{-# LANGUAGE AllowAmbiguousTypes #-}
{-# LANGUAGE FlexibleContexts    #-}
{-# LANGUAGE FlexibleInstances   #-}
{-# LANGUAGE GADTs               #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications    #-}
{-# LANGUAGE TypeFamilies        #-}
{-# OPTIONS_GHC -fno-warn-orphans #-}
-- |
-- Module      : Data.Array.Accelerate.Classes.RealFrac
-- Copyright   : [2016..2020] The Accelerate Team
-- License     : BSD3
--
-- Maintainer  : Trevor L. McDonell <trevor.mcdonell@gmail.com>
-- Stability   : experimental
-- Portability : non-portable (GHC extensions)
--

module Data.Array.Accelerate.Classes.RealFrac (

  RealFrac(..),
  div', mod', divMod',

) where

import Data.Array.Accelerate.Language                               ( (^), cond, even )
import Data.Array.Accelerate.Lift                                   ( unlift )
import Data.Array.Accelerate.Pattern
import Data.Array.Accelerate.Representation.Type
import Data.Array.Accelerate.Smart
import Data.Array.Accelerate.Sugar.Elt
import Data.Array.Accelerate.Type

import Data.Array.Accelerate.Classes.Eq
import Data.Array.Accelerate.Classes.Ord
import Data.Array.Accelerate.Classes.Floating
import Data.Array.Accelerate.Classes.Fractional
import Data.Array.Accelerate.Classes.FromIntegral
import Data.Array.Accelerate.Classes.Integral
import Data.Array.Accelerate.Classes.Num
import Data.Array.Accelerate.Classes.ToFloating
import {-# SOURCE #-} Data.Array.Accelerate.Classes.RealFloat       -- defaultProperFraction

import Data.Maybe
import Text.Printf
import Prelude                                                      ( ($), String, error, unlines, otherwise )
import qualified Prelude                                            as P


-- | Generalisation of 'P.div' to any instance of 'RealFrac'
--
div' :: (RealFrac a, FromIntegral Int64 b, Integral b) => Exp a -> Exp a -> Exp b
div' :: forall a b.
(RealFrac a, FromIntegral Int64 b, Integral b) =>
Exp a -> Exp a -> Exp b
div' Exp a
n Exp a
d = Exp a -> Exp b
forall b. (Integral b, FromIntegral Int64 b) => Exp a -> Exp b
forall a b.
(RealFrac a, Integral b, FromIntegral Int64 b) =>
Exp a -> Exp b
floor (Exp a
n Exp a -> Exp a -> Exp a
forall a. Fractional a => a -> a -> a
/ Exp a
d)

-- | Generalisation of 'P.mod' to any instance of 'RealFrac'
--
mod' :: (Floating a, RealFrac a, ToFloating Int64 a) => Exp a -> Exp a -> Exp a
mod' :: forall a.
(Floating a, RealFrac a, ToFloating Int64 a) =>
Exp a -> Exp a -> Exp a
mod' Exp a
n Exp a
d = Exp a
n Exp a -> Exp a -> Exp a
forall a. Num a => a -> a -> a
- (Exp Int64 -> Exp a
forall a b. (ToFloating a b, Num a, Floating b) => Exp a -> Exp b
toFloating Exp Int64
f) Exp a -> Exp a -> Exp a
forall a. Num a => a -> a -> a
* Exp a
d
  where
    f :: Exp Int64
    f :: Exp Int64
f = Exp a -> Exp a -> Exp Int64
forall a b.
(RealFrac a, FromIntegral Int64 b, Integral b) =>
Exp a -> Exp a -> Exp b
div' Exp a
n Exp a
d

-- | Generalisation of 'P.divMod' to any instance of 'RealFrac'
--
divMod'
    :: (Floating a, RealFrac a, Integral b, FromIntegral Int64 b, ToFloating b a)
    => Exp a
    -> Exp a
    -> (Exp b, Exp a)
divMod' :: forall a b.
(Floating a, RealFrac a, Integral b, FromIntegral Int64 b,
 ToFloating b a) =>
Exp a -> Exp a -> (Exp b, Exp a)
divMod' Exp a
n Exp a
d = (Exp b
f, Exp a
n Exp a -> Exp a -> Exp a
forall a. Num a => a -> a -> a
- (Exp b -> Exp a
forall a b. (ToFloating a b, Num a, Floating b) => Exp a -> Exp b
toFloating Exp b
f) Exp a -> Exp a -> Exp a
forall a. Num a => a -> a -> a
* Exp a
d)
  where
    f :: Exp b
f = Exp a -> Exp a -> Exp b
forall a b.
(RealFrac a, FromIntegral Int64 b, Integral b) =>
Exp a -> Exp a -> Exp b
div' Exp a
n Exp a
d


