{-# LANGUAGE CPP #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE ViewPatterns #-}
{-# OPTIONS_GHC -fno-warn-orphans #-}
#if __GLASGOW_HASKELL__ >= 806
{-# LANGUAGE UndecidableInstances #-}
#endif
module Data.Array.Accelerate.Data.Monoid (
Monoid(..), (<>),
Sum(..), pattern Sum_,
Product(..), pattern Product_,
) where
import Data.Array.Accelerate.Classes.Bounded
import Data.Array.Accelerate.Classes.Eq
import Data.Array.Accelerate.Classes.Num
import Data.Array.Accelerate.Classes.Ord
import Data.Array.Accelerate.Data.Semigroup ()
import Data.Array.Accelerate.Language
import Data.Array.Accelerate.Lift
import Data.Array.Accelerate.Pattern
import Data.Array.Accelerate.Smart
import Data.Array.Accelerate.Sugar.Elt
import Data.Array.Accelerate.Type
import Data.Function
import Data.Monoid hiding ( (<>) )
import Data.Semigroup
import qualified Prelude as P
pattern Sum_ :: Elt a => Exp a -> Exp (Sum a)
pattern $mSum_ :: forall {r} {a}.
Elt a =>
Exp (Sum a) -> (Exp a -> r) -> ((# #) -> r) -> r
$bSum_ :: forall a. Elt a => Exp a -> Exp (Sum a)
Sum_ x = Pattern x
{-# COMPLETE Sum_ #-}
instance Elt a => Elt (Sum a)
instance (Lift Exp a, Elt (Plain a)) => Lift Exp (Sum a) where
type Plain (Sum a) = Sum (Plain a)
lift :: Sum a -> Exp (Plain (Sum a))
lift (Sum a
a) = Exp (Plain a) -> Exp (Sum (Plain a))
forall a. Elt a => Exp a -> Exp (Sum a)
Sum_ (a -> Exp (Plain a)
forall (c :: * -> *) e. Lift c e => e -> c (Plain e)
lift a
a)
instance Elt a => Unlift Exp (Sum (Exp a)) where
unlift :: Exp (Plain (Sum (Exp a))) -> Sum (Exp a)
unlift (Sum_ Exp a
a) = Exp a -> Sum (Exp a)
forall a. a -> Sum a
Sum Exp a
a
instance Bounded a => P.Bounded (Exp (Sum a)) where
minBound :: Exp (Sum a)
minBound = Exp a -> Exp (Sum a)
forall a. Elt a => Exp a -> Exp (Sum a)
Sum_ Exp a
forall a. Bounded a => a
minBound
maxBound :: Exp (Sum a)
maxBound = Exp a -> Exp (Sum a)
forall a. Elt a => Exp a -> Exp (Sum a)
Sum_ Exp a
forall a. Bounded a => a
maxBound
instance Num a => P.Num (Exp (Sum a)) where
+ :: Exp (Sum a) -> Exp (Sum a) -> Exp (Sum a)
(+) = (Sum (Exp a) -> Sum (Exp a) -> Sum (Exp a))
-> Exp (Plain (Sum (Exp a)))
-> Exp (Plain (Sum (Exp a)))
-> Exp (Plain (Sum (Exp a)))
forall a b c.
(Unlift Exp a, Unlift Exp b, Lift Exp c) =>
(a -> b -> c) -> Exp (Plain a) -> Exp (Plain b) -> Exp (Plain c)
lift2 (Sum (Exp a) -> Sum (Exp a) -> Sum (Exp a)
forall a. Num a => a -> a -> a
(+) :: Sum (Exp a) -> Sum (Exp a) -> Sum (Exp a))
(-) = (Sum (Exp a) -> Sum (Exp a) -> Sum (Exp a))
-> Exp (Plain (Sum (Exp a)))
-> Exp (Plain (Sum (Exp a)))
-> Exp (Plain (Sum (Exp a)))
forall a b c.
(Unlift Exp a, Unlift Exp b, Lift Exp c) =>
(a -> b -> c) -> Exp (Plain a) -> Exp (Plain b) -> Exp (Plain c)
lift2 ((-) :: Sum (Exp a) -> Sum (Exp a) -> Sum (Exp a))
* :: Exp (Sum a) -> Exp (Sum a) -> Exp (Sum a)
(*) = (Sum (Exp a) -> Sum (Exp a) -> Sum (Exp a))
-> Exp (Plain (Sum (Exp a)))
-> Exp (Plain (Sum (Exp a)))
-> Exp (Plain (Sum (Exp a)))
forall a b c.
