
Nil
infixr 3 &&!
(&&!) :: Exp Bool -> Exp Bool -> Exp Bool
&&! :: Exp Bool -> Exp Bool -> Exp Bool
(&&!) = Exp Bool -> Exp Bool -> Exp Bool
mkLAnd
infixr 2 ||
(||) :: Exp Bool -> Exp Bool -> Exp Bool
|| :: Exp Bool -> Exp Bool -> Exp Bool
(||) (Exp SmartExp (EltR Bool)
x) (Exp SmartExp (EltR Bool)
y) =
PreSmartExp SmartAcc SmartExp (EltR Bool) -> Exp Bool
forall t. PreSmartExp SmartAcc SmartExp (EltR t) -> Exp t
mkExp (PreSmartExp SmartAcc SmartExp (EltR Bool) -> Exp Bool)
-> PreSmartExp SmartAcc SmartExp (EltR Bool) -> Exp Bool
forall a b. (a -> b) -> a -> b
$ PreSmartExp SmartAcc SmartExp Word8 -> SmartExp Word8
forall t. PreSmartExp SmartAcc SmartExp t -> SmartExp t
SmartExp (SmartExp Word8
-> SmartExp Word8
-> SmartExp Word8
-> PreSmartExp SmartAcc SmartExp Word8
forall (exp :: * -> *) t (acc :: * -> *).
exp Word8 -> exp t -> exp t -> PreSmartExp acc exp t
Cond (PreSmartExp SmartAcc SmartExp Word8 -> SmartExp Word8
forall t. PreSmartExp SmartAcc SmartExp t -> SmartExp t
SmartExp (PreSmartExp SmartAcc SmartExp Word8 -> SmartExp Word8)
-> PreSmartExp SmartAcc SmartExp Word8 -> SmartExp Word8
forall a b. (a -> b) -> a -> b
$ PairIdx (Word8, ()) Word8
-> SmartExp (Word8, ()) -> PreSmartExp SmartAcc SmartExp Word8
forall t1 t2 t (exp :: * -> *) (acc :: * -> *).
PairIdx (t1, t2) t -> exp (t1, t2) -> PreSmartExp acc exp t
Prj PairIdx (Word8, ()) Word8
forall a b. PairIdx (a, b) a
PairIdxLeft SmartExp (Word8, ())
SmartExp (EltR Bool)
x)
(PreSmartExp SmartAcc SmartExp Word8 -> SmartExp Word8
forall t. PreSmartExp SmartAcc SmartExp t -> SmartExp t
SmartExp (PreSmartExp SmartAcc SmartExp Word8 -> SmartExp Word8)
-> PreSmartExp SmartAcc SmartExp Word8 -> SmartExp Word8
forall a b. (a -> b) -> a -> b
$ ScalarType Word8 -> Word8 -> PreSmartExp SmartAcc SmartExp Word8
forall t (acc :: * -> *) (exp :: * -> *).
ScalarType t -> t -> PreSmartExp acc exp t
Const ScalarType Word8
scalarTypeWord8 Word8
1)
(PreSmartExp SmartAcc SmartExp Word8 -> SmartExp Word8
forall t. PreSmartExp SmartAcc SmartExp t -> SmartExp t
SmartExp (PreSmartExp SmartAcc SmartExp Word8 -> SmartExp Word8)
-> PreSmartExp SmartAcc SmartExp Word8 -> SmartExp Word8
forall a b. (a -> b) -> a -> b
$ PairIdx (Word8, ()) Word8
-> SmartExp (Word8, ()) -> PreSmartExp SmartAcc SmartExp Word8
forall t1 t2 t (exp :: * -> *) (acc :: * -> *).
PairIdx (t1, t2) t -> exp (t1, t2) -> PreSmartExp acc exp t
Prj PairIdx (Word8, ()) Word8
forall a b. PairIdx (a, b) a
PairIdxLeft SmartExp (Word8, ())
SmartExp (EltR Bool)
y))
SmartExp Word8
-> SmartExp () -> PreSmartExp SmartAcc SmartExp (Word8, ())
forall (exp :: * -> *) t1 t2 (acc :: * -> *).
exp t1 -> exp t2 -> PreSmartExp acc exp (t1, t2)
`Pair` PreSmartExp SmartAcc SmartExp () -> SmartExp ()
forall t. PreSmartExp SmartAcc SmartExp t -> SmartExp t
SmartExp PreSmartExp SmartAcc SmartExp ()
forall (acc :: * -> *) (exp :: * -> *). PreSmartExp acc exp ()
Nil
infixr 2 ||!