-- | Extracting components of fractions.
--
class (Ord a, Fractional a) => RealFrac a where
  -- | The function 'properFraction' takes a real fractional number @x@ and
  -- returns a pair @(n,f)@ such that @x = n+f@, and:
  --
  -- * @n@ is an integral number with the same sign as @x@; and
  --
  -- * @f@ is a fraction with the same type and sign as @x@,
  --   and with absolute value less than @1@.
  --
  -- The default definitions of the 'ceiling', 'floor', 'truncate'
  -- and 'round' functions are in terms of 'properFraction'.
  properFraction :: (Integral b, FromIntegral Int64 b) => Exp a -> (Exp b, Exp a)

  -- The function 'splitFraction' takes a real fractional number @x@ and
  -- returns a pair @(n,f)@ such that @x = n+f@, and:
  --
  -- * @n@ is an integral number with the same sign as @x@; and
  --
  -- * @f@ is a fraction with the same type as @x@ in the range [0,1). Note that
  -- this differs from 'Prelude.properFraction'.
  --
  -- splitFraction :: (Elt b, IsIntegral b) => Exp a -> (Exp b, Exp a)

  -- @fraction x@ returns @x@ with the integer part removed.
  -- fraction       :: Exp a -> Exp a

  -- properFraction is part of the standard Haskell'98 RealFrac type classes
  -- splitFraction / fraction are from numeric-prelude Algebra.RealRing

  -- | @truncate x@ returns the integer nearest @x@ between zero and @x@
  truncate :: (Integral b, FromIntegral Int64 b) => Exp a -> Exp b
  truncate = Exp a -> Exp b
forall a b.
(RealFrac a, Integral b, FromIntegral Int64 b) =>
Exp a -> Exp b
defaultTruncate

  -- | @'round' x@ returns the nearest integer to @x@; the even integer if @x@
  -- is equidistant between two integers
  round    :: (Integral b, FromIntegral Int64 b) => Exp a -> Exp b
  round    = Exp a -> Exp b
forall a b.
(RealFrac a, Integral b, FromIntegral Int64 b) =>
Exp a -> Exp b
defaultRound

  -- | @'ceiling' x@ returns the least integer not less than @x@
  ceiling  :: (Integral b, FromIntegral Int64 b) => Exp a -> Exp b
  ceiling  = Exp a -> Exp b
forall a b.
(RealFrac a, Integral b, FromIntegral Int64 b) =>
Exp a -> Exp b
defaultCeiling

  -- | @'floor' x@ returns the greatest integer not greater than @x@
  floor    :: (Integral b, FromIntegral Int64 b) => Exp a -> Exp b
  floor    = Exp a -> Exp b
forall a b.
(RealFrac a, Integral b, FromIntegral Int64 b) =>
Exp a -> Exp b
defaultFloor

instance RealFrac Half where
  properFraction :: forall b.
(Integral b, FromIntegral Int64 b) =>
Exp Half -> (Exp b, Exp Half)
properFraction  = Exp Half -> (Exp b, Exp Half)
forall a b.
(RealFloat a, FromIntegral Int64 b, Integral b) =>
Exp a -> (Exp b, Exp a)
defaultProperFraction

instance RealFrac Float where
  properFraction :: forall b.
(Integral b, FromIntegral Int64 b) =>
Exp Float -> (Exp b, Exp Float)
properFraction  = Exp Float -> (Exp b, Exp Float)
forall a b.
(RealFloat a, FromIntegral Int64 b, Integral b) =>
Exp a -> (Exp b, Exp a)
defaultProperFraction

instance RealFrac Double where
  properFraction :: forall b.
(Integral b, FromIntegral Int64 b) =>
Exp Double -> (Exp b, Exp Double)
properFraction  = Exp Double -> (Exp b, Exp Double)
forall a b.
(RealFloat a, FromIntegral Int64 b, Integral b) =>
Exp a -> (Exp b, Exp a)
defaultProperFraction