(Unlift Exp a, Unlift Exp b, Lift Exp c) =>
(a -> b -> c) -> Exp (Plain a) -> Exp (Plain b) -> Exp (Plain c)
lift2 (Sum (Exp a) -> Sum (Exp a) -> Sum (Exp a)
forall a. Num a => a -> a -> a
(*) :: Sum (Exp a) -> Sum (Exp a) -> Sum (Exp a))
negate :: Exp (Sum a) -> Exp (Sum a)
negate = (Sum (Exp a) -> Sum (Exp a))
-> Exp (Plain (Sum (Exp a))) -> Exp (Plain (Sum (Exp a)))
forall a b.
(Unlift Exp a, Lift Exp b) =>
(a -> b) -> Exp (Plain a) -> Exp (Plain b)
lift1 (Sum (Exp a) -> Sum (Exp a)
forall a. Num a => a -> a
negate :: Sum (Exp a) -> Sum (Exp a))
signum :: Exp (Sum a) -> Exp (Sum a)
signum = (Sum (Exp a) -> Sum (Exp a))
-> Exp (Plain (Sum (Exp a))) -> Exp (Plain (Sum (Exp a)))
forall a b.
(Unlift Exp a, Lift Exp b) =>
(a -> b) -> Exp (Plain a) -> Exp (Plain b)
lift1 (Sum (Exp a) -> Sum (Exp a)
forall a. Num a => a -> a
signum :: Sum (Exp a) -> Sum (Exp a))
abs :: Exp (Sum a) -> Exp (Sum a)
abs = (Sum (Exp a) -> Sum (Exp a))
-> Exp (Plain (Sum (Exp a))) -> Exp (Plain (Sum (Exp a)))
forall a b.
(Unlift Exp a, Lift Exp b) =>
(a -> b) -> Exp (Plain a) -> Exp (Plain b)
lift1 (Sum (Exp a) -> Sum (Exp a)
forall a. Num a => a -> a
signum :: Sum (Exp a) -> Sum (Exp a))
fromInteger :: Integer -> Exp (Sum a)
fromInteger Integer
x = Sum (Exp a) -> Exp (Plain (Sum (Exp a)))
forall (c :: * -> *) e. Lift c e => e -> c (Plain e)
lift (Integer -> Sum (Exp a)
forall a. Num a => Integer -> a
P.fromInteger Integer
x :: Sum (Exp a))
instance Eq a => Eq (Sum a) where
== :: Exp (Sum a) -> Exp (Sum a) -> Exp Bool
(==) = (Sum (Exp a) -> Sum (Exp a) -> Exp Bool)
-> Exp (Plain (Sum (Exp a)))
-> Exp (Plain (Sum (Exp a)))
-> Exp (Plain (Exp Bool))
forall a b c.
(Unlift Exp a, Unlift Exp b, Lift Exp c) =>
(a -> b -> c) -> Exp (Plain a) -> Exp (Plain b) -> Exp (Plain c)
lift2 (Exp a -> Exp a -> Exp Bool
forall a. Eq a => Exp a -> Exp a -> Exp Bool
(==) (Exp a -> Exp a -> Exp Bool)
-> (Sum (Exp a) -> Exp a) -> Sum (Exp a) -> Sum (Exp a) -> Exp Bool
forall b c a. (b -> b -> c) -> (a -> b) -> a -> a -> c
`on` Sum (Exp a) -> Exp a
forall a. Sum a -> a
getSum)
/= :: Exp (Sum a) -> Exp (Sum a) -> Exp Bool
(/=) = (Sum (Exp a) -> Sum (Exp a) -> Exp Bool)
-> Exp (Plain (Sum (Exp a)))
-> Exp (Plain (Sum (Exp a)))
-> Exp (Plain (Exp Bool))
forall a b c.
(Unlift Exp a, Unlift Exp b, Lift Exp c) =>
(a -> b -> c) -> Exp (Plain a) -> Exp (Plain b) -> Exp (Plain c)
lift2 (Exp a -> Exp a -> Exp Bool
forall a. Eq a => Exp a -> Exp a -> Exp Bool
(/=) (Exp a -> Exp a -> Exp Bool)
-> (Sum (Exp a) -> Exp a) -> Sum (Exp a) -> Sum (Exp a) -> Exp Bool
forall b c a. (b -> b -> c) -> (a -> b) -> a -> a -> c
`on` Sum (Exp a) -> Exp a
forall a. Sum a -> a
getSum)
instance Ord a => Ord (Sum a) where
< :: Exp (Sum a) -> Exp (Sum a) -> Exp Bool
(<) = (Sum (Exp a) -> Sum (Exp a) -> Exp Bool)
-> Exp (Plain (Sum (Exp a)))
-> Exp (Plain (Sum (Exp a)))
-> Exp (Plain (Exp Bool))
forall a b c.