(||!) :: Exp Bool -> Exp Bool -> Exp Bool
||! :: Exp Bool -> Exp Bool -> Exp Bool
(||!) = Exp Bool -> Exp Bool -> Exp Bool
mkLOr
not :: Exp Bool -> Exp Bool
not :: Exp Bool -> Exp Bool
not = Exp Bool -> Exp Bool
mkLNot
class Elt a => Eq a where
(==) :: Exp a -> Exp a -> Exp Bool
(/=) :: Exp a -> Exp a -> Exp Bool
{-# MINIMAL (==) | (/=) #-}
Exp a
x == Exp a
y = Exp Bool -> Exp Bool
mkLNot (Exp a
x Exp a -> Exp a -> Exp Bool
forall a. Eq a => Exp a -> Exp a -> Exp Bool
/= Exp a
y)
Exp a
x /= Exp a
y = Exp Bool -> Exp Bool
mkLNot (Exp a
x Exp a -> Exp a -> Exp Bool
forall a. Eq a => Exp a -> Exp a -> Exp Bool
== Exp a
y)
instance Eq () where
Exp ()
_ == :: Exp () -> Exp () -> Exp Bool
== Exp ()
_ = Exp Bool
HasCallStack => Exp Bool
True_
Exp ()
_ /= :: Exp () -> Exp () -> Exp Bool
/= Exp ()
_ = Exp Bool
HasCallStack => Exp Bool
False_
instance Eq Z where
Exp Z
_ == :: Exp Z -> Exp Z -> Exp Bool
== Exp Z
_ = Exp Bool
HasCallStack => Exp Bool
True_
Exp Z
_ /= :: Exp Z -> Exp Z -> Exp Bool
/= Exp Z
_ = Exp Bool
HasCallStack => Exp Bool
False_
instance P.Eq (Exp a) where
== :: Exp a -> Exp a -> Bool
(==) = String -> String -> Exp a -> Exp a -> Bool
forall a. String -> String -> a
preludeError String
"Eq.(==)" String
"(==)"
/= :: Exp a -> Exp a -> Bool
(/=) = String -> String -> Exp a -> Exp a -> Bool
forall a. String -> String -> a
preludeError String
"Eq.(/=)" String
"(/=)"
preludeError :: String -> String -> a
preludeError :: forall a. String -> String -> a
preludeError String
x String
y = String -> a
forall a. HasCallStack => String -> a
error (String -> String -> String -> String
forall r. PrintfType r => String -> r
printf String
"Prelude.%s applied to EDSL types: use Data.Array.Accelerate.%s instead" String
x String
y)
runQ $ do
let
integralTypes :: [Name]
integralTypes =
[ ''Int
, ''Int8
, ''Int16
, ''Int32
, ''Int64
, ''Word
, ''Word8
, ''Word16
, ''Word32
, ''Word64
]
floatingTypes :: [Name]
floatingTypes =
[ ''Half
, ''Float
, ''Double
]
nonNumTypes :: [Name]
nonNumTypes =
[ ''Char
]
cTypes :: [Name]
cTypes =
[ ''CInt
, ''CUInt
, ''CLong
, ''CULong
, ''CLLong
, ''CULLong
, ''CShort
, ''CUShort
, ''CChar
, ''CUChar
, ''CSChar
, ''CFloat
, ''CDouble
]
mkPrim :: Name -> Q [Dec]
mkPrim t =
[d| instance Eq $(conT t) where
(==) = mkEq
(/=) = mkNEq
|]
mkTup :: Int -> Q [Dec]
mkTup n =
let
xs = [ mkName ('x':show i) | i <- [0 .. n-1] ]
ys = [ mkName ('y':show i) | i <- [0 .. n-1] ]
cst = tupT (map (\x -> [t| Eq $(varT x) |]) xs)
res = tupT (map varT xs)
pat vs = conP (mkName ('T':show n)) (map varP vs)
in
[d| instance ($cst) => Eq $res where
$(pat xs) == $(pat ys) = $(foldr1 (\vs v -> [| $vs && $v |]) (zipWith (\x y -> [| $x == $y |]) (map varE xs) (map varE ys)))
$(pat xs) /= $(pat ys) = $(foldr1 (\vs v -> [| $vs || $v |]) (zipWith (\x y -> [| $x /= $y |]) (map varE xs) (map varE ys)))
|]
is <- mapM mkPrim integralTypes
fs <- mapM mkPrim floatingTypes
ns <- mapM mkPrim nonNumTypes
cs <- mapM mkPrim cTypes
ts <- mapM mkTup [2..16]
return $ concat (concat [is,fs,ns,cs,ts])