instance RealFrac CFloat where
  properFraction :: forall b.
(Integral b, FromIntegral Int64 b) =>
Exp CFloat -> (Exp b, Exp CFloat)
properFraction  = Exp CFloat -> (Exp b, Exp CFloat)
forall a b.
(RealFloat a, FromIntegral Int64 b, Integral b) =>
Exp a -> (Exp b, Exp a)
defaultProperFraction
  truncate :: forall b. (Integral b, FromIntegral Int64 b) => Exp CFloat -> Exp b
truncate        = Exp CFloat -> Exp b
forall a b.
(RealFrac a, Integral b, FromIntegral Int64 b) =>
Exp a -> Exp b
defaultTruncate
  round :: forall b. (Integral b, FromIntegral Int64 b) => Exp CFloat -> Exp b
round           = Exp CFloat -> Exp b
forall a b.
(RealFrac a, Integral b, FromIntegral Int64 b) =>
Exp a -> Exp b
defaultRound
  ceiling :: forall b. (Integral b, FromIntegral Int64 b) => Exp CFloat -> Exp b
ceiling         = Exp CFloat -> Exp b
forall a b.
(RealFrac a, Integral b, FromIntegral Int64 b) =>
Exp a -> Exp b
defaultCeiling
  floor :: forall b. (Integral b, FromIntegral Int64 b) => Exp CFloat -> Exp b
floor           = Exp CFloat -> Exp b
forall a b.
(RealFrac a, Integral b, FromIntegral Int64 b) =>
Exp a -> Exp b
defaultFloor

instance RealFrac CDouble where
  properFraction :: forall b.
(Integral b, FromIntegral Int64 b) =>
Exp CDouble -> (Exp b, Exp CDouble)
properFraction  = Exp CDouble -> (Exp b, Exp CDouble)
forall a b.
(RealFloat a, FromIntegral Int64 b, Integral b) =>
Exp a -> (Exp b, Exp a)
defaultProperFraction
  truncate :: forall b.
(Integral b, FromIntegral Int64 b) =>
Exp CDouble -> Exp b
truncate        = Exp CDouble -> Exp b
forall a b.
(RealFrac a, Integral b, FromIntegral Int64 b) =>
Exp a -> Exp b
defaultTruncate
  round :: forall b.
(Integral b, FromIntegral Int64 b) =>
Exp CDouble -> Exp b
round           = Exp CDouble -> Exp b
forall a b.
(RealFrac a, Integral b, FromIntegral Int64 b) =>
Exp a -> Exp b
defaultRound
  ceiling :: forall b.
(Integral b, FromIntegral Int64 b) =>
Exp CDouble -> Exp b
ceiling         = Exp CDouble -> Exp b
forall a b.
(RealFrac a, Integral b, FromIntegral Int64 b) =>
Exp a -> Exp b
defaultCeiling
  floor :: forall b.
(Integral b, FromIntegral Int64 b) =>
Exp CDouble -> Exp b
floor           = Exp CDouble -> Exp b
forall a b.
(RealFrac a, Integral b, FromIntegral Int64 b) =>
Exp a -> Exp b
defaultFloor


-- Must test for ±0.0 to avoid returning -0.0 in the second component of the
-- pair. Unfortunately the branching costs a lot of performance.
--
-- defaultProperFraction
--     :: (ToFloating b a, RealFrac a, IsIntegral b, Num b, Floating a)
--     => Exp a
--     -> (Exp b, Exp a)
-- defaultProperFraction x =
--   unlift $ Exp
--          $ Cond (x == 0) (tup2 (0, 0))
--                          (tup2 (n, f))
--   where
--     n = truncate x
--     f = x - toFloating n