(Unlift Exp a, Unlift Exp b, Lift Exp c) =>
(a -> b -> c) -> Exp (Plain a) -> Exp (Plain b) -> Exp (Plain c)
lift2 (Exp a -> Exp a -> Exp Bool
forall a. Ord a => Exp a -> Exp a -> Exp Bool
(<) (Exp a -> Exp a -> Exp Bool)
-> (Sum (Exp a) -> Exp a) -> Sum (Exp a) -> Sum (Exp a) -> Exp Bool
forall b c a. (b -> b -> c) -> (a -> b) -> a -> a -> c
`on` Sum (Exp a) -> Exp a
forall a. Sum a -> a
getSum)
> :: Exp (Sum a) -> Exp (Sum a) -> Exp Bool
(>) = (Sum (Exp a) -> Sum (Exp a) -> Exp Bool)
-> Exp (Plain (Sum (Exp a)))
-> Exp (Plain (Sum (Exp a)))
-> Exp (Plain (Exp Bool))
forall a b c.
(Unlift Exp a, Unlift Exp b, Lift Exp c) =>
(a -> b -> c) -> Exp (Plain a) -> Exp (Plain b) -> Exp (Plain c)
lift2 (Exp a -> Exp a -> Exp Bool
forall a. Ord a => Exp a -> Exp a -> Exp Bool
(>) (Exp a -> Exp a -> Exp Bool)
-> (Sum (Exp a) -> Exp a) -> Sum (Exp a) -> Sum (Exp a) -> Exp Bool
forall b c a. (b -> b -> c) -> (a -> b) -> a -> a -> c
`on` Sum (Exp a) -> Exp a
forall a. Sum a -> a
getSum)
<= :: Exp (Sum a) -> Exp (Sum a) -> Exp Bool
(<=) = (Sum (Exp a) -> Sum (Exp a) -> Exp Bool)
-> Exp (Plain (Sum (Exp a)))
-> Exp (Plain (Sum (Exp a)))
-> Exp (Plain (Exp Bool))
forall a b c.
(Unlift Exp a, Unlift Exp b, Lift Exp c) =>
(a -> b -> c) -> Exp (Plain a) -> Exp (Plain b) -> Exp (Plain c)
lift2 (Exp a -> Exp a -> Exp Bool
forall a. Ord a => Exp a -> Exp a -> Exp Bool
(<=) (Exp a -> Exp a -> Exp Bool)
-> (Sum (Exp a) -> Exp a) -> Sum (Exp a) -> Sum (Exp a) -> Exp Bool
forall b c a. (b -> b -> c) -> (a -> b) -> a -> a -> c
`on` Sum (Exp a) -> Exp a
forall a. Sum a -> a
getSum)
>= :: Exp (Sum a) -> Exp (Sum a) -> Exp Bool
(>=) = (Sum (Exp a) -> Sum (Exp a) -> Exp Bool)
-> Exp (Plain (Sum (Exp a)))
-> Exp (Plain (Sum (Exp a)))
-> Exp (Plain (Exp Bool))
forall a b c.
(Unlift Exp a, Unlift Exp b, Lift Exp c) =>
(a -> b -> c) -> Exp (Plain a) -> Exp (Plain b) -> Exp (Plain c)
lift2 (Exp a -> Exp a -> Exp Bool
forall a. Ord a => Exp a -> Exp a -> Exp Bool
(>=) (Exp a -> Exp a -> Exp Bool)
-> (Sum (Exp a) -> Exp a) -> Sum (Exp a) -> Sum (Exp a) -> Exp Bool
forall b c a. (b -> b -> c) -> (a -> b) -> a -> a -> c
`on` Sum (Exp a) -> Exp a
forall a. Sum a -> a
getSum)
min :: Exp (Sum a) -> Exp (Sum a) -> Exp (Sum a)
min Exp (Sum a)
x Exp (Sum a)
y = Exp a -> Exp (Sum a)
forall a. Elt a => Exp a -> Exp (Sum a)
Sum_ (Exp a -> Exp (Sum a)) -> Exp a -> Exp (Sum a)
forall a b. (a -> b) -> a -> b
$ (Sum (Exp a) -> Sum (Exp a) -> Exp a)
-> Exp (Plain (Sum (Exp a)))
-> Exp (Plain (Sum (Exp a)))
-> Exp (Plain (Exp a))
forall a b c.