instance Eq sh => Eq (sh :. Int) where
Exp (sh :. Int)
x == :: Exp (sh :. Int) -> Exp (sh :. Int) -> Exp Bool
== Exp (sh :. Int)
y = Exp (sh :. Int) -> Exp Int
forall sh a. (Elt sh, Elt a) => Exp (sh :. a) -> Exp a
indexHead Exp (sh :. Int)
x Exp Int -> Exp Int -> Exp Bool
forall a. Eq a => Exp a -> Exp a -> Exp Bool
== Exp (sh :. Int) -> Exp Int
forall sh a. (Elt sh, Elt a) => Exp (sh :. a) -> Exp a
indexHead Exp (sh :. Int)
y Exp Bool -> Exp Bool -> Exp Bool
&& Exp (sh :. Int) -> Exp sh
forall sh a. (Elt sh, Elt a) => Exp (sh :. a) -> Exp sh
indexTail Exp (sh :. Int)
x Exp sh -> Exp sh -> Exp Bool
forall a. Eq a => Exp a -> Exp a -> Exp Bool
== Exp (sh :. Int) -> Exp sh
forall sh a. (Elt sh, Elt a) => Exp (sh :. a) -> Exp sh
indexTail Exp (sh :. Int)
y
Exp (sh :. Int)
x /= :: Exp (sh :. Int) -> Exp (sh :. Int) -> Exp Bool
/= Exp (sh :. Int)
y = Exp (sh :. Int) -> Exp Int
forall sh a. (Elt sh, Elt a) => Exp (sh :. a) -> Exp a
indexHead Exp (sh :. Int)
x Exp Int -> Exp Int -> Exp Bool
forall a. Eq a => Exp a -> Exp a -> Exp Bool
/= Exp (sh :. Int) -> Exp Int
forall sh a. (Elt sh, Elt a) => Exp (sh :. a) -> Exp a
indexHead Exp (sh :. Int)
y Exp Bool -> Exp Bool -> Exp Bool
|| Exp (sh :. Int) -> Exp sh
forall sh a. (Elt sh, Elt a) => Exp (sh :. a) -> Exp sh
indexTail Exp (sh :. Int)
x Exp sh -> Exp sh -> Exp Bool
forall a. Eq a => Exp a -> Exp a -> Exp Bool
/= Exp (sh :. Int) -> Exp sh
forall sh a. (Elt sh, Elt a) => Exp (sh :. a) -> Exp sh
indexTail Exp (sh :. Int)
y
instance Eq Bool where
Exp Bool
x == :: Exp Bool -> Exp Bool -> Exp Bool
== Exp Bool
y = Exp Bool -> Exp Word8
forall a b. Coerce (EltR a) (EltR b) => Exp a -> Exp b
mkCoerce Exp Bool
x Exp Word8 -> Exp Word8 -> Exp Bool
forall a. Eq a => Exp a -> Exp a -> Exp Bool
== (Exp Bool -> Exp Word8
forall a b. Coerce (EltR a) (EltR b) => Exp a -> Exp b
mkCoerce Exp Bool
y :: Exp PrimBool)
Exp Bool
x /= :: Exp Bool -> Exp Bool -> Exp Bool
/= Exp Bool
y = Exp Bool -> Exp Word8
forall a b. Coerce (EltR a) (EltR b) => Exp a -> Exp b
mkCoerce Exp Bool
x Exp Word8 -> Exp Word8 -> Exp Bool
forall a. Eq a => Exp a -> Exp a -> Exp Bool
/= (Exp Bool -> Exp Word8
forall a b. Coerce (EltR a) (EltR b) => Exp a -> Exp b
mkCoerce Exp Bool
y :: Exp PrimBool)
instance Eq Ordering where
Exp Ordering
x == :: Exp Ordering -> Exp Ordering -> Exp Bool
== Exp Ordering
y = Exp Ordering -> Exp Word8
forall a b. Coerce (EltR a) (EltR b) => Exp a -> Exp b
mkCoerce Exp Ordering
x Exp Word8 -> Exp Word8 -> Exp Bool
forall a. Eq a => Exp a -> Exp a -> Exp Bool
== (Exp Ordering -> Exp Word8
forall a b. Coerce (EltR a) (EltR b) => Exp a -> Exp b
mkCoerce Exp Ordering
y :: Exp TAG)
Exp Ordering
x /= :: Exp Ordering -> Exp Ordering -> Exp Bool
/= Exp Ordering
y = Exp Ordering -> Exp Word8
forall a b. Coerce (EltR a) (EltR b) => Exp a -> Exp b
mkCoerce Exp Ordering
x Exp Word8 -> Exp Word8 -> Exp Bool
forall a. Eq a => Exp a -> Exp a -> Exp Bool
/= (Exp Ordering -> Exp Word8
forall a b. Coerce (EltR a) (EltR b) => Exp a -> Exp b
mkCoerce Exp Ordering
y :: Exp TAG)