defaultProperFraction
    :: (RealFloat a, FromIntegral Int64 b, Integral b)
    => Exp a
    -> (Exp b, Exp a)
defaultProperFraction :: forall a b.
(RealFloat a, FromIntegral Int64 b, Integral b) =>
Exp a -> (Exp b, Exp a)
defaultProperFraction Exp a
x
  = Exp (Plain (Exp b, Exp a)) -> (Exp b, Exp a)
forall (c :: * -> *) e. Unlift c e => c (Plain e) -> e
unlift
  (Exp (Plain (Exp b, Exp a)) -> (Exp b, Exp a))
-> Exp (Plain (Exp b, Exp a)) -> (Exp b, Exp a)
forall a b. (a -> b) -> a -> b
$ Exp Bool -> Exp (b, a) -> Exp (b, a) -> Exp (b, a)
forall t. Elt t => Exp Bool -> Exp t -> Exp t -> Exp t
cond (Exp Int
n Exp Int -> Exp Int -> Exp Bool
forall a. Ord a => Exp a -> Exp a -> Exp Bool
>= Exp Int
0)
      (Exp b -> Exp a -> Exp (b, a)
forall (con :: * -> *) x0 x1.
IsPattern con (x0, x1) (con x0, con x1) =>
con x0 -> con x1 -> con (x0, x1)
T2 (Exp Int64 -> Exp b
forall a b. (FromIntegral a b, Integral a) => Exp a -> Exp b
fromIntegral Exp Int64
m Exp b -> Exp b -> Exp b
forall a. Num a => a -> a -> a
* (Exp b
2 Exp b -> Exp Int -> Exp b
forall a b. (Num a, Integral b) => Exp a -> Exp b -> Exp a
^ Exp Int
n)) Exp a
0.0)
      (Exp b -> Exp a -> Exp (b, a)
forall (con :: * -> *) x0 x1.
IsPattern con (x0, x1) (con x0, con x1) =>
con x0 -> con x1 -> con (x0, x1)
T2 (Exp Int64 -> Exp b
forall a b. (FromIntegral a b, Integral a) => Exp a -> Exp b
fromIntegral Exp Int64
q) (Exp Int64 -> Exp Int -> Exp a
forall a. RealFloat a => Exp Int64 -> Exp Int -> Exp a
encodeFloat Exp Int64
r Exp Int
n))
  where
    (Exp Int64
m, Exp Int
n) = Exp a -> (Exp Int64, Exp Int)
forall a. RealFloat a => Exp a -> (Exp Int64, Exp Int)
decodeFloat Exp a
x
    (Exp Int64
q, Exp Int64
r) = Exp Int64 -> Exp Int64 -> (Exp Int64, Exp Int64)
forall a. Integral a => a -> a -> (a, a)
quotRem Exp Int64
m (Exp Int64
2 Exp Int64 -> Exp Int -> Exp Int64
forall a b. (Num a, Integral b) => Exp a -> Exp b -> Exp a
^ (Exp Int -> Exp Int
forall a. Num a => a -> a
negate Exp Int
n))

defaultTruncate :: forall a b. (RealFrac a, Integral b, FromIntegral Int64 b) => Exp a -> Exp b
defaultTruncate :: forall a b.
(RealFrac a, Integral b, FromIntegral Int64 b) =>
Exp a -> Exp b
defaultTruncate Exp a
x
  | Just IsFloatingDict (EltR a)
IsFloatingDict <- forall a. Elt a => Maybe (IsFloatingDict (EltR a))
isFloating @a
  , Just IsIntegralDict (EltR b)
IsIntegralDict <- forall a. Elt a => Maybe (IsIntegralDict (EltR a))
isIntegral @b
  = Exp a -> Exp b
forall a b.
(Elt a, Elt b, IsFloating (EltR a), IsIntegral (EltR b)) =>
Exp a -> Exp b
mkTruncate Exp a
x
  --
  | Bool
otherwise
  = let (Exp b
n, Exp a
_) = Exp a -> (Exp b, Exp a)
forall b.
(Integral b, FromIntegral Int64 b) =>
Exp a -> (Exp b, Exp a)
forall a b.
(RealFrac a, Integral b, FromIntegral Int64 b) =>
Exp a -> (Exp b, Exp a)
properFraction Exp a
x in Exp b
n