(Unlift Exp a, Unlift Exp b, Lift Exp c) =>
(a -> b -> c) -> Exp (Plain a) -> Exp (Plain b) -> Exp (Plain c)
lift2 (Exp a -> Exp a -> Exp a
forall a. Ord a => Exp a -> Exp a -> Exp a
min (Exp a -> Exp a -> Exp a)
-> (Sum (Exp a) -> Exp a) -> Sum (Exp a) -> Sum (Exp a) -> Exp a
forall b c a. (b -> b -> c) -> (a -> b) -> a -> a -> c
`on` Sum (Exp a) -> Exp a
forall a. Sum a -> a
getSum) Exp (Sum a)
Exp (Plain (Sum (Exp a)))
x Exp (Sum a)
Exp (Plain (Sum (Exp a)))
y
max :: Exp (Sum a) -> Exp (Sum a) -> Exp (Sum a)
max Exp (Sum a)
x Exp (Sum a)
y = Exp a -> Exp (Sum a)
forall a. Elt a => Exp a -> Exp (Sum a)
Sum_ (Exp a -> Exp (Sum a)) -> Exp a -> Exp (Sum a)
forall a b. (a -> b) -> a -> b
$ (Sum (Exp a) -> Sum (Exp a) -> Exp a)
-> Exp (Plain (Sum (Exp a)))
-> Exp (Plain (Sum (Exp a)))
-> Exp (Plain (Exp a))
forall a b c.
(Unlift Exp a, Unlift Exp b, Lift Exp c) =>
(a -> b -> c) -> Exp (Plain a) -> Exp (Plain b) -> Exp (Plain c)
lift2 (Exp a -> Exp a -> Exp a
forall a. Ord a => Exp a -> Exp a -> Exp a
max (Exp a -> Exp a -> Exp a)
-> (Sum (Exp a) -> Exp a) -> Sum (Exp a) -> Sum (Exp a) -> Exp a
forall b c a. (b -> b -> c) -> (a -> b) -> a -> a -> c
`on` Sum (Exp a) -> Exp a
forall a. Sum a -> a
getSum) Exp (Sum a)
Exp (Plain (Sum (Exp a)))
x Exp (Sum a)
Exp (Plain (Sum (Exp a)))
y
instance Num a => Monoid (Exp (Sum a)) where
mempty :: Exp (Sum a)
mempty = Exp (Sum a)
0
instance Num a => Semigroup (Exp (Sum a)) where
<> :: Exp (Sum a) -> Exp (Sum a) -> Exp (Sum a)
(<>) = Exp (Sum a) -> Exp (Sum a) -> Exp (Sum a)
forall a. Num a => a -> a -> a
(+)
stimes :: forall b. Integral b => b -> Exp (Sum a) -> Exp (Sum a)
stimes b
n (Sum_ Exp a
x) = Exp a -> Exp (Sum a)
forall a. Elt a => Exp a -> Exp (Sum a)
Sum_ (Exp a -> Exp (Sum a)) -> Exp a -> Exp (Sum a)
forall a b. (a -> b) -> a -> b
$ b -> Exp a
forall a b. (Integral a, Num b) => a -> b
P.fromIntegral b
n Exp a -> Exp a -> Exp a
forall a. Num a => a -> a -> a
* Exp a
x
pattern Product_ :: Elt a => Exp a -> Exp (Product a)
pattern $mProduct_ :: forall {r} {a}.