defaultCeiling :: forall a b. (RealFrac a, Integral b, FromIntegral Int64 b) => Exp a -> Exp b
defaultCeiling :: forall a b.
(RealFrac a, Integral b, FromIntegral Int64 b) =>
Exp a -> Exp b
defaultCeiling Exp a
x
  | Just IsFloatingDict (EltR a)
IsFloatingDict <- forall a. Elt a => Maybe (IsFloatingDict (EltR a))
isFloating @a
  , Just IsIntegralDict (EltR b)
IsIntegralDict <- forall a. Elt a => Maybe (IsIntegralDict (EltR a))
isIntegral @b
  = Exp a -> Exp b
forall a b.
(Elt a, Elt b, IsFloating (EltR a), IsIntegral (EltR b)) =>
Exp a -> Exp b
mkCeiling Exp a
x
  --
  | Bool
otherwise
  = let (Exp b
n, Exp a
r) = Exp a -> (Exp b, Exp a)
forall b.
(Integral b, FromIntegral Int64 b) =>
Exp a -> (Exp b, Exp a)
forall a b.
(RealFrac a, Integral b, FromIntegral Int64 b) =>
Exp a -> (Exp b, Exp a)
properFraction Exp a
x in Exp Bool -> Exp b -> Exp b -> Exp b
forall t. Elt t => Exp Bool -> Exp t -> Exp t -> Exp t
cond (Exp a
r Exp a -> Exp a -> Exp Bool
forall a. Ord a => Exp a -> Exp a -> Exp Bool
> Exp a
0) (Exp b
nExp b -> Exp b -> Exp b
forall a. Num a => a -> a -> a
+Exp b
1) Exp b
n

defaultFloor :: forall a b. (RealFrac a, Integral b, FromIntegral Int64 b) => Exp a -> Exp b
defaultFloor :: forall a b.
(RealFrac a, Integral b, FromIntegral Int64 b) =>
Exp a -> Exp b
defaultFloor Exp a
x
  | Just IsFloatingDict (EltR a)
IsFloatingDict <- forall a. Elt a => Maybe (IsFloatingDict (EltR a))
isFloating @a
  , Just IsIntegralDict (EltR b)
IsIntegralDict <- forall a. Elt a => Maybe (IsIntegralDict (EltR a))
isIntegral @b
  = Exp a -> Exp b
forall a b.
(Elt a, Elt b, IsFloating (EltR a), IsIntegral (EltR b)) =>
Exp a -> Exp b
mkFloor Exp a
x
  --
  | Bool
otherwise
  = let (Exp b
n, Exp a
r) = Exp a -> (Exp b, Exp a)
forall b.
(Integral b, FromIntegral Int64 b) =>
Exp a -> (Exp b, Exp a)
forall a b.
(RealFrac a, Integral b, FromIntegral Int64 b) =>
Exp a -> (Exp b, Exp a)
properFraction Exp a
x in Exp Bool -> Exp b -> Exp b -> Exp b
forall t. Elt t => Exp Bool -> Exp t -> Exp t -> Exp t
cond (Exp a
r Exp a -> Exp a -> Exp Bool
forall a. Ord a => Exp a -> Exp a -> Exp Bool
< Exp a
0) (Exp b
nExp b -> Exp b -> Exp b
forall a. Num a => a -> a -> a
-Exp b
1) Exp b
n

defaultRound :: forall a b. (RealFrac a, Integral b, FromIntegral Int64 b) => Exp a -> Exp b
defaultRound :: forall a b.
(RealFrac a, Integral b, FromIntegral Int64 b) =>
Exp a -> Exp b
defaultRound Exp a
x
  | Just IsFloatingDict (EltR a)
IsFloatingDict <- forall a. Elt a => Maybe (IsFloatingDict (EltR a))
isFloating @a
  , Just IsIntegralDict (EltR b)
IsIntegralDict <- forall a. Elt a => Maybe (IsIntegralDict (EltR a))
isIntegral @b
  = Exp a -> Exp b
forall a b.
(Elt a, Elt b, IsFloating (EltR a), IsIntegral (EltR b)) =>
Exp a -> Exp b
mkRound Exp a
x
  --
  | Bool
otherwise
  = let (Exp b
n, Exp a
r)    = Exp a -> (Exp b, Exp a)
forall b.
(Integral b, FromIntegral Int64 b) =>
Exp a -> (Exp b, Exp a)
forall a b.
(RealFrac a, Integral b, FromIntegral Int64 b) =>
Exp a -> (Exp b, Exp a)
properFraction Exp a
x
        m :: Exp b
m         = Exp Bool -> Exp b -> Exp b -> Exp b
forall t. Elt t => Exp Bool -> Exp t -> Exp t -> Exp t
cond (Exp a
r Exp a -> Exp a -> Exp Bool
forall a. Ord a => Exp a -> Exp a -> Exp Bool
< Exp a
0.0) (Exp b
nExp b -> Exp b -> Exp b
forall a. Num a => a -> a -> a
-Exp b
1) (Exp b
nExp b -> Exp b -> Exp b
forall a. Num a => a -> a -> a
+Exp b
1)
        half_down :: Exp a
half_down = Exp a -> Exp a
forall a. Num a => a -> a
abs Exp a
r Exp a -> Exp a -> Exp a
forall a. Num a => a -> a -> a
- Exp a
0.5
        p :: Exp Ordering
p         = Exp a -> Exp a -> Exp Ordering
forall a. Ord a => Exp a -> Exp a -> Exp Ordering
compare Exp a
half_down Exp a
0.0
    in
    Exp Bool -> Exp b -> Exp b -> Exp b
forall t. Elt t => Exp Bool -> Exp t -> Exp t -> Exp t
cond (Ordering -> Exp Ordering
forall e. (HasCallStack, Elt e) => e -> Exp e
constant Ordering
LT Exp Ordering -> Exp Ordering -> Exp Bool
forall a. Eq a => Exp a -> Exp a -> Exp Bool
== Exp Ordering
p) Exp b
n                   (Exp b -> Exp b) -> Exp b -> Exp b
forall a b. (a -> b) -> a -> b
$
    Exp Bool -> Exp b -> Exp b -> Exp b
forall t. Elt t => Exp Bool -> Exp t -> Exp t -> Exp t
cond (Ordering -> Exp Ordering
forall e. (HasCallStack, Elt e) => e -> Exp e
constant Ordering
EQ Exp Ordering -> Exp Ordering -> Exp Bool
forall a. Eq a => Exp a -> Exp a -> Exp Bool
== Exp Ordering
p) (Exp Bool -> Exp b -> Exp b -> Exp b
forall t. Elt t => Exp Bool -> Exp t -> Exp t -> Exp t
cond (Exp b -> Exp Bool
forall a. Integral a => Exp a -> Exp Bool
even Exp b
n) Exp b
n Exp b
m) (Exp b -> Exp b) -> Exp b -> Exp b
forall a b. (a -> b) -> a -> b
$
            {- otherwise -} Exp b
m


data IsFloatingDict a where
  IsFloatingDict :: IsFloating a => IsFloatingDict a

data IsIntegralDict a where
  IsIntegralDict :: IsIntegral a => IsIntegralDict a

isFloating :: forall a. Elt a => Maybe (IsFloatingDict (EltR a))
isFloating :: forall a. Elt a => Maybe (IsFloatingDict (EltR a))
isFloating
  | TupRsingle ScalarType (EltR a)
t       <- forall a. Elt a => TypeR (EltR a)
eltR @a
  , SingleScalarType SingleType (EltR a)
s <- ScalarType (EltR a)
t
  , NumSingleType NumType (EltR a)
n    <- SingleType (EltR a)
s
  , FloatingNumType FloatingType (EltR a)
f  <- NumType (EltR a)
n
  = case FloatingType (EltR a)
f of
      TypeHalf{}   -> IsFloatingDict Half -> Maybe (IsFloatingDict Half)
forall a. a -> Maybe a
Just IsFloatingDict Half
forall a. IsFloating a => IsFloatingDict a
IsFloatingDict
      TypeFloat{}  -> IsFloatingDict Float -> Maybe (IsFloatingDict Float)
forall a. a -> Maybe a
Just IsFloatingDict Float
forall a. IsFloating a => IsFloatingDict a
IsFloatingDict
      TypeDouble{} -> IsFloatingDict Double -> Maybe (IsFloatingDict Double)
forall a. a -> Maybe a
Just IsFloatingDict Double
forall a. IsFloating a => IsFloatingDict a
IsFloatingDict
  --
  | Bool
otherwise
  = Maybe (IsFloatingDict (EltR a))
forall a. Maybe a
Nothing