Elt a =>
Exp (Product a) -> (Exp a -> r) -> ((# #) -> r) -> r
$bProduct_ :: forall a. Elt a => Exp a -> Exp (Product a)
Product_ x = Pattern x
{-# COMPLETE Product_ #-}
instance Elt a => Elt (Product a)
instance (Lift Exp a, Elt (Plain a)) => Lift Exp (Product a) where
type Plain (Product a) = Product (Plain a)
lift :: Product a -> Exp (Plain (Product a))
lift (Product a
a) = Exp (Plain a) -> Exp (Product (Plain a))
forall a. Elt a => Exp a -> Exp (Product a)
Product_ (a -> Exp (Plain a)
forall (c :: * -> *) e. Lift c e => e -> c (Plain e)
lift a
a)
instance Elt a => Unlift Exp (Product (Exp a)) where
unlift :: Exp (Plain (Product (Exp a))) -> Product (Exp a)
unlift (Product_ Exp a
a) = Exp a -> Product (Exp a)
forall a. a -> Product a
Product Exp a
a
instance Bounded a => P.Bounded (Exp (Product a)) where
minBound :: Exp (Product a)
minBound = Exp a -> Exp (Product a)
forall a. Elt a => Exp a -> Exp (Product a)
Product_ Exp a
forall a. Bounded a => a
minBound
maxBound :: Exp (Product a)
maxBound = Exp a -> Exp (Product a)
forall a. Elt a => Exp a -> Exp (Product a)
Product_ Exp a
forall a. Bounded a => a
maxBound
instance Num a => P.Num (Exp (Product a)) where
+ :: Exp (Product a) -> Exp (Product a) -> Exp (Product a)
(+) = (Product (Exp a) -> Product (Exp a) -> Product (Exp a))
-> Exp (Plain (Product (Exp a)))
-> Exp (Plain (Product (Exp a)))
-> Exp (Plain (Product (Exp a)))
forall a b c.
(Unlift Exp a, Unlift Exp b, Lift Exp c) =>
(a -> b -> c) -> Exp (Plain a) -> Exp (Plain b) -> Exp (Plain c)
lift2 (Product (Exp a) -> Product (Exp a) -> Product (Exp a)
forall a. Num a => a -> a -> a
(+) :: Product (Exp a) -> Product (Exp a) -> Product (Exp a))
(-) = (Product (Exp a) -> Product (Exp a) -> Product (Exp a))
-> Exp (Plain (Product (Exp a)))
-> Exp (Plain (Product (Exp a)))
-> Exp (Plain (Product (Exp a)))
forall a b c.
(Unlift Exp a, Unlift Exp b, Lift Exp c) =>
(a -> b -> c) -> Exp (Plain a) -> Exp (Plain b) -> Exp (Plain c)
lift2 ((-) :: Product (Exp a) -> Product (Exp a) -> Product (Exp a))
* :: Exp (Product a) -> Exp (Product a) -> Exp (Product a)
(*) = (Product (Exp a) -> Product (Exp a) -> Product (Exp a))
-> Exp (Plain (Product (Exp a)))
-> Exp (Plain (Product (Exp a)))
-> Exp (Plain (Product (Exp a)))
forall a b c.
(Unlift Exp a, Unlift Exp b, Lift Exp c) =>
(a -> b -> c) -> Exp (Plain a) -> Exp (Plain b) -> Exp (Plain c)
lift2 (Product (Exp a) -> Product (Exp a) -> Product (Exp a)
forall a. Num a => a -> a -> a
(*) :: Product (Exp a) -> Product (Exp a) -> Product (Exp a))
negate :: Exp (Product a) -> Exp (Product a)
negate = (Product (Exp a) -> Product (Exp a))
-> Exp (Plain (Product (Exp a))) -> Exp (Plain (Product (Exp a)))
forall a b.
(Unlift Exp a, Lift Exp b) =>
(a -> b) -> Exp (Plain a) -> Exp (Plain b)
lift1 (Product (Exp a) -> Product (Exp a)
forall a. Num a => a -> a
negate :: Product (Exp a) -> Product (Exp a))
signum :: Exp (Product a) -> Exp (Product a)
signum = (Product (Exp a) -> Product (Exp a))
-> Exp (Plain (Product (Exp a))) -> Exp (Plain (Product (Exp a)))
forall a b.
(Unlift Exp a, Lift Exp b) =>
(a -> b) -> Exp (Plain a) -> Exp (Plain b)
lift1 (Product (Exp a) -> Product (Exp a)
forall a. Num a => a -> a
signum :: Product (Exp a) -> Product (Exp a))
abs :: Exp (Product a) -> Exp (Product a)
abs = (Product (Exp a) -> Product (Exp a))
-> Exp (Plain (Product (Exp a))) -> Exp (Plain (Product (Exp a)))
forall a b.