isIntegral :: forall a. Elt a => Maybe (IsIntegralDict (EltR a))
isIntegral :: forall a. Elt a => Maybe (IsIntegralDict (EltR a))
isIntegral
  | TupRsingle ScalarType (EltR a)
t       <- forall a. Elt a => TypeR (EltR a)
eltR @a
  , SingleScalarType SingleType (EltR a)
s <- ScalarType (EltR a)
t
  , NumSingleType NumType (EltR a)
n    <- SingleType (EltR a)
s
  , IntegralNumType IntegralType (EltR a)
i  <- NumType (EltR a)
n
  = case IntegralType (EltR a)
i of
      TypeInt{}    -> IsIntegralDict Int -> Maybe (IsIntegralDict Int)
forall a. a -> Maybe a
Just IsIntegralDict Int
forall a. IsIntegral a => IsIntegralDict a
IsIntegralDict
      TypeInt8{}   -> IsIntegralDict Int8 -> Maybe (IsIntegralDict Int8)
forall a. a -> Maybe a
Just IsIntegralDict Int8
forall a. IsIntegral a => IsIntegralDict a
IsIntegralDict
      TypeInt16{}  -> IsIntegralDict Int16 -> Maybe (IsIntegralDict Int16)
forall a. a -> Maybe a
Just IsIntegralDict Int16
forall a. IsIntegral a => IsIntegralDict a
IsIntegralDict
      TypeInt32{}  -> IsIntegralDict Int32 -> Maybe (IsIntegralDict Int32)
forall a. a -> Maybe a
Just IsIntegralDict Int32
forall a. IsIntegral a => IsIntegralDict a
IsIntegralDict
      TypeInt64{}  -> IsIntegralDict Int64 -> Maybe (IsIntegralDict Int64)
forall a. a -> Maybe a
Just IsIntegralDict Int64
forall a. IsIntegral a => IsIntegralDict a
IsIntegralDict
      TypeWord{}   -> IsIntegralDict Word -> Maybe (IsIntegralDict Word)
forall a. a -> Maybe a
Just IsIntegralDict Word
forall a. IsIntegral a => IsIntegralDict a
IsIntegralDict
      TypeWord8{}  -> IsIntegralDict Word8 -> Maybe (IsIntegralDict Word8)
forall a. a -> Maybe a
Just IsIntegralDict Word8
forall a. IsIntegral a => IsIntegralDict a
IsIntegralDict
      TypeWord16{} -> IsIntegralDict Word16 -> Maybe (IsIntegralDict Word16)
forall a. a -> Maybe a
Just IsIntegralDict Word16
forall a. IsIntegral a => IsIntegralDict a
IsIntegralDict
      TypeWord32{} -> IsIntegralDict Word32 -> Maybe (IsIntegralDict Word32)
forall a. a -> Maybe a
Just IsIntegralDict Word32
forall a. IsIntegral a => IsIntegralDict a
IsIntegralDict
      TypeWord64{} -> IsIntegralDict Word64 -> Maybe (IsIntegralDict Word64)
forall a. a -> Maybe a
Just IsIntegralDict Word64
forall a. IsIntegral a => IsIntegralDict a
IsIntegralDict
  --
  | Bool
otherwise
  = Maybe (IsIntegralDict (EltR a))
forall a. Maybe a
Nothing


-- To satisfy superclass constraints
--
instance RealFrac a => P.RealFrac (Exp a) where
  properFraction :: forall b. Integral b => Exp a -> (b, Exp a)
properFraction = String -> Exp a -> (b, Exp a)
forall a. String -> a
preludeError String
"properFraction"
  truncate :: forall b. Integral b => Exp a -> b
truncate       = String -> Exp a -> b
forall a. String -> a
preludeError String
"truncate"
  round :: forall b. Integral b => Exp a -> b
round          = String -> Exp a -> b
forall a. String -> a
preludeError String
"round"
  ceiling :: forall b. Integral b => Exp a -> b
ceiling        = String -> Exp a -> b
forall a. String -> a
preludeError String
"ceiling"
  floor :: forall b. Integral b => Exp a -> b
floor          = String -> Exp a -> b
forall a. String -> a
preludeError String
"floor"

preludeError :: String -> a
preludeError :: forall a. String -> a
preludeError String
x
  = String -> a
forall a. HasCallStack => String -> a
error
  (String -> a) -> String -> a
forall a b. (a -> b) -> a -> b
$ [String] -> String
unlines [ String -> String -> String -> String
forall r. PrintfType r => String -> r
printf String
"Prelude.%s applied to EDSL types: use Data.Array.Accelerate.%s instead" String
x String
x
            , String
""
            , String
"These Prelude.RealFrac instances are present only to fulfil superclass"
            , String
"constraints for subsequent classes in the standard Haskell numeric hierarchy."
            ]