(Unlift Exp a, Lift Exp b) =>
(a -> b) -> Exp (Plain a) -> Exp (Plain b)
lift1 (Product (Exp a) -> Product (Exp a)
forall a. Num a => a -> a
signum :: Product (Exp a) -> Product (Exp a))
fromInteger :: Integer -> Exp (Product a)
fromInteger Integer
x = Product (Exp a) -> Exp (Plain (Product (Exp a)))
forall (c :: * -> *) e. Lift c e => e -> c (Plain e)
lift (Integer -> Product (Exp a)
forall a. Num a => Integer -> a
P.fromInteger Integer
x :: Product (Exp a))
instance Eq a => Eq (Product a) where
== :: Exp (Product a) -> Exp (Product a) -> Exp Bool
(==) = (Product (Exp a) -> Product (Exp a) -> Exp Bool)
-> Exp (Plain (Product (Exp a)))
-> Exp (Plain (Product (Exp a)))
-> Exp (Plain (Exp Bool))
forall a b c.
(Unlift Exp a, Unlift Exp b, Lift Exp c) =>
(a -> b -> c) -> Exp (Plain a) -> Exp (Plain b) -> Exp (Plain c)
lift2 (Exp a -> Exp a -> Exp Bool
forall a. Eq a => Exp a -> Exp a -> Exp Bool
(==) (Exp a -> Exp a -> Exp Bool)
-> (Product (Exp a) -> Exp a)
-> Product (Exp a)
-> Product (Exp a)
-> Exp Bool
forall b c a. (b -> b -> c) -> (a -> b) -> a -> a -> c
`on` Product (Exp a) -> Exp a
forall a. Product a -> a
getProduct)
/= :: Exp (Product a) -> Exp (Product a) -> Exp Bool
(/=) = (Product (Exp a) -> Product (Exp a) -> Exp Bool)
-> Exp (Plain (Product (Exp a)))
-> Exp (Plain (Product (Exp a)))
-> Exp (Plain (Exp Bool))
forall a b c.
(Unlift Exp a, Unlift Exp b, Lift Exp c) =>
(a -> b -> c) -> Exp (Plain a) -> Exp (Plain b) -> Exp (Plain c)
lift2 (Exp a -> Exp a -> Exp Bool
forall a. Eq a => Exp a -> Exp a -> Exp Bool
(/=) (Exp a -> Exp a -> Exp Bool)
-> (Product (Exp a) -> Exp a)
-> Product (Exp a)
-> Product (Exp a)
-> Exp Bool
forall b c a. (b -> b -> c) -> (a -> b) -> a -> a -> c
`on` Product (Exp a) -> Exp a
forall a. Product a -> a
getProduct)
instance Ord a => Ord (Product a) where
< :: Exp (Product a) -> Exp (Product a) -> Exp Bool
(<) = (Product (Exp a) -> Product (Exp a) -> Exp Bool)
-> Exp (Plain (Product (Exp a)))
-> Exp (Plain (Product (Exp a)))
-> Exp (Plain (Exp Bool))
forall a b c.
(Unlift Exp a, Unlift Exp b, Lift Exp c) =>
(a -> b -> c) -> Exp (Plain a) -> Exp (Plain b) -> Exp (Plain c)
lift2 (Exp a -> Exp a -> Exp Bool
forall a. Ord a => Exp a -> Exp a -> Exp Bool
(<) (Exp a -> Exp a -> Exp Bool)
-> (Product (Exp a) -> Exp a)
-> Product (Exp a)
-> Product (Exp a)
-> Exp Bool
forall b c a. (b -> b -> c) -> (a -> b) -> a -> a -> c
`on` Product (Exp a) -> Exp a
forall a. Product a -> a
getProduct)
> :: Exp (Product a) -> Exp (Product a) -> Exp Bool
(>) = (Product (Exp a) -> Product (Exp a) -> Exp Bool)
-> Exp (Plain (Product (Exp a)))
-> Exp (Plain (Product (Exp a)))
-> Exp (Plain (Exp Bool))
forall a b c.
(Unlift Exp a, Unlift Exp b, Lift Exp c) =>
(a -> b -> c) -> Exp (Plain a) -> Exp (Plain b) -> Exp (Plain c)
lift2 (Exp a -> Exp a -> Exp Bool
forall a. Ord a => Exp a -> Exp a -> Exp Bool
(>) (Exp a -> Exp a -> Exp Bool)
-> (Product (Exp a) -> Exp a)
-> Product (Exp a)
-> Product (Exp a)
-> Exp Bool
forall b c a. (b -> b -> c) -> (a -> b) -> a -> a -> c
`on` Product (Exp a) -> Exp a
forall a. Product a -> a
getProduct)
<= :: Exp (Product a) -> Exp (Product a) -> Exp Bool
(<=) = (Product (Exp a) -> Product (Exp a) -> Exp Bool)
-> Exp (Plain (Product (Exp a)))
-> Exp (Plain (Product (Exp a)))
-> Exp (Plain (Exp Bool))
forall a b c.
(Unlift Exp a, Unlift Exp b, Lift Exp c) =>
(a -> b -> c) -> Exp (Plain a) -> Exp (Plain b) -> Exp (Plain c)
lift2 (Exp a -> Exp a -> Exp Bool
forall a. Ord a => Exp a -> Exp a -> Exp Bool
(<=) (Exp a -> Exp a -> Exp Bool)
-> (Product (Exp a) -> Exp a)
-> Product (Exp a)
-> Product (Exp a)
-> Exp Bool
forall b c a. (b -> b -> c) -> (a -> b) -> a -> a -> c
`on` Product (Exp a) -> Exp a
forall a. Product a -> a
getProduct)
>= :: Exp (Product a) -> Exp (Product a) -> Exp Bool
(>=) = (Product (Exp a) -> Product (Exp a) -> Exp Bool)
-> Exp (Plain (Product (Exp a)))
-> Exp (Plain (Product (Exp a)))
-> Exp (Plain (Exp Bool))
forall a b c.
(Unlift Exp a, Unlift Exp b, Lift Exp c) =>
(a -> b -> c) -> Exp (Plain a) -> Exp (Plain b) -> Exp (Plain c)
lift2 (Exp a -> Exp a -> Exp Bool
forall a. Ord a => Exp a -> Exp a -> Exp Bool
(>=) (Exp a -> Exp a -> Exp Bool)
-> (Product (Exp a) -> Exp a)
-> Product (Exp a)
-> Product (Exp a)
-> Exp Bool
forall b c a. (b -> b -> c) -> (a -> b) -> a -> a -> c
`on` Product (Exp a) -> Exp a
forall a. Product a -> a
getProduct)
min :: Exp (Product a) -> Exp (Product a) -> Exp (Product a)
min Exp (Product a)
x Exp (Product a)
y = Exp a -> Exp (Product a)
forall a. Elt a => Exp a -> Exp (Product a)
Product_ (Exp a -> Exp (Product a)) -> Exp a -> Exp (Product a)
forall a b. (a -> b) -> a -> b
$ (Product (Exp a) -> Product (Exp a) -> Exp a)
-> Exp (Plain (Product (Exp a)))
-> Exp (Plain (Product (Exp a)))
-> Exp (Plain (Exp a))
forall a b c.
(Unlift Exp a, Unlift Exp b, Lift Exp c) =>
(a -> b -> c) -> Exp (Plain a) -> Exp (Plain b) -> Exp (Plain c)
lift2 (Exp a -> Exp a -> Exp a
forall a. Ord a => Exp a -> Exp a -> Exp a
min (Exp a -> Exp a -> Exp a)
-> (Product (Exp a) -> Exp a)
-> Product (Exp a)
-> Product (Exp a)
-> Exp a
forall b c a. (b -> b -> c) -> (a -> b) -> a -> a -> c
`on` Product (Exp a) -> Exp a
forall a. Product a -> a
getProduct) Exp (Product a)
Exp (Plain (Product (Exp a)))
x Exp (Product a)
Exp (Plain (Product (Exp a)))
y
max :: Exp (Product a) -> Exp (Product a) -> Exp (Product a)
max Exp (Product a)
x Exp (Product a)
y = Exp a -> Exp (Product a)
forall a. Elt a => Exp a -> Exp (Product a)
Product_ (Exp a -> Exp (Product a)) -> Exp a -> Exp (Product a)
forall a b. (a -> b) -> a -> b
$ (Product (Exp a) -> Product (Exp a) -> Exp a)
-> Exp (Plain (Product (Exp a)))
-> Exp (Plain (Product (Exp a)))
-> Exp (Plain (Exp a))
forall a b c.
(Unlift Exp a, Unlift Exp b, Lift Exp c) =>
(a -> b -> c) -> Exp (Plain a) -> Exp (Plain b) -> Exp (Plain c)
lift2 (Exp a -> Exp a -> Exp a
forall a. Ord a => Exp a -> Exp a -> Exp a
max (Exp a -> Exp a -> Exp a)
-> (Product (Exp a) -> Exp a)
-> Product (Exp a)
-> Product (Exp a)
-> Exp a
forall b c a. (b -> b -> c) -> (a -> b) -> a -> a -> c
`on` Product (Exp a) -> Exp a
forall a. Product a -> a
getProduct) Exp (Product a)
Exp (Plain (Product (Exp a)))
x Exp (Product a)
Exp (Plain (Product (Exp a)))
y
instance Num a => Monoid (Exp (Product a)) where
mempty :: Exp (Product a)
mempty = Exp (Product a)
1
instance Num a => Semigroup (Exp (Product a)) where
<> :: Exp (Product a) -> Exp (Product a) -> Exp (Product a)
(<>) = Exp (Product a) -> Exp (Product a) -> Exp (Product a)
forall a. Num a => a -> a -> a
(*)
stimes :: forall b. Integral b => b -> Exp (Product a) -> Exp (Product a)
stimes b
n (Product_ Exp a
x) = Exp a -> Exp (Product a)
forall a. Elt a => Exp a -> Exp (Product a)
Product_ (Exp a -> Exp (Product a)) -> Exp a -> Exp (Product a)
forall a b. (a -> b) -> a -> b
$ Exp a
x Exp a -> Exp Int -> Exp a
forall a b. (Num a, Integral b) => Exp a -> Exp b -> Exp a
^ (b -> Exp Int
forall a b. (Integral a, Num b) => a -> b
P.fromIntegral b
n :: Exp Int)
instance Monoid (Exp ()) where
mempty :: Exp ()
mempty = () -> Exp ()
forall e. (HasCallStack, Elt e) => e -> Exp e
constant ()
instance (Elt a, Elt b, Monoid (Exp a), Monoid (Exp b)) => Monoid (Exp (a,b)) where
mempty :: Exp (a, b)
mempty = Exp a -> Exp b -> Exp (a, b)
forall (con :: * -> *) x0 x1.
IsPattern con (x0, x1) (con x0, con x1) =>
con x0 -> con x1 -> con (x0, x1)
T2 Exp a
forall a. Monoid a => a
mempty Exp b
forall a. Monoid a => a
mempty
instance (Elt a, Elt b, Elt c, Monoid (Exp a), Monoid (Exp b), Monoid (Exp c)) => Monoid (Exp (a,b,c)) where
mempty :: Exp (a, b, c)
mempty = Exp a -> Exp b -> Exp c -> Exp (a, b, c)
forall (con :: * -> *) x0 x1 x2.
IsPattern con (x0, x1, x2) (con x0, con x1, con x2) =>
con x0 -> con x1 -> con x2 -> con (x0, x1, x2)
T3 Exp a
forall a. Monoid a => a
mempty Exp b
forall a. Monoid a => a
mempty Exp c
forall a. Monoid a => a
mempty
instance (Elt a, Elt b, Elt c, Elt d, Monoid (Exp a), Monoid (Exp b), Monoid (Exp c), Monoid (Exp d)) => Monoid (Exp (a,b,c,d)) where
mempty :: Exp (a, b, c, d)
mempty = Exp a -> Exp b -> Exp c -> Exp d -> Exp (a, b, c, d)
forall (con :: * -> *) x0 x1 x2 x3.
IsPattern con (x0, x1, x2, x3) (con x0, con x1, con x2, con x3) =>
con x0 -> con x1 -> con x2 -> con x3 -> con (x0, x1, x2, x3)
T4 Exp a
forall a. Monoid a => a
mempty Exp b
forall a. Monoid a => a
mempty Exp c
forall a. Monoid a => a
mempty Exp d
forall a. Monoid a => a
mempty
instance (Elt a, Elt b, Elt c, Elt d, Elt e, Monoid (Exp a), Monoid (Exp b), Monoid (Exp c), Monoid (Exp d), Monoid (Exp e)) => Monoid (Exp (a,b,c,d,e)) where
mempty :: Exp (a, b, c, d, e)
mempty = Exp a -> Exp b -> Exp c -> Exp d -> Exp e -> Exp (a, b, c, d, e)
forall (con :: * -> *) x0 x1 x2 x3 x4.
IsPattern
con
(x0, x1, x2, x3, x4)
(con x0, con x1, con x2, con x3, con x4) =>
con x0
-> con x1 -> con x2 -> con x3 -> con x4 -> con (x0, x1, x2, x3, x4)
T5 Exp a
forall a. Monoid a => a
mempty Exp b
forall a. Monoid a => a
mempty Exp c
forall a. Monoid a => a
mempty Exp d
forall a. Monoid a => a
mempty Exp e
forall a. Monoid a => a
mempty